TCGAbiolinks retrieved molecular subtypes information from TCGA samples. The functions PanCancerAtlas_subtypes and TCGAquery_subtype can be used to get the information tables.
While the PanCancerAtlas_subtypes function gives access to a curated table retrieved from synapse (probably with the most updated molecular subtypes) the TCGAquery_subtype function has the complete table also with sample information retrieved from the TCGA marker papers.
PanCancerAtlas_subtypes: Curated molecular subtypes.Data and description retrieved from synapse (https://www.synapse.org/#!Synapse:syn8402849)
Synapse has published a single file with all available molecular subtypes that have been described by TCGA (all tumor types and all molecular platforms), which can be accessed using the PanCancerAtlas_subtypes function as below:
subtypes <- PanCancerAtlas_subtypes()
DT::datatable(subtypes,
             filter = 'top',
             options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
             rownames = FALSE)The columns “Subtype_Selected” was selected as most prominent subtype classification (from the other columns)
| All available molecular data based-subtype | Selected subtype | Number of samples | Link to file | Reference | link to paper | |
|---|---|---|---|---|---|---|
| ACC | mRNA, DNAmeth, protein, miRNA, CNA, COC, C1A.C1B | DNAmeth | 91 | Link | Cancer Cell 2016 | Link | 
| AML | mRNA and miRNA | mRNA | 187 | Link | NEJM 2013 | Link | 
| BLCA | mRNA subtypes | mRNA | 129 | Link | Nature 2014 | Link | 
| BRCA | PAM50 (mRNA) | PAM50 | 1218 | Link | Nature 2012 | Link | 
| GBM/LGG* | mRNA, DNAmeth, protein, Supervised_DNAmeth | Supervised_DNAmeth | 1122 | Link | Cell 2016 | Link | 
| Pan-GI (preliminary) ESCA/STAD/COAD/READ | Molecular_Subtype | Molecular_Subtype | 1011 | Link | Cancer Cell 2018 | Link | 
| HNSC | mRNA, DNAmeth, RPPA, miRNA, CNA, Paradigm | mRNA | 279 | Link (TabS7.2) | Nature 2015 | Link | 
| KICH | Eosinophilic | Eosinophilic | 66 | Link | Cancer Cell 2014 | Link | 
| KIRC | mRNA, miRNA | mRNA | 442 | Link | Nature 2013 | Link | 
| KIRP | mRNA, DNAmeth, protein, miRNA, CNA, COC | COC | 161 | Link | NEJM 2015 | Link | 
| LIHC (preliminary) | mRNA, DNAmeth, protein, miRNA, CNA, Paradigma, iCluster | iCluster | 196 | Link (Table S1A) | not published | |
| LUAD | DNAmeth, iCluster | iCluster | 230 | Link (Table S7) | Nature 2014 | Link | 
| LUSC | mRNA | mRNA | 178 | Link (Data file S7.5) | Nature 2012 | Link | 
| OVCA | mRNA | mRNA | 489 | Link | Nature 2011 | Link | 
| PCPG | mRNA, DNAmeth, protein, miRNA, CNA | mRNA | 178 | tableS2 | Cancer Cell 2017 | Link | 
| PRAD | mRNA, DNAmeth, protein, miRNA, CNA, icluster, mutation/fusion | mutation/fusion | 333 | Link | Cell 2015 | Link | 
| SKCM | mRNA, DNAmeth, protein, miRNA, mutation | mutation | 331 | Link (Table S1D) | Cell 2015 | Link | 
| THCA | mRNA, DNAmeth, protein, miRNA, CNA, histology | mRNA | 496 | Link (Table S2 - Tab1) | Cell 2014 | Link | 
| UCEC | iCluster, MSI, CNA, mRNA | iCluster - updated according to Pan-Gyne/Pathways groups | 538 | Link (datafile S1.1) | Nature 2013 | Link | 
| Link | ||||||
| UCS (preliminary) | mRNA | mRNA | 57 | Link | not published | 
TCGAquery_subtype: Working with molecular subtypes data.The Cancer Genome Atlas (TCGA) Research Network has reported integrated genome-wide studies of various diseases. We have added some of the subtypes defined by these report in our package:
| TCGA dataset | Link | Paper | Journal | 
|---|---|---|---|
| ACC | doi:10.1016/j.ccell.2016.04.002 | Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. | Cancer cell 2016 | 
| BRCA | https://www.cell.com/cancer-cell/fulltext/S1535-6108(18)30119-3 | A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers | Cancer cell 2018 | 
| BLCA | http://www.cell.com/cell/fulltext/S0092-8674(17)31056-5 | Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer Cell 2017 | |
| CHOL | http://www.sciencedirect.com/science/article/pii/S2211124717302140?via%3Dihub | Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles | Cell Reports 2017 | 
| COAD | http://www.nature.com/nature/journal/v487/n7407/abs/nature11252.html | Comprehensive molecular characterization of human colon and rectal cancer | Nature 2012 | 
| ESCA | https://www.nature.com/articles/nature20805 | Integrated genomic characterization of oesophageal carcinoma | Nature 2017 | 
| GBM | http://dx.doi.org/10.1016/j.cell.2015.12.028 | Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma | Cell 2016 | 
| HNSC | http://www.nature.com/nature/journal/v517/n7536/abs/nature14129.html | Comprehensive genomic characterization of head and neck squamous cell carcinomas | Nature 2015 | 
| KICH | http://www.sciencedirect.com/science/article/pii/S1535610814003043 | The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma | Cancer cell 2014 | 
| KIRC | http://www.nature.com/nature/journal/v499/n7456/abs/nature12222.html | Comprehensive molecular characterization of clear cell renal cell carcinoma | Nature 2013 | 
| KIRP | http://www.nejm.org/doi/full/10.1056/NEJMoa1505917 | Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma | NEJM 2016 | 
| LIHC | http://linkinghub.elsevier.com/retrieve/pii/S0092-8674(17)30639-6 | Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma | Cell 2017 | 
| LGG | http://dx.doi.org/10.1016/j.cell.2015.12.028 | Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma | Cell 2016 | 
| LUAD | http://www.nature.com/nature/journal/v511/n7511/abs/nature13385.html | Comprehensive molecular profiling of lung adenocarcinoma | Nature 2014 | 
| LUSC | http://www.nature.com/nature/journal/v489/n7417/abs/nature11404.html | Comprehensive genomic characterization of squamous cell lung cancers | Nature 2012 | 
| PAAD | http://www.cell.com/cancer-cell/fulltext/S1535-6108(17)30299-4 | Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma | Cancer Cell 2017 | 
| PCPG | http://dx.doi.org/10.1016/j.ccell.2017.01.001 | Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma | Cancer cell 2017 | 
| PRAD | http://www.sciencedirect.com/science/article/pii/S0092867415013392 | The Molecular Taxonomy of Primary Prostate Cancer | Cell 2015 | 
| READ | http://www.nature.com/nature/journal/v487/n7407/abs/nature11252.html | Comprehensive molecular characterization of human colon and rectal cancer | Nature 2012 | 
| SARC | http://www.cell.com/cell/fulltext/S0092-8674(17)31203-5 | Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas | Cell 2017 | 
| SKCM | http://www.sciencedirect.com/science/article/pii/S0092867415006340 | Genomic Classification of Cutaneous Melanoma | Cell 2015 | 
| STAD | http://www.nature.com/nature/journal/v511/n7511/abs/nature13385.html | Comprehensive molecular characterization of gastric adenocarcinoma | Nature 2013 | 
| THCA | http://www.sciencedirect.com/science/article/pii/S0092867414012380 | Integrated Genomic Characterization of Papillary Thyroid Carcinoma | Cell 2014 | 
| UCEC | http://www.nature.com/nature/journal/v497/n7447/abs/nature12113.html | Integrated genomic characterization of endometrial carcinoma | Nature 2013 | 
| UCS | http://www.cell.com/cancer-cell/fulltext/S1535-6108(17)30053-3 | Integrated Molecular Characterization of Uterine Carcinosarcoma Cancer | Cell 2017 | 
| UVM | http://www.cell.com/cancer-cell/fulltext/S1535-6108(17)30295-7 | Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma | Cancer Cell 2017 | 
These subtypes will be automatically added in the summarizedExperiment object through GDCprepare. But you can also use the TCGAquery_subtype function to retrive this information.
A subset of the LGG subytpe is shown below:
## R version 3.6.1 (2019-07-05)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.3 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.9-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.9-bioc/R/lib/libRlapack.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
##  [1] grid      parallel  stats4    stats     graphics  grDevices utils    
##  [8] datasets  methods   base     
## 
## other attached packages:
##  [1] TCGAbiolinks_2.12.6         maftools_2.0.16            
##  [3] bigmemory_4.5.33            jpeg_0.1-8                 
##  [5] png_0.1-7                   DT_0.8                     
##  [7] dplyr_0.8.3                 SummarizedExperiment_1.14.1
##  [9] DelayedArray_0.10.0         BiocParallel_1.18.1        
## [11] matrixStats_0.54.0          Biobase_2.44.0             
## [13] GenomicRanges_1.36.0        GenomeInfoDb_1.20.0        
## [15] IRanges_2.18.2              S4Vectors_0.22.0           
## [17] BiocGenerics_0.30.0         testthat_2.2.1             
## 
## loaded via a namespace (and not attached):
##   [1] R.utils_2.9.0               tidyselect_0.2.5           
##   [3] RSQLite_2.1.2               AnnotationDbi_1.46.1       
##   [5] htmlwidgets_1.3             devtools_2.1.0             
##   [7] DESeq_1.36.0                munsell_0.5.0              
##   [9] codetools_0.2-16            withr_2.1.2                
##  [11] colorspace_1.4-1            highr_0.8                  
##  [13] knitr_1.24                  rstudioapi_0.10            
##  [15] ggsignif_0.6.0              NMF_0.21.0                 
##  [17] labeling_0.3                GenomeInfoDbData_1.2.1     
##  [19] hwriter_1.3.2               KMsurv_0.1-5               
##  [21] bit64_0.9-7                 rprojroot_1.3-2            
##  [23] downloader_0.4              vctrs_0.2.0                
##  [25] generics_0.0.2              xfun_0.9                   
##  [27] ggthemes_4.2.0              EDASeq_2.18.0              
##  [29] R6_2.4.0                    doParallel_1.0.15          
##  [31] clue_0.3-57                 locfit_1.5-9.1             
##  [33] bitops_1.0-6                assertthat_0.2.1           
##  [35] promises_1.0.1              scales_1.0.0               
##  [37] gtable_0.3.0                sva_3.32.1                 
##  [39] processx_3.4.1              rlang_0.4.0                
##  [41] zeallot_0.1.0               genefilter_1.66.0          
##  [43] GlobalOptions_0.1.0         splines_3.6.1              
##  [45] rtracklayer_1.44.3          lazyeval_0.2.2             
##  [47] wordcloud_2.6               selectr_0.4-1              
##  [49] broom_0.5.2                 reshape2_1.4.3             
##  [51] BiocManager_1.30.4          yaml_2.2.0                 
##  [53] GenomicFeatures_1.36.4      crosstalk_1.0.0            
##  [55] backports_1.1.4             httpuv_1.5.1               
##  [57] tools_3.6.1                 usethis_1.5.1              
##  [59] gridBase_0.4-7              ggplot2_3.2.1              
##  [61] RColorBrewer_1.1-2          sessioninfo_1.1.1          
##  [63] Rcpp_1.0.2                  plyr_1.8.4                 
##  [65] progress_1.2.2              zlibbioc_1.30.0            
##  [67] purrr_0.3.2                 RCurl_1.95-4.12            
##  [69] ps_1.3.0                    prettyunits_1.0.2          
##  [71] ggpubr_0.2.3                GetoptLong_0.1.7           
##  [73] zoo_1.8-6                   ggrepel_0.8.1              
##  [75] cluster_2.1.0               fs_1.3.1                   
##  [77] magrittr_1.5                data.table_1.12.2          
##  [79] circlize_0.4.7              survminer_0.4.6            
##  [81] pkgload_1.0.2               aroma.light_3.14.0         
##  [83] hms_0.5.1                   mime_0.7                   
##  [85] evaluate_0.14               xtable_1.8-4               
##  [87] XML_3.98-1.20               gridExtra_2.3              
##  [89] shape_1.4.4                 compiler_3.6.1             
##  [91] biomaRt_2.40.4              tibble_2.1.3               
##  [93] crayon_1.3.4                R.oo_1.22.0                
##  [95] htmltools_0.3.6             mgcv_1.8-28                
##  [97] later_0.8.0                 tidyr_0.8.3                
##  [99] geneplotter_1.62.0          DBI_1.0.0                  
## [101] matlab_1.0.2                ComplexHeatmap_2.0.0       
## [103] BiocStyle_2.12.0            ShortRead_1.42.0           
## [105] Matrix_1.2-17               readr_1.3.1                
## [107] cli_1.1.0                   R.methodsS3_1.7.1          
## [109] bigmemory.sri_0.1.3         pkgconfig_2.0.2            
## [111] km.ci_0.5-2                 registry_0.5-1             
## [113] GenomicAlignments_1.20.1    xml2_1.2.2                 
## [115] foreach_1.4.7               annotate_1.62.0            
## [117] rngtools_1.4                pkgmaker_0.27              
## [119] XVector_0.24.0              bibtex_0.4.2               
## [121] rvest_0.3.4                 stringr_1.4.0              
## [123] callr_3.3.1                 digest_0.6.20              
## [125] ConsensusClusterPlus_1.48.0 Biostrings_2.52.0          
## [127] rmarkdown_1.15              survMisc_0.5.5             
## [129] edgeR_3.26.8                curl_4.0                   
## [131] shiny_1.3.2                 Rsamtools_2.0.0            
## [133] rjson_0.2.20                nlme_3.1-141               
## [135] jsonlite_1.6                desc_1.2.0                 
## [137] limma_3.40.6                pillar_1.4.2               
## [139] lattice_0.20-38             httr_1.4.1                 
## [141] pkgbuild_1.0.5              survival_2.44-1.1          
## [143] glue_1.3.1                  remotes_2.1.0              
## [145] iterators_1.0.12            bit_1.1-14                 
## [147] stringi_1.4.3               blob_1.2.0                 
## [149] latticeExtra_0.6-28         memoise_1.1.0