TCGAbiolinks retrieved molecular subtypes information from TCGA samples. The functions PanCancerAtlas_subtypes and TCGAquery_subtype can be used to get the information tables.
While the PanCancerAtlas_subtypes function gives access to a curated table retrieved from synapse (probably with the most updated molecular subtypes) the TCGAquery_subtype function has the complete table also with sample information retrieved from the TCGA marker papers.
PanCancerAtlas_subtypes: Curated molecular subtypes.Data and description retrieved from synapse (https://www.synapse.org/#!Synapse:syn8402849)
Synapse has published a single file with all available molecular subtypes that have been described by TCGA (all tumor types and all molecular platforms), which can be accessed using the PanCancerAtlas_subtypes function as below:
subtypes <- PanCancerAtlas_subtypes()
DT::datatable(subtypes,
             filter = 'top',
             options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
             rownames = FALSE)The columns “Subtype_Selected” was selected as most prominent subtype classification (from the other columns)
| All available molecular data based-subtype | Selected subtype | Number of samples | Link to file | Reference | link to paper | |
|---|---|---|---|---|---|---|
| ACC | mRNA, DNAmeth, protein, miRNA, CNA, COC, C1A.C1B | DNAmeth | 91 | Link | Cancer Cell 2016 | Link | 
| AML | mRNA and miRNA | mRNA | 187 | Link | NEJM 2013 | Link | 
| BLCA | mRNA subtypes | mRNA | 129 | Link | Nature 2014 | Link | 
| BRCA | PAM50 (mRNA) | PAM50 | 1218 | Link | Nature 2012 | Link | 
| GBM/LGG* | mRNA, DNAmeth, protein, Supervised_DNAmeth | Supervised_DNAmeth | 1122 | Link | Cell 2016 | Link | 
| Pan-GI (preliminary) ESCA/STAD/COAD/READ | Molecular_Subtype | Molecular_Subtype | 1011 | Link | Cancer Cell 2018 | Link | 
| HNSC | mRNA, DNAmeth, RPPA, miRNA, CNA, Paradigm | mRNA | 279 | Link (TabS7.2) | Nature 2015 | Link | 
| KICH | Eosinophilic | Eosinophilic | 66 | Link | Cancer Cell 2014 | Link | 
| KIRC | mRNA, miRNA | mRNA | 442 | Link | Nature 2013 | Link | 
| KIRP | mRNA, DNAmeth, protein, miRNA, CNA, COC | COC | 161 | Link | NEJM 2015 | Link | 
| LIHC (preliminary) | mRNA, DNAmeth, protein, miRNA, CNA, Paradigma, iCluster | iCluster | 196 | Link (Table S1A) | not published | |
| LUAD | DNAmeth, iCluster | iCluster | 230 | Link (Table S7) | Nature 2014 | Link | 
| LUSC | mRNA | mRNA | 178 | Link (Data file S7.5) | Nature 2012 | Link | 
| OVCA | mRNA | mRNA | 489 | Link | Nature 2011 | Link | 
| PCPG | mRNA, DNAmeth, protein, miRNA, CNA | mRNA | 178 | tableS2 | Cancer Cell 2017 | Link | 
| PRAD | mRNA, DNAmeth, protein, miRNA, CNA, icluster, mutation/fusion | mutation/fusion | 333 | Link | Cell 2015 | Link | 
| SKCM | mRNA, DNAmeth, protein, miRNA, mutation | mutation | 331 | Link (Table S1D) | Cell 2015 | Link | 
| THCA | mRNA, DNAmeth, protein, miRNA, CNA, histology | mRNA | 496 | Link (Table S2 - Tab1) | Cell 2014 | Link | 
| UCEC | iCluster, MSI, CNA, mRNA | iCluster - updated according to Pan-Gyne/Pathways groups | 538 | Link (datafile S1.1) | Nature 2013 | Link | 
| Link | ||||||
| UCS (preliminary) | mRNA | mRNA | 57 | Link | not published | 
TCGAquery_subtype: Working with molecular subtypes data.The Cancer Genome Atlas (TCGA) Research Network has reported integrated genome-wide studies of various diseases. We have added some of the subtypes defined by these report in our package:
| TCGA dataset | Link | Paper | Journal | 
|---|---|---|---|
| ACC | doi:10.1016/j.ccell.2016.04.002 | Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. | Cancer cell 2016 | 
| BRCA | https://www.cell.com/cancer-cell/fulltext/S1535-6108(18)30119-3 | A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers | Cancer cell 2018 | 
| BLCA | http://www.cell.com/cell/fulltext/S0092-8674(17)31056-5 | Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer Cell 2017 | |
| CHOL | http://www.sciencedirect.com/science/article/pii/S2211124717302140?via%3Dihub | Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles | Cell Reports 2017 | 
| COAD | http://www.nature.com/nature/journal/v487/n7407/abs/nature11252.html | Comprehensive molecular characterization of human colon and rectal cancer | Nature 2012 | 
| ESCA | https://www.nature.com/articles/nature20805 | Integrated genomic characterization of oesophageal carcinoma | Nature 2017 | 
| GBM | http://dx.doi.org/10.1016/j.cell.2015.12.028 | Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma | Cell 2016 | 
| HNSC | http://www.nature.com/nature/journal/v517/n7536/abs/nature14129.html | Comprehensive genomic characterization of head and neck squamous cell carcinomas | Nature 2015 | 
| KICH | http://www.sciencedirect.com/science/article/pii/S1535610814003043 | The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma | Cancer cell 2014 | 
| KIRC | http://www.nature.com/nature/journal/v499/n7456/abs/nature12222.html | Comprehensive molecular characterization of clear cell renal cell carcinoma | Nature 2013 | 
| KIRP | http://www.nejm.org/doi/full/10.1056/NEJMoa1505917 | Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma | NEJM 2016 | 
| LIHC | http://linkinghub.elsevier.com/retrieve/pii/S0092-8674(17)30639-6 | Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma | Cell 2017 | 
| LGG | http://dx.doi.org/10.1016/j.cell.2015.12.028 | Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma | Cell 2016 | 
| LUAD | http://www.nature.com/nature/journal/v511/n7511/abs/nature13385.html | Comprehensive molecular profiling of lung adenocarcinoma | Nature 2014 | 
| LUSC | http://www.nature.com/nature/journal/v489/n7417/abs/nature11404.html | Comprehensive genomic characterization of squamous cell lung cancers | Nature 2012 | 
| PAAD | http://www.cell.com/cancer-cell/fulltext/S1535-6108(17)30299-4 | Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma | Cancer Cell 2017 | 
| PCPG | http://dx.doi.org/10.1016/j.ccell.2017.01.001 | Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma | Cancer cell 2017 | 
| PRAD | http://www.sciencedirect.com/science/article/pii/S0092867415013392 | The Molecular Taxonomy of Primary Prostate Cancer | Cell 2015 | 
| READ | http://www.nature.com/nature/journal/v487/n7407/abs/nature11252.html | Comprehensive molecular characterization of human colon and rectal cancer | Nature 2012 | 
| SARC | http://www.cell.com/cell/fulltext/S0092-8674(17)31203-5 | Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas | Cell 2017 | 
| SKCM | http://www.sciencedirect.com/science/article/pii/S0092867415006340 | Genomic Classification of Cutaneous Melanoma | Cell 2015 | 
| STAD | http://www.nature.com/nature/journal/v511/n7511/abs/nature13385.html | Comprehensive molecular characterization of gastric adenocarcinoma | Nature 2013 | 
| THCA | http://www.sciencedirect.com/science/article/pii/S0092867414012380 | Integrated Genomic Characterization of Papillary Thyroid Carcinoma | Cell 2014 | 
| UCEC | http://www.nature.com/nature/journal/v497/n7447/abs/nature12113.html | Integrated genomic characterization of endometrial carcinoma | Nature 2013 | 
| UCS | http://www.cell.com/cancer-cell/fulltext/S1535-6108(17)30053-3 | Integrated Molecular Characterization of Uterine Carcinosarcoma Cancer | Cell 2017 | 
| UVM | http://www.cell.com/cancer-cell/fulltext/S1535-6108(17)30295-7 | Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma | Cancer Cell 2017 | 
These subtypes will be automatically added in the summarizedExperiment object through GDCprepare. But you can also use the TCGAquery_subtype function to retrieve this information.
A subset of the LGG subytpe is shown below:
## R version 4.2.0 (2022-04-22)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.4 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.15-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.15-bioc/R/lib/libRlapack.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB              LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] grid      stats4    stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] maftools_2.12.0             jpeg_0.1-9                 
##  [3] png_0.1-7                   DT_0.23                    
##  [5] dplyr_1.0.9                 SummarizedExperiment_1.26.1
##  [7] Biobase_2.56.0              GenomicRanges_1.48.0       
##  [9] GenomeInfoDb_1.32.2         IRanges_2.30.0             
## [11] S4Vectors_0.34.0            BiocGenerics_0.42.0        
## [13] MatrixGenerics_1.8.0        matrixStats_0.62.0         
## [15] TCGAbiolinks_2.24.3         testthat_3.1.4             
## 
## loaded via a namespace (and not attached):
##   [1] colorspace_2.0-3            hwriter_1.3.2.1            
##   [3] rjson_0.2.21                ellipsis_0.3.2             
##   [5] rprojroot_2.0.3             DNAcopy_1.70.0             
##   [7] XVector_0.36.0              fs_1.5.2                   
##   [9] rstudioapi_0.13             remotes_2.4.2              
##  [11] bit64_4.0.5                 AnnotationDbi_1.58.0       
##  [13] fansi_1.0.3                 xml2_1.3.3                 
##  [15] splines_4.2.0               codetools_0.2-18           
##  [17] R.methodsS3_1.8.2           cachem_1.0.6               
##  [19] knitr_1.39                  pkgload_1.2.4              
##  [21] jsonlite_1.8.0              Rsamtools_2.12.0           
##  [23] dbplyr_2.2.0                R.oo_1.25.0                
##  [25] BiocManager_1.30.18         readr_2.1.2                
##  [27] compiler_4.2.0              httr_1.4.3                 
##  [29] assertthat_0.2.1            Matrix_1.4-1               
##  [31] fastmap_1.1.0               cli_3.3.0                  
##  [33] htmltools_0.5.2             prettyunits_1.1.1          
##  [35] tools_4.2.0                 gtable_0.3.0               
##  [37] glue_1.6.2                  GenomeInfoDbData_1.2.8     
##  [39] rappdirs_0.3.3              ShortRead_1.54.0           
##  [41] Rcpp_1.0.8.3                jquerylib_0.1.4            
##  [43] vctrs_0.4.1                 Biostrings_2.64.0          
##  [45] rtracklayer_1.56.0          crosstalk_1.2.0            
##  [47] xfun_0.31                   stringr_1.4.0              
##  [49] ps_1.7.0                    brio_1.1.3                 
##  [51] rvest_1.0.2                 lifecycle_1.0.1            
##  [53] restfulr_0.0.15             devtools_2.4.3             
##  [55] XML_3.99-0.10               zlibbioc_1.42.0            
##  [57] scales_1.2.0                aroma.light_3.26.0         
##  [59] BiocStyle_2.24.0            vroom_1.5.7                
##  [61] hms_1.1.1                   parallel_4.2.0             
##  [63] RColorBrewer_1.1-3          yaml_2.3.5                 
##  [65] curl_4.3.2                  memoise_2.0.1              
##  [67] ggplot2_3.3.6               downloader_0.4             
##  [69] sass_0.4.1                  biomaRt_2.52.0             
##  [71] latticeExtra_0.6-29         stringi_1.7.6              
##  [73] RSQLite_2.2.14              highr_0.9                  
##  [75] BiocIO_1.6.0                desc_1.4.1                 
##  [77] GenomicFeatures_1.48.3      filelock_1.0.2             
##  [79] BiocParallel_1.30.3         pkgbuild_1.3.1             
##  [81] rlang_1.0.2                 pkgconfig_2.0.3            
##  [83] bitops_1.0-7                evaluate_0.15              
##  [85] TCGAbiolinksGUI.data_1.16.0 lattice_0.20-45            
##  [87] purrr_0.3.4                 GenomicAlignments_1.32.0   
##  [89] htmlwidgets_1.5.4           bit_4.0.4                  
##  [91] processx_3.6.0              tidyselect_1.1.2           
##  [93] plyr_1.8.7                  magrittr_2.0.3             
##  [95] R6_2.5.1                    generics_0.1.2             
##  [97] DelayedArray_0.22.0         DBI_1.1.2                  
##  [99] pillar_1.7.0                withr_2.5.0                
## [101] survival_3.3-1              KEGGREST_1.36.2            
## [103] RCurl_1.98-1.7              EDASeq_2.30.0              
## [105] tibble_3.1.7                crayon_1.5.1               
## [107] utf8_1.2.2                  BiocFileCache_2.4.0        
## [109] tzdb_0.3.0                  rmarkdown_2.14             
## [111] progress_1.2.2              usethis_2.1.6              
## [113] data.table_1.14.2           blob_1.2.3                 
## [115] callr_3.7.0                 digest_0.6.29              
## [117] tidyr_1.2.0                 R.utils_2.11.0             
## [119] munsell_0.5.0               bslib_0.3.1                
## [121] sessioninfo_1.2.2