cnv.plot {CNVtools} | R Documentation |
Makes formatted density plots from the posterior data frame(s) returned by CNVtest.binary
cnv.plot(posterior, hist.or.dens='histogram', batch = NULL, freq = NULL, ...)
posterior |
The posterior distribution obtained from the CNVtools fitting algorithm, for example using CNVtest.binary |
hist.or.dens |
Either 'histogram' or 'density' to plot the data as an histogram or using a kernel density estimator |
batch |
character vector (usually of length 1, but not always), designing the batches one wants to plot. |
freq |
This argument is only relevant when hist.or.dens='histogram' (the default). It matches the argument freq of the hist function. With freq = FALSE frequencies, and not raw counts, are shown in the histogram. |
... |
Usual arguments passed to the hist function, including main or breaks for example. |
Vincent Plagnol vincent.plagnol@cimr.cam.ac.uk and Chris Barnes christopher.barnes@imperial.ac.uk
#Load data for CNV for two control cohorts data(A112) raw.signal <- as.matrix(A112[, -c(1,2)]) dimnames(raw.signal)[[1]] <- A112$subject #Extract CNV signal using principal components pca.signal <- apply.pca(raw.signal) #Extract batch, sample and trait information batches <- factor(A112$cohort) sample <- factor(A112$subject) trait <- ifelse( A112$cohort == '58C', 0, 1) #Fit the CNV with a three component model fit.pca <- CNVtest.binary(signal = pca.signal, sample = sample, batch = batches, disease.status = trait, ncomp = 3, n.H0=3, n.H1=3, model.disease = "~ cn") cnv.plot(fit.pca[['posterior.H0']], batch = '58C', breaks = 30)