topGene {RankProd}R Documentation

topGene

Description

Indentify diiffentially expressed genes using rank product method

Usage

topGene(x,cutoff=NULL,method="pfp",num.gene=NULL,logged=TRUE,
                    logbase=2,gene.names=NULL)

Arguments

x

the value returned by function RP, RPadvance, RSadvance, RankProducts or RP.advance

cutoff

The pfp threshold value used to select genes

method

if cutoff is provided, the method needs to be selected to identify genes. "pfp" uses percentage of false prediction, which is a default setting. "pval" uses p-values which is less stringent than pfp

logged

if "TRUE", data has been logged, otherwise set it to "FALSE"

logbase

base used when taking log, used to restore the fold change.The default value is 2, this will be ignored if logged=FALSE

gene.names

if "NULL", no gene name will be attached to the output table

num.gene

number of candidates genes of interests, if cutoff is provided, this will be ignored

Value

Two tables of identified genes with gene.index: index of gene in the original data set RP/Rsum: Computed rank product/sum for each gene FC:(class1/class2): Expression Fold change of class 1/ class 2. pfp: estimated pfp for each gene if the gene is used as cutoff point P.value: estimated p-value for each gene Table 1 list genes that are up-regulated under class 2, Table 1 ist genes that are down-regulated under class 2

Author(s)

Fangxin Hong fhong@salk.edu

References

Breitling, R., Armengaud, P., Amtmann, A., and Herzyk, P.(2004) Rank Products: A simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments, FEBS Letter, 57383-92

See Also

plotRP RP RPadvance RSadvance

Examples

# Load the data of Golub et al. (1999). data(golub)
# contains a 3051x38 gene expression
# matrix called golub, a vector of length called golub.cl
# that consists of the 38 class labels,
# and a matrix called golub.gnames whose third column
# contains the gene names.
data(golub)

#use a subset of data as example, apply the rank
#product method
subset <- c(1:4,28:30)
#Setting rand=123, to make the results reproducible,

#identify genes
RP.out <- RP(golub[,subset],golub.cl[subset],rand=123)

#get two lists of differentially expressed genes
#by setting FDR (false discivery rate) =0.05

table=topGene(RP.out,cutoff=0.05,method="pfp",logged=TRUE,logbase=2,
                gene.names=golub.gnames[,3])
table$Table1
table$Table2

#using pvalue<0.05
topGene(RP.out,cutoff=0.05,method="pval",logged=TRUE,logbase=2,
        gene.names=golub.gnames[,3])

#by selecting top 10 genes
topGene(RP.out,num.gene=10,gene.names=golub.gnames[,3])

[Package RankProd version 3.8.0 Index]