PermutationResults-class {ClusterSignificance} | R Documentation |
Test how the classification performs compared to random (eg. permuted) data.
## S4 method for signature 'PermutationResults' getData(x, n = NULL) ## S4 method for signature 'PermutationResults' c(x, ..., recursive = FALSE) pvalue(x, ...) ## S4 method for signature 'PermutationResults' pvalue(x, ...) conf.int(x, ...) ## S4 method for signature 'PermutationResults' conf.int(x, conf.level = 0.99, ...) ## S4 method for signature 'PermutationResults' initialize(.Object, ..., scores.real, scores.vec) permute(mat, ...) ## S4 method for signature 'matrix' permute(mat, classes, projmethod = "pcp", iter = 100, user.permutations = NULL, seed = 3, df = NULL, verbose = TRUE, ...) ## S4 method for signature 'PermutationResults,missing' plot(x, y, comparison = "all", ...) ## S4 method for signature 'PermutationResults' show(object)
x |
matrix for the function permute, otherwise it is a PermutationResults object |
n |
data to extract from ClassifiedPoints (NULL gives all) |
... |
arguments to pass on |
recursive |
dont use (belongs to default generic of combine 'c()') |
conf.level |
confidence level for the returned confidence interval |
.Object |
internal object |
scores.real |
the real score |
scores.vec |
all permuted scores |
mat |
matrix with samples on rows, PCs in columns. Ordered PCs, with PC1 to the left. |
classes |
vector in same order as rows in matrix |
projmethod |
'pcp' or 'mlp' |
iter |
integer number of iterations to be performed. |
user.permutations |
user defined permutation matrix |
seed |
random seed to be used by the internal permutation |
df |
degrees of freedom, passed to smooth.spline |
verbose |
makes function more talkative |
y |
default plot param, which should be set to NULL |
comparison |
Specify a comparison i.e. ("grp1 vs grp2") and plot only that comparison. |
object |
ClassifiedPoints Object |
This is a test suit and will return a summarized object. The default of the parameter 'iter' is set quite low, and in principle the more iterations the better, or until the pvalue converges to a specifc value. If no pre-permuted data has been supplied by the user, then the internal permutation method will perform a sampling without replacement within each dimension.
The permute function returns an object of class PermutationResults
Jesper R. Gadin and Jason T. Serviss
#use pcp method data(pcpMatrix) classes <- rownames(pcpMatrix) #run function iterations <- 10 pe <- permute( mat=pcpMatrix, classes=classes, iter=iterations, projmethod="pcp" ) #use mlp method data(mlpMatrix) classes <- rownames(mlpMatrix) pe <- permute( mat=mlpMatrix, classes=classes, iter=iterations, projmethod="mlp" ) #getData accessor getData(pe) #getData accessor specific getData(pe, "scores.vec") #get pvalue pvalue(pe) #plot result plot(pe) #combine three (parallell) jobs on the same matrix pe2 <- c(pe, pe, pe)