
ccfindR: single-cell RNA-seq analysis using non-negative
matrix factorization

2018-04-30

The ccfindR (Cancer Clone findeR) package contains implementations and utilities for analyzing single-cell
RNA-sequencing data, including quality control, unsupervised clustering for discovery of cell types, and
visualization of the outcomes. It is especially suitable for analysis of transcript-count data utilizing unique
molecular identifiers (UMIs), e.g., data derived from 10x Genomics platform. In these data sets, RNA counts
are non-negative integers, enabling clustering using non-negative matrix factorization (NMF)1.

Input data are UMI counts in the form of a matrix with each genetic feature (“genes”) in rows and cells
(tagged by barcodes) in columns, produced by read alignment and counting pipelines. The count matrix and
associated gene and cell annotation files are bundled into a main object of class scNMFSet, which extends the
SingleCellExperiment class [http://dx.doi.org/10.18129/B9.bioc.SingleCellExperiment)]. Quality control
for both cells and genes can be performed via filtering steps based on UMI counts and variance of expressions,
respectively. The NMF factorization is first performed for multiple values of ranks (the reduced dimension
of factorization) to find the most likely value. A production run for the chosen rank then leads to factor
matrices, allowing the user to identify and visualize genes representative of clusters and assign cells into
clusters.

Algorithm

The NMF approach offers a means to identify cell subtypes and classify individual cells into these clusters
based on clustering using expression counts. In contrast to alternatives such as principal component analyses2,
NMF leverages the non-negative nature of count data and factorizes the data matrix X into two matrices W
and H1:

X ∼ WH.

If X is a p × n matrix (p genes and n cells), the basis matrix W is p × r and coefficient matrix H is r × n
in dimension, respectively, where the rank r is a relatively small integer. A statistical inference-based
interpretation of NMF is to view Xij as a realization of a Poisson distribution with the mean for each matrix
elements given by (WH)ij ≡ Λij , or

Pr(xij) = e−Λij Λij
xij

Γ(1 + xij) .

The maximum likelihood inference of the latter is then achieved by maximizing

L =
∑

ij

(
Xij ln Λij

Xij
− Λij +Xij

)
.

The Kullback-Leibler measure of the distance between X and Λ, which is minimized, is equal to −L. Lee
and Seung’s update rule1 solves this optimization task iteratively. In addition to this classical iterative
update algorithm to find basis and coefficient factors of the count matrix, the ccfindR package implements
variational Bayesian inference developed by Cemgil3.

Key features of ccfindR distinguishing it from other existing implementations – NMF for generic data4 and
NMFEM for single-cell analysis5 – are

• Bayesian inference allowing for a statistically well-controlled procedure to determine the most likely
value of rank r.

• Procedure to derive hierarchical relationships among clusters identified under different ranks.

1

http://dx.doi.org/10.18129/B9.bioc.SingleCellExperiment

A traditional way (in maximum likelihood inference) to determine the rank is to evaluate the factorization
quality measures (and optionally compare with those from randomized data). The Bayesian formulation of
NMF algorithm3 incorporates priors for factored matrix elements W and H modeled by gamma distributions.
Inference can be combined with hyperparameter update to optimize the evidence (conditional probability of
data under hyperparameters and rank), which provides a statistically well-controlled means to determine the
optimal rank describing data.

For large rank values, it can be challenging to interpret clusters identified. To facilitate biological interpretation,
we provide a procedure where cluster assignment of cells is repeated for multiple rank values, typically ranging
from 2 to the optimal rank, and a phylogenetic tree connecting different clusters at neighboring rank values
are constructed. This tree gives an overview of different types of cells present in the system viewed at varying
resolution.

Workflow

We illustrate a typical workflow with a single-cell count data set generated from peripheral blood mononu-
clear cell (PBMC) data [https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/]. The
particular data set used below was created by sampling from 5 purified immune cell subsets.

1. Installation

To install the package, download the source tar-ball and

$ R CMD INSTALL ccfindR_0.99-0.tar.gz

After installation, load the package by
library(ccfindR)

Package 'ccfindR' version 1.0.0

2. Data input

The input data can be a simple matrix:
A toy matrix for count data
set.seed(1)
mat <- matrix(rpois(n = 80, lambda = 2), nrow = 4, ncol = 20)
ABC <- LETTERS[1:4]
abc <- letters[1:20]
rownames(mat) <- ABC
colnames(mat) <- abc

The main S4 object containing data and subsequent analysis outcomes is of class scNMFSet, created by
create scNMFSet object
sc <- scNMFSet(count = mat)

This class extends SingleCellExperiment class, adding extra slots for storing factorization outcomes. In
particular, assays, rowData, and colData slots of SingleCellExperiment class are used to store RNA count
matrix, gene, and cell annotation data frames, respectively. In the simplest initialization above, the named
argument count is used as the count matrix and is equivalent to
create scNMFSet object
sc <- scNMFSet(assays = list(counts = mat))

2

https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/
http://dx.doi.org/10.18129/B9.bioc.SingleCellExperiment

See SingleCellExperiment documentations for more details of these main slots. For instance, row and
column names can be stored by
set row and column names
suppressMessages(library(S4Vectors))
genes <- as(ABC, 'DataFrame')
rownames(genes) <- ABC
cells <- as(abc, 'DataFrame')
rownames(cells) <- abc
sc <- scNMFSet(count = mat, rowData = genes, colData = cells)
sc

class: scNMFSet
dim: 4 20
metadata(0):
assays(1): counts
rownames(4): A B C D
rowData names(1): X
colnames(20): a b ... s t
colData names(1): X
reducedDimNames(0):
spikeNames(0):

Alternatively, sparse matrix format (of class dgCMatrix) can be used. One may read a MatrixMarket format
file directly:
read sparse matrix
dir <- system.file('extdata', package = 'ccfindR')
mat <- Matrix::readMM(paste0(dir,'/matrix.mtx'))
sc <- scNMFSet(count = mat, rowData = as(1:nrow(mat), 'DataFrame'),

colData = as(1:ncol(mat), 'DataFrame'))
sc

class: scNMFSet
dim: 1030 450
metadata(0):
assays(1): counts
rownames: NULL
rowData names(1): X
colnames: NULL
colData names(1): X
reducedDimNames(0):
spikeNames(0):

The number of rows in assays$counts and rowData, the number of columns in assays$counts and rows in
colData must match.

The gene and barcode meta-data and count files resulting from 10x Genomics’ Cell Ranger pipeline (https:
//support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger) can
also be read:
read 10x files
sc <- read_10x(dir = dir, count = 'matrix.mtx', genes = 'genes.tsv',

barcodes = 'barcodes.tsv')
sc

class: scNMFSet
dim: 1030 450

3

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger

metadata(0):
assays(1): counts
rownames(1030): ENSG00000187608 ENSG00000186891 ...
ENSG00000198886 ENSG00000198727
rowData names(2): V1 V2
colnames(450): ATGCAGTGCTTGGA-1 CATGTACTCCATGA-1 ...
ACTATCACTCAGTG-1 ACAATAACTAGAGA-1
colData names(1): V1
reducedDimNames(0):
spikeNames(0):

The parameter dir is the directory containing the files. Filenames above are defaults and can be omitted.
The function returns an scNMFSet object. By default, any row or column entirely consisting of zeros in
counts and the corresponding elements in rowData and colData slots will be removed. This feature can be
turned off by remove.zeros = FALSE.

3. Quality control

For quality control, cells and genes can be filtered manually using normal subsetting syntax of R: the slots in
the object sc are accessed and edited using accessors and sub-setting rules; see SingleCellExperiment:
slots and subsetting
counts(sc)[1:7,1:3]

7 x 3 sparse Matrix of class "dgCMatrix"
ATGCAGTGCTTGGA-1 CATGTACTCCATGA-1 GAGAAATGGCAAGG-1
ENSG00000187608 . 2 .
ENSG00000186891 . . .
ENSG00000127054 . . .
ENSG00000158109 . . .
ENSG00000116251 . 3 .
ENSG00000074800 2 . .
ENSG00000162444 . . .
head(rowData(sc))

DataFrame with 6 rows and 2 columns
V1 V2
<character> <character>
1 ENSG00000187608 ISG15
2 ENSG00000186891 TNFRSF18
3 ENSG00000127054 CPSF3L
4 ENSG00000158109 TPRG1L
5 ENSG00000116251 RPL22
6 ENSG00000074800 ENO1
head(colData(sc))

DataFrame with 6 rows and 1 column
V1
<character>
ATGCAGTGCTTGGA-1 ATGCAGTGCTTGGA-1
CATGTACTCCATGA-1 CATGTACTCCATGA-1
GAGAAATGGCAAGG-1 GAGAAATGGCAAGG-1
TGATATGACGTTAG-1 TGATATGACGTTAG-1
AGTAGGCTCGGGAA-1 AGTAGGCTCGGGAA-1

4

http://dx.doi.org/10.18129/B9.bioc.SingleCellExperiment

Cells

log10(umi.count)

F
re

qu
en

cy

2.6 2.8 3.0 3.2 3.4 3.6

0
20

40
60

80
10

0

Figure 1: Quality control filtering of cells. Histogram of UMI counts is shown. Cells can be selected (red) by
setting lower and upper thresholds of the UMI count.

TGACCGCTGTAGCT-1 TGACCGCTGTAGCT-1
sc2 <- sc[1:20,1:70] # subsetting of object
sc2 <- remove_zeros(sc2) # remove empty rows/columns

6 empty genes removed
sc2

class: scNMFSet
dim: 14 70
metadata(0):
assays(1): counts
rownames(14): ENSG00000187608 ENSG00000186891 ... ENSG00000117318
ENSG00000142676
rowData names(2): V1 V2
colnames(70): ATGCAGTGCTTGGA-1 CATGTACTCCATGA-1 ...
ACAGTGACAGTAGA-1 TCCGAAGAAGCCAT-1
colData names(1): V1
reducedDimNames(0):
spikeNames(0):

We provide two streamlined functions each for cell and gene filtering as shown below:
sc <- filter_cells(sc, umi.min = 10^2.6, umi.max = 10^3.4)

438 cells out of 450 selected
21 empty genes removed
markers <- c('CD4','CD8A','CD8B','CD19','CD3G','CD3D',

'CD3Z','CD14')
sc0 <- filter_genes(sc, markers = markers, vmr.min = 1.5,

5

0 100 200 300 400

1
2

5
10

20

Genes

No. of cells expressed

V
M

R

Figure 2: Selection of genes for clustering. The scatter plot shows distributions of expression variance to
mean ratio (VMR) and the number of cells expressed. Minimum VMR and a range of cell number can be
set to select genes (red). Symbols in orange are marker genes provided as input, selected irrespective of
expression variance.

min.cells.expressed = 50, rescue.genes = FALSE)

5 marker genes found
297 variable genes out of 1009
299 genes selected

The function filter_cells() plots histogram of UMI counts for all cells when called without threshold
parameters (Fig. 1). This plot can be used to set desirable thresholds, umi.min and umi.max. Cells with UMI
counts outside will be filtered out. The function filter_genes() displays scatter plot of the total number of
cells with nonzero count and VMR (variance-to-mean ratio) for each gene (Fig. 2). In both plots, selected
cells and genes are shown in red. Note that the above example has thresholds that are too stringent, which is
intended to speed up the subsequent illustrative runs. A list of pre-selected marker genes can be provided to
help identify clusters via the markers parameter in filter_genes(). Here, we use a set of classical PBMC
marker genes (shown in orange).

Gene-filtering can also be augmented by scanning for those genes whose count distributions among cells are
non-trivial: most have zero count as its maximum; some have one or more distinct peaks at nonzero count
values. These may signify the existence of groups of cells in which the genes are expressed in distinguishable
fashion. The selection of genes by filter_genes() will be set as the union of threshold-based group and
those with such nonzero-count modes by setting rescue.genes = TRUE (default):
sc_rescue <- filter_genes(sc, markers = markers, vmr.min = 1.5, min.cells.expressed = 50,

rescue.genes = TRUE, progress.bar = FALSE)

Looking for genes with modes ...
5 marker genes found
297 variable genes out of 1009
36 additional genes rescued

6

0 100 200 300 400

1
2

5
10

20

Genes

No. of cells expressed

V
M

R

Figure 3: Additional selection of genes with modes at nonzero counts. Symbols in blue represent genes
rescued.

333 genes selected

This “gene rescue” scan will take some time and a progress bar is displayed if progress.bar = TRUE.

For subsequent analysis, we will use the latter selection and also name rows with gene symbols:
rownames(sc_rescue) <- rowData(sc_rescue)[,2]
sc <- sc_rescue

4. Rank determination

The main function for maximum likelihood NMF on a count matrix is factorize(). It performs a series
of iterative updates to matrices W and H. Since the global optimum of likelihood function is not directly
accessible, computational inference relies on local maxima, which depends on initializations. We adopt the
randomized initialization scheme, where the factor matrix elements are drawn from uniform distributions.
To make the inference reproducible, one can set the random number seed by set.seed(seed), where seed
is a positive integer, prior to calling factorize(). Updates continue until convergence is reached, defined
by either the fractional change in likelihood being smaller than Tol (criterion = likelihood) or a set
number (ncnn.step) of steps observed during which the connectivity matrix remains unchanged (criterion
= connectivity). The connectivity matrix C is a symmetric n× n matrix with elements Cjl = 1 if j and l
cells belong to the same cluster and 0 otherwise. The cluster membership is dynamically checked by finding
the row index k for which the coefficient matrix element Hkj is maximum for each cell indexed by j.

During iteration, with verbose = 3, step number, log likelihood per elements, and the number of terms in
the upper-diagonal part of C that changed from the previous step are printed:
set.seed(1)
sc <- factorize(sc, ranks = 3, nrun = 1, ncnn.step = 1,

criterion='connectivity', verbose = 3)

7

Rank 3
Run # 1 :
1 : likelihood = -0.569847 , connectivity change = 95703
2 : likelihood = -0.5571901 , connectivity change = 5038
3 : likelihood = -0.5490381 , connectivity change = 4126
4 : likelihood = -0.5427167 , connectivity change = 6999
5 : likelihood = -0.5367327 , connectivity change = 9493
6 : likelihood = -0.5297582 , connectivity change = 6316
7 : likelihood = -0.5204045 , connectivity change = 7176
8 : likelihood = -0.5075277 , connectivity change = 8037
9 : likelihood = -0.4911819 , connectivity change = 4352
10 : likelihood = -0.4731239 , connectivity change = 3916
11 : likelihood = -0.4555406 , connectivity change = 4466
12 : likelihood = -0.4397135 , connectivity change = 3695
13 : likelihood = -0.4260338 , connectivity change = 1746
14 : likelihood = -0.414567 , connectivity change = 3739
15 : likelihood = -0.4053164 , connectivity change = 3393
16 : likelihood = -0.3980694 , connectivity change = 1665
17 : likelihood = -0.3924104 , connectivity change = 2375
18 : likelihood = -0.3879222 , connectivity change = 1814
19 : likelihood = -0.3843011 , connectivity change = 1613
20 : likelihood = -0.3813472 , connectivity change = 1920
21 : likelihood = -0.3789228 , connectivity change = 3184
22 : likelihood = -0.3769243 , connectivity change = 1557
23 : likelihood = -0.3752681 , connectivity change = 341
24 : likelihood = -0.3738842 , connectivity change = 959
25 : likelihood = -0.3727151 , connectivity change = 1228
26 : likelihood = -0.3717172 , connectivity change = 1272
27 : likelihood = -0.3708584 , connectivity change = 1314
28 : likelihood = -0.3701144 , connectivity change = 1631
29 : likelihood = -0.3694659 , connectivity change = 1289
30 : likelihood = -0.3688975 , connectivity change = 516
31 : likelihood = -0.3683969 , connectivity change = 1029
32 : likelihood = -0.3679529 , connectivity change = 0
Nsteps = 32 , likelihood = -0.3679529 , dispersion = 1
##
Sample# 1 : Max(likelihood) = -0.3679529 , dispersion = 1 , cophenetic = 1

The function factorize() returns the same object sc with extra slots ranks (the rank value for which
factorization was performed), basis (a list containing the basis matrix W), coeff (a list containing the
coefficient matrix H), and measure (a data frame containing the factorization quality measure; see below). The
criterion used to stop iteration is either connectivity (no changes to connectivity matrix for ncnn.steps)
or likelihood (changes to likelihood smaller than Tol).

To reduce the dependence of final estimates for W and H on initial guess, inferences need to be repeated for
many different initializations:
sc <- factorize(sc, ranks = 3, nrun = 5, verbose = 2)

Rank 3
Run # 1 :
Nsteps = 64 , likelihood = -0.3622432 , dispersion = 1
##
Run # 2 :
Nsteps = 55 , likelihood = -0.376752 , dispersion = 0.7215237
##

8

Run # 3 :
Nsteps = 76 , likelihood = -0.3627259 , dispersion = 0.7489812
##
Run # 4 :
Nsteps = 75 , likelihood = -0.3642667 , dispersion = 0.7813901
##
Run # 5 :
Nsteps = 104 , likelihood = -0.3630267 , dispersion = 0.7391948
##
Sample# 1 : Max(likelihood) = -0.3622432 , dispersion = 0.7391948 , cophenetic = 0.9842846

After each run, the residual and dispersion are printed, and the global minimum of residual as well as the
corresponding matrices W and H are stored. The dispersion ρ is a scalar measure of how close the consistency
matrix C̄ ≡ Mean(C) elements, where C is the connectivity matrix, are to binary values 0, 1. The mean is
over multiple runs:

ρ = 4
n2

∑
jl

(
C̄jl − 1/2

)2
.

Note in the output above that ρ decays from 1 as the number of runs increases and then stabilizes. This
degree of convergence of ρ is a good indication for the adequacy of nrun. The cophenetic is the correlation
between the distance 1 − C̄ and the height matrix of hierarchical clustering6.

To discover clusters of cells, the reduced dimensionality of factorization, or the rank r, must be estimated.
The examples above used a single rank value. If the parameter ranks is a vector, the set of inferences will be
repeated for each rank value.
sc <- factorize(sc, ranks = seq(3,7), nrun = 5, verbose = 1, progress.bar = FALSE)

Rank 3
Sample# 1 : Max(likelihood) = -0.3625648 , dispersion = 0.7917775 , cophenetic = 0.9853564
Rank 4
Sample# 1 : Max(likelihood) = -0.3268542 , dispersion = 0.9676104 , cophenetic = 0.9957969
Rank 5
Sample# 1 : Max(likelihood) = -0.3081752 , dispersion = 0.9147574 , cophenetic = 0.9845725
Rank 6
Sample# 1 : Max(likelihood) = -0.3018445 , dispersion = 0.9051196 , cophenetic = 0.9851415
Rank 7
Sample# 1 : Max(likelihood) = -0.2960238 , dispersion = 0.9228406 , cophenetic = 0.9872926

Note that nrun parameter above is set to a small value for illustration. In a real application, typical values of
nrun would be larger. The progress bar shown by default under verbose = 1 for overall nrun runs is turned
off above. It can be set to TRUE here (and below) to monitor the progress. After factorization, the measure
slot has been filled:
measure(sc)

rank likelihood dispersion cophenetic
1 3 -0.3625648 0.7917775 0.9853564
2 4 -0.3268542 0.9676104 0.9957969
3 5 -0.3081752 0.9147574 0.9845725
4 6 -0.3018445 0.9051196 0.9851415
5 7 -0.2960238 0.9228406 0.9872926

These measures can be plotted (Fig. 4):
plot(sc)

9

3 4 5 6 7

−
0.

36
−

0.
34

−
0.

32
−

0.
30

Rank

Li
ke

lih
oo

d

3 4 5 6 7

0.
80

0.
85

0.
90

0.
95

Rank
D

is
pe

rs
io

n

3 4 5 6 7

0.
98

6
0.

99
0

0.
99

4

Rank

C
op

he
ne

tic

Figure 4: Factorization quality measures as functions of the rank. Dispersion measures the degree of bimodality
in consistency matrix. Cophenetic correlation measures the degree of agreement between consistency matrix
and hierarchical clustering.

5. Bayesian NMF

The maximum likelihood-based inference must rely on quality measures to choose optimal rank. Bayesian
NMF allows for the statistical comparison of different models, namely those with different ranks. The
quantity compared is the log probability (“evidence”) of data conditional to models (defined by rank and
hyperparameters). The main function for Bayesian factorization is vb_factorize():
sb <- sc_rescue
set.seed(2)
sb <- vb_factorize(sb, ranks =3, verbose = 3, Tol = 2e-4, hyper.update.n0 = 5)

Rank 3
Run # 1 :
1: log(evidence) = -1.505411, aw = 1, bw = 1, ah = 1, bh = 1
2: log(evidence) = -1.575041, aw = 1, bw = 1, ah = 1, bh = 1
3: log(evidence) = -1.608358, aw = 1, bw = 1, ah = 1, bh = 1
4: log(evidence) = -1.627154, aw = 1, bw = 1, ah = 1, bh = 1
5: log(evidence) = -1.639133, aw = 1, bw = 1, ah = 1, bh = 1
6: log(evidence) = -1.647411, aw = 0.5245557, bw = 0.9404055, ah = 2.800559, bh = 0.9890178
7: log(evidence) = -1.647935, aw = 0.5165306, bw = 0.9402905, ah = 2.876746, bh = 0.9890304
8: log(evidence) = -1.651081, aw = 0.5087818, bw = 0.9401596, ah = 2.87484, bh = 0.9890439
9: log(evidence) = -1.651345, aw = 0.4976702, bw = 0.9399658, ah = 2.80461, bh = 0.9890581
10: log(evidence) = -1.648552, aw = 0.4828468, bw = 0.9397002, ah = 2.679995, bh = 0.9890725
11: log(evidence) = -1.642816, aw = 0.4649239, bw = 0.939366, ah = 2.520109, bh = 0.9890867
12: log(evidence) = -1.634198, aw = 0.4452534, bw = 0.938978, ah = 2.345064, bh = 0.9891001
13: log(evidence) = -1.622659, aw = 0.4256377, bw = 0.9385576, ah = 2.171214, bh = 0.989112
14: log(evidence) = -1.608519, aw = 0.4072656, bw = 0.9381276, ah = 2.009665, bh = 0.989122
15: log(evidence) = -1.59282, aw = 0.3902048, bw = 0.9377068, ah = 1.866502, bh = 0.9891296
16: log(evidence) = -1.577083, aw = 0.3743271, bw = 0.9373079, ah = 1.743545, bh = 0.9891348
17: log(evidence) = -1.56265, aw = 0.3599941, bw = 0.9369359, ah = 1.63954, bh = 0.9891376
18: log(evidence) = -1.550257, aw = 0.3476776, bw = 0.9365903, ah = 1.551651, bh = 0.9891381
19: log(evidence) = -1.54004, aw = 0.337401, bw = 0.9362669, ah = 1.476737, bh = 0.9891362
20: log(evidence) = -1.531779, aw = 0.3289474, bw = 0.9359607, ah = 1.412033, bh = 0.989132
21: log(evidence) = -1.525123, aw = 0.3218827, bw = 0.9356671, ah = 1.355323, bh = 0.9891255
22: log(evidence) = -1.519728, aw = 0.3157648, bw = 0.9353826, ah = 1.304886, bh = 0.9891167

10

23: log(evidence) = -1.5153, aw = 0.3104483, bw = 0.9351046, ah = 1.259403, bh = 0.9891055
24: log(evidence) = -1.511599, aw = 0.3058824, bw = 0.9348314, ah = 1.217874, bh = 0.9890919
25: log(evidence) = -1.508429, aw = 0.3019294, bw = 0.9345619, ah = 1.179552, bh = 0.9890758
26: log(evidence) = -1.505648, aw = 0.2984252, bw = 0.9342954, ah = 1.143879, bh = 0.9890572
27: log(evidence) = -1.503154, aw = 0.2952752, bw = 0.9340311, ah = 1.11044, bh = 0.989036
28: log(evidence) = -1.500872, aw = 0.2924123, bw = 0.9337688, ah = 1.077925, bh = 0.9890122
29: log(evidence) = -1.498747, aw = 0.2897952, bw = 0.933508, ah = 1.048233, bh = 0.9889857
30: log(evidence) = -1.496719, aw = 0.2873186, bw = 0.9332484, ah = 1.02002, bh = 0.9889565
31: log(evidence) = -1.494763, aw = 0.2849743, bw = 0.9329899, ah = 0.9932674, bh = 0.9889245
32: log(evidence) = -1.492861, aw = 0.2828196, bw = 0.9327324, ah = 0.9679112, bh = 0.9888899
33: log(evidence) = -1.491012, aw = 0.280967, bw = 0.932476, ah = 0.9438943, bh = 0.9888524
34: log(evidence) = -1.489226, aw = 0.2794903, bw = 0.9322207, ah = 0.9211381, bh = 0.988812
35: log(evidence) = -1.487523, aw = 0.2783321, bw = 0.9319667, ah = 0.8995274, bh = 0.9887687
36: log(evidence) = -1.485911, aw = 0.2773973, bw = 0.9317142, ah = 0.8789431, bh = 0.9887223
37: log(evidence) = -1.484367, aw = 0.2766264, bw = 0.9314632, ah = 0.8593442, bh = 0.9886727
38: log(evidence) = -1.482874, aw = 0.2759599, bw = 0.9312139, ah = 0.8407493, bh = 0.9886199
39: log(evidence) = -1.481428, aw = 0.2753403, bw = 0.9309665, ah = 0.8231597, bh = 0.9885638
40: log(evidence) = -1.480027, aw = 0.2747491, bw = 0.9307212, ah = 0.8065463, bh = 0.9885045
41: log(evidence) = -1.478667, aw = 0.2742057, bw = 0.9304785, ah = 0.7908618, bh = 0.9884418
42: log(evidence) = -1.477339, aw = 0.2737161, bw = 0.9302386, ah = 0.7760516, bh = 0.9883758
43: log(evidence) = -1.476032, aw = 0.2732587, bw = 0.9300023, ah = 0.7620592, bh = 0.9883064
44: log(evidence) = -1.474736, aw = 0.2728171, bw = 0.9297701, ah = 0.748827, bh = 0.9882337
45: log(evidence) = -1.473444, aw = 0.272395, bw = 0.9295428, ah = 0.7362946, bh = 0.9881578
46: log(evidence) = -1.472157, aw = 0.2720142, bw = 0.929321, ah = 0.7243985, bh = 0.9880785
47: log(evidence) = -1.470875, aw = 0.2716963, bw = 0.9291052, ah = 0.7130831, bh = 0.9879961
48: log(evidence) = -1.469597, aw = 0.2714583, bw = 0.9288959, ah = 0.7023144, bh = 0.9879104
49: log(evidence) = -1.468322, aw = 0.2713008, bw = 0.9286936, ah = 0.6920732, bh = 0.9878216
50: log(evidence) = -1.46706, aw = 0.2712097, bw = 0.9284983, ah = 0.6823365, bh = 0.9877297
51: log(evidence) = -1.465826, aw = 0.2711722, bw = 0.9283101, ah = 0.6730705, bh = 0.9876347
52: log(evidence) = -1.464635, aw = 0.2711773, bw = 0.9281289, ah = 0.6642343, bh = 0.9875367
53: log(evidence) = -1.463494, aw = 0.2712114, bw = 0.9279545, ah = 0.6557894, bh = 0.9874359
54: log(evidence) = -1.462395, aw = 0.2712614, bw = 0.9277868, ah = 0.6477044, bh = 0.9873321
55: log(evidence) = -1.461326, aw = 0.271326, bw = 0.9276257, ah = 0.6399515, bh = 0.9872256
56: log(evidence) = -1.460276, aw = 0.2714255, bw = 0.9274711, ah = 0.632499, bh = 0.9871164
57: log(evidence) = -1.459241, aw = 0.2715837, bw = 0.9273225, ah = 0.6253032, bh = 0.9870045
58: log(evidence) = -1.458231, aw = 0.2718038, bw = 0.9271793, ah = 0.6182993, bh = 0.9868901
59: log(evidence) = -1.457287, aw = 0.2720781, bw = 0.9270405, ah = 0.6113954, bh = 0.9867731
60: log(evidence) = -1.456486, aw = 0.2723851, bw = 0.9269046, ah = 0.6044818, bh = 0.9866535
61: log(evidence) = -1.455889, aw = 0.2726905, bw = 0.9267699, ah = 0.5974664, bh = 0.9865313
62: log(evidence) = -1.455475, aw = 0.2729715, bw = 0.9266353, ah = 0.5903158, bh = 0.9864064
63: log(evidence) = -1.455123, aw = 0.273229, bw = 0.9265011, ah = 0.5830669, bh = 0.9862789
64: log(evidence) = -1.454697, aw = 0.2734769, bw = 0.9263686, ah = 0.5757986, bh = 0.9861488
65: log(evidence) = -1.454134, aw = 0.2737247, bw = 0.9262393, ah = 0.5685917, bh = 0.9860161
66: log(evidence) = -1.453448, aw = 0.2739733, bw = 0.9261144, ah = 0.5615047, bh = 0.9858808
67: log(evidence) = -1.452687, aw = 0.2742239, bw = 0.9259944, ah = 0.5545732, bh = 0.985743
68: log(evidence) = -1.451889, aw = 0.2744845, bw = 0.9258796, ah = 0.5478191, bh = 0.9856029
69: log(evidence) = -1.451065, aw = 0.2747695, bw = 0.92577, ah = 0.5412558, bh = 0.9854604
70: log(evidence) = -1.450232, aw = 0.2750925, bw = 0.9256658, ah = 0.534884, bh = 0.9853157
71: log(evidence) = -1.449424, aw = 0.2754554, bw = 0.9255665, ah = 0.5286835, bh = 0.9851688
72: log(evidence) = -1.448692, aw = 0.2758423, bw = 0.9254716, ah = 0.5226112, bh = 0.9850198
73: log(evidence) = -1.448076, aw = 0.2762252, bw = 0.9253801, ah = 0.5166092, bh = 0.9848687
74: log(evidence) = -1.447556, aw = 0.2765769, bw = 0.9252913, ah = 0.5106332, bh = 0.9847156
75: log(evidence) = -1.447057, aw = 0.2768889, bw = 0.9252052, ah = 0.5046794, bh = 0.9845605
76: log(evidence) = -1.446523, aw = 0.2771799, bw = 0.9251224, ah = 0.4987779, bh = 0.9844035

11

77: log(evidence) = -1.445952, aw = 0.2774808, bw = 0.9250434, ah = 0.4929637, bh = 0.9842447
78: log(evidence) = -1.445368, aw = 0.2778135, bw = 0.9249682, ah = 0.4872582, bh = 0.9840841
79: log(evidence) = -1.444795, aw = 0.2781872, bw = 0.9248967, ah = 0.481665, bh = 0.9839218
80: log(evidence) = -1.444259, aw = 0.2785996, bw = 0.9248287, ah = 0.4761712, bh = 0.9837577
81: log(evidence) = -1.443774, aw = 0.2790389, bw = 0.9247638, ah = 0.4707554, bh = 0.9835921
82: log(evidence) = -1.443327, aw = 0.279494, bw = 0.9247017, ah = 0.4654015, bh = 0.9834248
83: log(evidence) = -1.442895, aw = 0.2799635, bw = 0.9246425, ah = 0.4601068, bh = 0.9832559
84: log(evidence) = -1.442461, aw = 0.280454, bw = 0.924586, ah = 0.4548759, bh = 0.9830855
85: log(evidence) = -1.442025, aw = 0.2809715, bw = 0.9245323, ah = 0.449711, bh = 0.9829136
86: log(evidence) = -1.441599, aw = 0.2815148, bw = 0.9244811, ah = 0.4446053, bh = 0.9827401
87: log(evidence) = -1.441197, aw = 0.2820768, bw = 0.9244321, ah = 0.4395422, bh = 0.9825652
88: log(evidence) = -1.440831, aw = 0.2826519, bw = 0.924385, ah = 0.4344983, bh = 0.9823889
89: log(evidence) = -1.440505, aw = 0.2832388, bw = 0.9243393, ah = 0.429445, bh = 0.9822111
Nsteps =90, log(evidence) =-1.440505, hyper = (0.2838348,0.9242947,0.4243521,0.9820318), dispersion = 1
##
Max(evidence) = -1.440505

The iteration maximizes (log) evidence (per matrix elements) and terminates when its fractional change
becomes smaller than Tol. The option criterion = connectivity can also be used. By default, hyperpa-
rameters of priors are also updated after hyper.update.n0 steps. As in maximum likelihood, multiple ranks
can be specified:
sb <- vb_factorize(sb, ranks = seq(2,7), nrun = 5, verbose = 1, Tol = 1e-4, progress.bar = FALSE)

Rank 2
Max(evidence) = -1.478329
##
Rank 3
Max(evidence) = -1.408516
##
Rank 4
Max(evidence) = -1.358924
##
Rank 5
Max(evidence) = -1.354162
##
Rank 6
Max(evidence) = -1.360185
##
Rank 7
Max(evidence) = -1.365712

With nrun larger than 1, multiple inferences will be performed for each rank with different initial conditions
and the solution with the highest evidence will be chosen. The object after a vb_factorize run will have its
measure slot filled:
measure(sb)

rank evidence aw bw ah bh
1 2 -1.478329 0.3426491 1.4310219 0.5580671 0.9579385
2 3 -1.408516 0.3160585 0.9476028 0.1893169 0.9707558
3 4 -1.358924 0.3010692 0.7061936 0.1131652 0.9610053
4 5 -1.354162 0.2336142 0.5707557 0.1694986 0.9719610
5 6 -1.360185 0.2037749 0.4720986 0.2108323 0.9816994
6 7 -1.365712 0.1744965 0.4067136 0.2002811 0.9721059

Plotting the object displays the log evidence as a function of rank (Fig. 5):

12

2 3 4 5 6 7

−
1.

48
−

1.
44

−
1.

40
−

1.
36

Rank

lo
g(

E
vi

de
nc

e)

Figure 5: Dependence of log evidence with rank.

plot(sb)

6. Visualization

The rank scan above using Bayesian inference correctly identifies r = 5 as the optimal rank. The fit results
for each rank–from either maximum likelihood or Bayesian inference–are stored in sb@basis and sb@coeff.
Both are lists of matrices of length equal to the number of rank values scanned. One can access them by, e.g.,
ranks(sb)

[1] 2 3 4 5 6 7
head(basis(sb)[ranks(sb)==5][[1]]) # basis matrix W for rank 5

1 2 3 4 5
ISG15 0.0005566516 0.04400669 0.09123646 0.017173204 0.123080868
ENO1 0.0120951859 0.08010730 0.10411271 0.072666639 0.293073976
EFHD2 0.0005440680 0.12801528 0.08177918 0.005303569 0.000613638
RPL11 5.1911055900 0.94968087 1.13717449 2.122015576 1.887603772
SH3BGRL3 0.1199674917 0.42496643 0.75639247 0.190543609 1.237799982
CD52 0.4720400786 0.11896619 0.04190325 0.625517988 0.883824419

Heatmaps of W and H matrices are displayed by gene_map() and cell_map(), respectively (Figs. 6-7):
gene_map(sb, markers = markers, rank = 5, max.per.cluster = 4, gene.name = rowData(sb)[,2],

cexRow = 0.7)

In addition to the marker gene list provided as a parameter, the representative groups of genes for clusters
are selected by the “max” scheme7: genes are sorted for each cluster with decreasing magnitudes of coefficient
matrix elements, and among the top members of the list, those for which the magnitude is the actual
maximum over all clusters are chosen. Based on the marker-metagene map in Fig. 6, we rename the clusters
1-5 as follows:

13

1 2 3 4 5

ACTG1
CORO1B
CD8A
LTB
CD3D
CD3E
NUCB2
CD19
LEF1
CNN2
CD8B
CD14
IL32
GZMA
CD74
CD79A
CD79B
HLA−DRA
S100A9
S100A8
CST3
LYZ
NKG7
CCL5
GNLY

Genes

Figure 6: Heatmap of basis matrix elements. Marker genes selected in rows, other than those provided as
input, are based on the degree to which each features strongly in a particular cluster only and not in the rest.
Columns represent the clusters.

cell_type <- c('CD8+_T','NK','Monocytes','B_cell','CD4+_T')
colnames(basis(sb)[ranks(sb) == 5][[1]]) <- cell_type
rownames(coeff(sb)[ranks(sb) == 5][[1]]) <- cell_type

cell_map(sb, rank = 5)

In visualize_clusters(), each column of H matrix is used to assign cells into clusters, and inter/intra-
cluster separations are visualized using tSNE algorithm8. It uses the Rtsne() function of the Rtsne package.
A barplot of cluster cell counts are also displayed (Fig. 8):
visualize_clusters(sb, rank = 5, cex = 0.7)

It is useful to extract hierarchical relationships among the clusters identified. This feature requires a series of
inference outcomes for an uninterrupted range of rank values, e.g., from 2 to 7:
tree <- build_tree(sb, rmax = 5)
tree <- rename_tips(tree, rank = 5, tip.labels = cell_type)
plot_tree(tree, cex = 0.8, show.node.label = TRUE)

The build_tree function returns a list containing the tree. The second command above renames the label of
terminal nodes by our cell type label. In Fig. 9, the relative distance between clusters can be seen to be
consistent with the tSNE plot in Fig. 8.

References

1. Lee, D. D. & Seung, H. S. Learning the parts of objects by non-negative matrix factorization. Nature 401,
788–791 (1999).

2. Hastie, T., Tibshirani, R. & Friedman, J. The elements of statistical learning: data mining, inference, and
prediction. (2009).

14

CD4+_T

B_cell

Monocytes

NK

CD8+_T

Cells

Figure 7: Heatmap of cluster coefficient matrix elements. Rows indicate clusters and columns the cells.

−20 0 10 20

−
10

0
10

20

Clusters

tSNE1

tS
N

E
2

C
D

8+
_T N
K

M
on

oc
yt

es

B
_c

el
l

C
D

4+
_T

Cell counts

70

80

90

100

110

Figure 8: tSNE-based visualization of coefficient matrix elements of cells with colors indicating predicted
cluster assignment. The bar plot shows the cell counts of each cluster.

15

5.Monocytes

5.NK

5.B cell

5.CD8+ T

5.CD4+ T

2.2

3.3

4.4

Figure 9: Hierarchical tree of clusters derived from varying ranks. The rank increases from 2 to 5 horizontally
and nodes are labeled by cluster IDs which bifurcated in each rank.

3. Cemgil, A. T. Bayesian inference for nonnegative matrix factorisation models. Comput. Intell. Neurosci.
785152 (2009).

4. Gaujoux, R. & Seoighe, C. A flexible R package for nonnegative matrix factorization. BMC Bioinformatics
11, 367 (2010).

5. Zhu, X., Ching, T., Pan, X., Weissman, S. M. & Garmire, L. Detecting heterogeneity in single-cell RNA-Seq
data by non-negative matrix factorization. PeerJ 5, e2888 (2017).

6. Brunet, J. P., Tamayo, P., Golub, T. R. & Mesirov, J. P. Metagenes and molecular pattern discovery using
matrix factorization. Proc. Natl. Acad. Sci. U.S.A. 101, 4164–4169 (2004).

7. Carmona-Saez, P., Pascual-Marqui, R. D., Tirado, F., Carazo, J. M. & Pascual-Montano, A. Biclustering
of gene expression data by non-smooth non-negative matrix factorization. BMC Bioinformatics 7, 78 (2006).

8. Maaten, L. van der & Hinton, G. Visualizing high-dimensional data using t-SNE. J. Mach. Learn. Res. 9,
2579–2605 (2008).

16

	Algorithm
	Workflow
	1. Installation
	2. Data input
	3. Quality control
	4. Rank determination
	5. Bayesian NMF
	6. Visualization
	References

