FGNet-package {FGNet} | R Documentation |
Build and visualize functional gene and term networks from clustering of enrichment analyses in multiple annotation spaces. The package includes a graphical user interface (GUI) and functions to perform the functional enrichment analysis through DAVID, GeneTerm Linker, gage (GSEA) and topGO.
Package: | FGNet |
Type: | Package |
Version: | 3.0 |
License: | GPL (>= 2) |
Author: Sara Aibar, Celia Fontanillo and Javier De Las Rivas. Bioinformatics and Functional Genomics Group. Cancer Research Center (CiC-IBMCC, CSIC/USAL). Salamanca. Spain.
If you have any issue, you can contact us at: <jrivas at usal.es>
[1] Fontanillo C, Nogales-Cadenas R, Pascual-Montano A, De Las Rivas J (2011) Functional Analysis beyond Enrichment: Non-Redundant Reciprocal Linkage of Genes and Biological Terms. PLoS ONE 6(9): e24289. URL: http://gtlinker.cnb.csic.es
[2] Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37(1):1-13. URL: http://david.abcc.ncifcrf.gov/
[3] Alexa A, and Rahnenfuhrer J (2010) topGO: Enrichment analysis for Gene Ontology. R package version 2.16.0. URL: http://www.bioconductor.org/packages/release/bioc/html/topGO.html
[4] Luo W, Friedman MS, Shedden K, Hankenson KD, Woolf PJ (2009) GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinformatics. 10:161. URL: http://www.bioconductor.org/packages/release/bioc/html/gage.html
FGNet_GUI()
provides a Graphical User Interface (GUI) to most of the functionalities of the package: Performing a Functional Enrichment Analysis (FEA) of a list of genes, and analyzing it through the functional networks.
1. The Functional Enrichment Analysis can be performed through several tools:
DAVID [1]: fea_david()
(Requires internet connection)
GeneTerm Linker [2]: fea_gtLinker()
& fea_gtLinker_getResults()
(Requires internet connection)
topGO [3]: fea_topGO()
(Only supports GO. For offline use requires having installed the required database packages)
GAGE [4]: fea_gage()
(GSEA analysis. For offline use requires gene sets or installed database packages)
There are also a few functions to import the results from a previous FEA analysis: format_david()
, format_results()
and readGeneTermSets()
.
2. FGNet_report()
: automatically generates a report with the default network options. It includes the following steps, wich can be executed individually to personalize or explore the networks:
fea2incidMat()
: Transforms the FEA output into incidence matrices. These function determines wether the network will be gene- or term-based.
functionalNetwork()
: Generates and plots the functional networks.
These networks can be further explored by analyzeNetwork()
and clustersDistance()
.
Other auxiliary functions:
getTerms()
,
keywordsTerm()
,
plotGoAncestors()
,
plotKegg()
.
For more info see the package tutorial: vignette("FGNet-vignette")
## Not run: # GUI: FGNet_GUI() # 1. FEA: geneList <- c("YBL084C", "YDL008W", "YDR118W", "YDR301W", "YDR448W", "YFR036W", "YGL240W", "YHR166C", "YKL022C", "YLR102C", "YLR115W", "YLR127C", "YNL172W", "YOL149W", "YOR249C") library(org.Sc.sgd.db) geneLabels <- unlist(as.list(org.Sc.sgdGENENAME)[geneList]) # Optional: Gene expression geneExpr <- setNames(c(rep(1,10),rep(-1,5)), geneLabels) # Choose FEA tool... # results <- fea_david(geneList, geneLabels=geneLabels, email="example@email.com") results <- fea_gtLinker_getResults(jobID=3907019) # 2 A) Report: FGNet_report(results, geneExpr=geneExpr) # 2 B) Step by step: # 2.1. Create incidence matrices: incidMat <- fea2incidMat(results) incidMat_terms <- fea2incidMat(results, key="Terms") # 2.2. Explore networks: functionalNetwork(incidMat, geneExpr=geneExpr) functionalNetwork(incidMat_terms, plotType="bipartite", plotOutput="dynamic") getTerms(results) nwStats <- analyzeNetwork(incidMat) clustersDistance(incidMat) ## End(Not run)