
GeneSelector package vignette

Martin Slawski1,2 ∗ Anne-Laure Boulesteix1,2,3 †

1 Sylvia Lawry Centre, Munich, Germany
2 Institute for Medical Informatics, Biometry and Epidemiology,

Ludwig-Maximilians-University Munich, Germany
3 Department of Statistics, Ludwig-Maximilians-University Munich, Germany

Abstract

This is the vignette of the Bioconductor add-on package GeneSelector which con-
tains methods to assess quantitatively the variability among multiple gene rankings,
obtained by using altered datasets or several ranking procedures. The resulting multi-
plicity problem is addressed by functionality for rank aggregation.

1 Introduction

An important aspect of microarray data analysis is the detection of genes that are differ-
entially expressed, e.g. in different experimental conditions or in individuals with different
phenotypes. The results of microarray studies are usually the starting point for further
more expensive and time-consuming experiments, which involve only a small number of
candidate genes ?. The set of candidate genes is typically determined by computing a two-
sided test statistic for each gene j = 1, . . . , p, and ordering them decreasingly according to
the size of the absolute of the statistic. This yields an ordered list l = (lm, m = 1, . . . , p)
and ranks r = (rj , j = 1, . . . , p) defined by rj = m ⇔ lm = j, j,m = 1, . . . , p.
The genes at the top of the list are displayed in almost all microarray-related biomedical
publications, often considered as an unequivocal and definitive result. Critical voices have
pointed out that this procedure might yield false research findings ?, since it ignores the
variability of the obtained ordered lists ?, ?. The GeneSelector package tries to quantify
this variability by mimicking changed data situations via resampling- and related strate-
gies, and then comparing the results to those obtained with the reference datasets. For
this purpose, GeneSelector assembles several stability measures for rank data.
A second source of variability, which, to our knowledge, has not been addressed in the liter-
ature, is the multiplicity of test statistics (= ranking criteria) proposed for gene expression
data with the aim to cope with the ’small n, large p’ situation, with n denoting the number
of replicates. GeneSelector implements a collection of fourteen such ranking criteria, dis-
played in Table ??, and hence enables the user to explore this source of variability. Using
several ranking criteria instead of only one may additionally be seen as sensitivity analy-
sis, since most criteria rely on idealized, hard-to-check assumptions. Each ranking criteria

∗ms@cs.uni-sb.de
†boulesteix@ibe.med.uni-muenchen.de

1

ms@cs.uni-sb.de
boulesteix@ibe.med.uni-muenchen.de


Method Function name Package Reference

Foldchange RankingFC

t-statistic RankingTstat

Welch’s t statistic RankingWelchT

Bayesian t-statistic (1) RankingBaldiLong ?
Bayesian t-statistic (2) RankingFoxDimmic ?
Shrinkage t-statistic RankingShrinkageT ?
Soft-thresholded t-statistic RankingSoftthresholdT ?
Parametric empirical Bayes RankingLimma limma ?
B-statistic RankingBstat sma ?
Nonparametric empirical Bayes RankingEbam siggenes ?
SAM RankingSam samr ?
Wilcoxon statistic RankingWilcoxon

Wilcoxon statistic, empirical Bayes RankingWilcEbam siggenes ?
Permutation test RankingPermutation multtest

Table 1: Overview of the ranking procedures in GeneSelector. If the ’package’ is not
given, then the respecive procedure is not imported from a foreign package.

produces its own result, whereas the user may be confronted with the dilemma of finding
exactly one result, which should unify all results as good as possible, hopefully giving rise
to an improved and more stable ranking and in turn to a set of candidate genes with as
least as possible false positives. In this spirit, our package offers a GeneSelector function
as well as several methods for rank aggregation.

2 Illustration

2.1 Description of the data set

We demonstrate the functionalities of GeneSelector in the classical setting of two inde-
pendent samples, each of size 10. We simulate a gene expression matrix x containing 2, 000
genes in the following manner.

• Gene expression intensities are drawn from a multivariate normal distribution with
zero mean vector and covariance which itself has been drawn randomly from an
inverse Wishart distribution.

• The first 40 genes are differentially expressed. The differences in the means between
the two classes are simulated independently according to a normal distribution with
variance 0.9.

We access the data using the lines:

> data(toydata)

> y <- as.numeric(toydata[1,])

> x <- as.matrix(toydata[-1,])

> dim(x)

2



[1] 2000 20

> table(y)

y

1 2

10 10

Knowing that the first genes are differentially expressed, we make boxplots of the gene
expression intensities of the first four genes:

> par(mfrow=c(2,2))

> for(i in 1:4) boxplot(x[i,]~y, main=paste("Gene", i))

●

●

1 2

−
0.

5
0.

0
0.

5
1.

0

Gene 1

1 2

−
0.

5
0.

5
1.

5
2.

5

Gene 2

1 2

−
1.

0
0.

0
1.

0

Gene 3

1 2

−
0.

5
0.

5
1.

5
2.

5

Gene 4

2.2 Rankings

We now perform a ranking using the ordinary t-statistic.

> ordT <- RankingTstat(x, y, type="unpaired")

3



The resulting objects are all instances of the class GeneRanking.
To get basic information, we use the commands:

> getSlots("GeneRanking")

x y statistic ranking pval type

"matrix" "factor" "numeric" "numeric" "vector" "character"

method

"character"

> str(ordT)

Formal class 'GeneRanking' [package "GeneSelector"] with 7 slots

..@ x : num [1:2000, 1:20] 1 2.78 -1.18 2.79 -2.95 ...

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:2000] "1" "2" "3" "4" ...

.. .. ..$ : chr [1:20] "arr1" "arr2" "arr3" "arr4" ...

..@ y : Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 1 1 ...

..@ statistic: Named num [1:2000] 6.32 9.53 -2.29 13.09 -7.93 ...

.. ..- attr(*, "names")= chr [1:2000] "1" "2" "3" "4" ...

..@ ranking : Named int [1:2000] 11 3 185 1 5 17 13 451 6 375 ...

.. ..- attr(*, "names")= chr [1:2000] "1" "2" "3" "4" ...

..@ pval : Named num [1:2000] 5.83e-06 1.85e-08 3.44e-02 1.23e-10 2.79e-07 ...

.. ..- attr(*, "names")= chr [1:2000] "1" "2" "3" "4" ...

..@ type : chr "unpaired"

..@ method : chr "ordinaryT"

> show(ordT)

Ranking by ordinaryT,

number of genes: 2000.

> toplist(ordT)

index statistic pval

1 4 13.087900 1.232978e-10

2 11 10.404717 4.833338e-09

3 2 9.533551 1.853162e-08

4 26 -8.378361 1.261238e-07

5 5 -7.927116 2.791221e-07

6 9 -7.744184 3.880996e-07

7 23 7.392767 7.402187e-07

8 38 -6.986973 1.592778e-06

9 28 -6.786421 2.345378e-06

10 40 6.421584 4.808461e-06

>

The last command yields the top-ranking genes according to the respective procedure.

4



2.3 Altered data sets

In order to inspect stability of the obtained ranking with respect to changes in the data,
we use resampling techniques implemented in GeneSelector. The following command
produces jackknif-ed data sets, i.e. datasets resulting from successively removing exactly
one sample from the complete sample:

> loo <- GenerateFoldMatrix(y = y, k=1)

> show(loo)

number of removed samples per replicate: 1

number of replicates: 20

constraints: minimum classize for each class: 9

We plug this into the method RepeatRanking, which determines the ranking 20 times, i.e.
for each removed observation, anew:

> loor_ordT <- RepeatRanking(ordT, loo)

>

The object loo may additionally be used in the following manner:

> ex1r_ordT <- RepeatRanking(ordT, loo, scheme = "labelexchange")

>

The argument scheme = "labelexchange" specifies that instead of leaving one observa-
tion out, it is assigned the opposite class label.
We may also use the bootstrap, e.g.

> boot <- GenerateBootMatrix(y = y, maxties=3, minclassize=5, repl=30)

> show(boot)

number of bootstrap replicates: 30

constraints: minimum classize for each class: 5

maximum number of ties per observation: 3

> boot_ordT <- RepeatRanking(ordT, boot)

>

. . . or add a small amount of noise to the observed expression intensities:

> noise_ordT <- RepeatRanking(ordT, varlist=list(genewise=TRUE, factor=1/10))

To get a toplist that tabulates how top list positions are distributed over all repeated
rankings, we use:

5



> toplist(loor_ordT, show=FALSE)

original dataset:

index statistic pvals

4 4 13.087900 1.232978e-10

11 11 10.404717 4.833338e-09

2 2 9.533551 1.853162e-08

26 26 -8.378361 1.261238e-07

5 5 -7.927116 2.791221e-07

9 9 -7.744184 3.880996e-07

23 23 7.392767 7.402187e-07

38 38 -6.986973 1.592778e-06

28 28 -6.786421 2.345378e-06

40 40 6.421584 4.808461e-06

In the following table, rownames correspond to gene indices.

The columns contain the absolute frequencies for the corresponding ranks

over all replications.

Genes are ordered according to the first column, then to the second, and so on.

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9 Rank 10

4 20 0 0 0 0 0 0 0 0 0

11 0 18 2 0 0 0 0 0 0 0

2 0 1 17 2 0 0 0 0 0 0

26 0 0 1 13 5 1 0 0 0 0

5 0 1 0 3 7 7 2 0 0 0

9 0 0 0 1 4 10 5 0 0 0

23 0 0 0 0 3 2 11 4 0 0

38 0 0 0 0 1 0 0 11 7 1

40 0 0 0 0 0 0 0 2 3 4

12 0 0 0 0 0 0 0 0 0 3

28 0 0 0 1 0 0 1 1 9 5

1 0 0 0 0 0 0 1 1 1 4

7 0 0 0 0 0 0 0 1 0 1

14 0 0 0 0 0 0 0 0 0 1

29 0 0 0 0 0 0 0 0 0 1

As an exploratory tool to examine the difference in rankings between original and perturbed
data sets, a plot command is available.

From Figure ??, it is obvious that variability increases for a higher list position. Moreover,
the figure shows that variability depends on the method used to generate altered data sets.
In this example, the bootstraped rankings are more scattered around the angle bisector
than the jackknif-ed rankings.

6



> par(mfrow=c(2,2))

> plot(loor_ordT, col="blue", pch=".", cex=2.5, main = "jackknife")

> plot(ex1r_ordT, col="blue", pch=".", cex=2.5, main = "label exchange")

> plot(boot_ordT, col="blue", pch=".", cex=2.5, main = "bootstrap")

> plot(noise_ordT, frac=1/10, col="blue", pch=".", cex=2.5, main = "noise")

5 10 15 20

0
10

20
30

40

jackknife

Rank in the original dataset

R
an

ks
 in

 p
er

tu
rb

ed
 d

at
as

et
s

5 10 15 20
0

10
20

30
40

label exchange

Rank in the original dataset

R
an

ks
 in

 p
er

tu
rb

ed
 d

at
as

et
s

5 10 15 20

0
10

20
30

40

bootstrap

Rank in the original dataset

R
an

ks
 in

 p
er

tu
rb

ed
 d

at
as

et
s

0 50 100 150 200

0
10

0
30

0

noise

Rank in the original dataset

R
an

ks
 in

 p
er

tu
rb

ed
 d

at
as

et
s

Figure 1: Scatterplots of rankings from altered datasets vs. rankings from the original
dataset.

2.4 Stability measures

Alternative to visual methods, one can compute of the stability measures tabulated in
Table ??. Let σ,σ′ be either two rankings r, r′ or two lists l, l′. A function s is called
pairwise stability measure if

(i) s(σ,σ′) = s(σ′,σ),

(ii) s(σ,σ′) ≤ s(σ,σ) = s(σ′,σ′) = 1.

In the current version of GeneSelector, there are two groups of pairwise stability mea-
sures: the first group is set-based, counting/summing up overlaps of lists, while the second
one computes distances. Pairwise stability measures are particularly appropriate in the
presence of a reference list/ranking. In the example given in the previous subsection, the

7



Name Definition Reference

Intersection count † s∩(l, l′) = s∩(l[k], l
′
[k]) =

∑
1≤m,m′≤k I(lm=l′

m′ )

k , k = 1, . . . , p. ?

Overlap score † sO∩(l, l′) =

∑p
k=1 wks∩(l[k],l

′
[k]

)∑p
k=1 wk

?

`1 ‡ s`1(r, r′) = 1 −
∑p

j=1 wj |rj−r′j |∑p
j=1 w(j)|j−(p−j+1)| ?

`2 ‡ s`2(r, r′) = 1 −
∑p

j=1 wj(rj−r′j)2∑p
j=1 w(j)|j−(p−j+1)| ?

Spearman’s ρ ‡
∑p

j=1 wj(rj−(p+1)/2)(r′j−(p+1)/2)

(
∑p

j=1 r
2
j )

1/2
(
∑p

j=1 r
′2
j )

1/2 ?

Kendall’s τ ‡ sτ (r, r′) = 1 −
∑

1≤j<m≤p wj wm I([(rj−rm)(r′j−r′m)]<0)∑
1≤j<m≤p wj wm

?

Union count ∆ s∪(l1 [k], . . . , lB [k]) = 1− |U[k]|−k
min{Bk,p}−k ?

Union score ∆ sO∪(l1, . . . , lB) =
∑p

k=1 wks∪(l1 [k],...,lB [k])∑p
k=1 wk

Table 2: Overview of the stability measures in GeneSelector. Notations: l[k] = (lm, 1 ≤
m ≤ k) denotes the top-k list of l; the wj ’s are (fixed) weights - the subscript in the brackets
indicate ordering, i.e. w(1) ≤ . . . ≤ w(p); |U[k]| denotes the size of the union of all top k-lists
to be compared. Legend: † - implemented in GetStabilityOverlap; ‡ - implemented in
GetStabilityDistance; ∆ - implemented in GetStabilityUnion.

natural choice for the reference is the ranking obtained with the original dataset. If one
wants to compute a stability indicator for several lists without a reference, e.g. when
comparing the output of different ranking criteria, we introduce the following notion. Let
σb, b = 1, . . . , B be a sequence of rankings or lists. A function s is called multi-input
stability measure if

(i) s(σ1, . . . ,σB) = s(σπ1 , . . . ,σπB ) for any permutation π of {1, . . . , B},

(ii) s(σ1, . . . ,σB) ≤ s(σ1, . . . ,σ1) = . . . = s(σB, . . . ,σB) = 1.

As shown in Table ??, an additional component of stability measures is a weighting scheme
which penalizes variability at the top of list more severely than at the bottom, since only
the top is of practical relevance.

As illustration, we apply GetStabilityOverlap to the rankings obtained after swapping
class labels, which seems to perturb considerably the original ranking, as indicated by
Figure ??. Concerning the sequence of weights, we choose wm = 1/m, m = 1, . . . , p,
which is realized by using the option decay = "linear".

> stab_ex1r_ordT <- GetStabilityOverlap(ex1r_ordT, scheme = "original",

8



+ decay="linear")

> show(stab_ex1r_ordT)

Stability measure: intersection count and overlap score,

scheme: original,

weighting: linear weight decay.

>

GetStabilityOverlap computes both normalized intersection counts and overlap scores
when truncating at list position k, k = 1, . . . , p. Evaluating these scores for position
k = 10, we use the lines:

> summary(stab_ex1r_ordT, measure = "intersection", display = "all", position = 10)

intersection fractions (with respect to reference data set):

iter.1 iter.2 iter.3 iter.4 iter.5 iter.6 iter.7 iter.8 iter.9 iter.10

0.8 0.9 0.6 0.7 0.9 0.9 0.8 0.8 0.6 0.8

iter.11 iter.12 iter.13 iter.14 iter.15 iter.16 iter.17 iter.18 iter.19 iter.20

0.8 0.7 0.9 0.8 0.7 0.7 0.8 0.9 0.9 0.8

expected score in the case of no-information: 0.005

> summary(stab_ex1r_ordT, measure = "overlapscore", display = "all", position = 10)

overlap scores (with respect to reference data set):

iter.1 iter.2 iter.3 iter.4 iter.5 iter.6 iter.7 iter.8 iter.9 iter.10

0.537 0.874 0.660 0.695 0.494 0.776 0.490 0.430 0.481 0.851

iter.11 iter.12 iter.13 iter.14 iter.15 iter.16 iter.17 iter.18 iter.19 iter.20

0.769 0.606 0.716 0.597 0.647 0.763 0.528 0.703 0.608 0.672

expected score in the case of no-information: 0.001707086

>

The output shows that the overlap between reference- and alternative top-ten lists ranges
from 60 to 90 percent. Overlap score and intersection count disagree visibly, which is due
to the fact that the overlap score is computed with weights. Though ?? suggests some
discrepancy between reference- and alternative lists, the output shows that the fraction of
accordance is much larger than the expectation in the no-information case, i.e. in the case
of mutually unrelated lists. To have a look at how the two scores vary with increasing list
position (on average), we invoke the predefined plot(...) routine:

Next, let us investigate which sample is most influential in the sense that its removal
perturbs the reference ranking most. For this purpose, we apply GetStabilityDistance

with the option measure = "spearman" to the jackknif-ed rankings.

> stab_loo_ordT <- GetStabilityDistance(ex1r_ordT, scheme = "original", measure

+ = "spearman", decay="linear")

> show(stab_loo_ordT)

9



> plot(stab_ex1r_ordT, frac = 1, mode = "mean")

0 500 1000 1500 2000

0.
0

0.
4

0.
8

percentage of  overlap

list position

ov
er

la
p

0 500 1000 1500 2000

0.
0

0.
4

0.
8

average overlap score

list position

sc
or

e

Figure 2: Visualization of intersection count and overlap score.

Stability measure: spearman's rank correlation,

scheme: original,

weighting: linear weight decay.

> summary(stab_loo_ordT, display = "all")

stability scores (with respect to reference data set):

iter.1 iter.2 iter.3 iter.4 iter.5 iter.6 iter.7 iter.8 iter.9 iter.10

0.351 0.749 0.745 0.568 0.157 0.489 0.585 0.420 0.393 0.683

iter.11 iter.12 iter.13 iter.14 iter.15 iter.16 iter.17 iter.18 iter.19 iter.20

0.402 0.460 0.654 0.674 0.720 0.446 0.230 0.698 0.509 0.564

expected score in the case of no-information: 0

>

From the output we conclude that the fifth sample is by far the most influential one.

10



2.5 Aggregating multiple ranking criteria

In addition to the ordinary t-statistic, we compute five additional rankings (cf. Table ??):

> BaldiLongT <- RankingBaldiLong(x, y, type="unpaired")

> FoxDimmicT <- RankingFoxDimmic(x, y, type="unpaired")

> sam <- RankingSam(x, y, type="unpaired")

> wilcox <- RankingWilcoxon(x, y, type="unpaired")

> wilcoxeb <- RankingWilcEbam(x, y, type="unpaired")

Again, we first assess variability visually. The method HeatmapRankings produces a
heatmap from all obtained rankings, clustering genes and criteria simultaneously. We
restrict to our attention to the first forty, differentially expressed genes (ind = 1:40).

> Merged <- MergeMethods(list(ordT, BaldiLongT, FoxDimmicT, sam, wilcox, wilcoxeb))

> HeatmapRankings(Merged, ind=1:40)

>

W
ilc

E
ba

m

B
al

di
Lo

ng
T

F
ox

D
im

m
ic

T

W
ilc

ox
on

or
di

na
ry

T

S
am

1 − 20
20 − 100
100 − 200
200 − 500
500 − 2000

To cope with the multiplicity problem, we exploit the functionalities for rank aggregation in
the GeneSelector package. A simple approach would just take the average of all observed
ranks, which is, among other things, implemented in the method AggregateSimple. As
a more sophisticated approach, we use the Markov chain model propagated in ? and

11



implemented in the method AggregateMC. Lastly, we use the GeneSelector function, which
aims at finding genes falling consistently, i.e. for all ranking criteria, below a pre-specified
threshold, here chosen as 50.

> AggMean <- AggregateSimple(Merged, measure = "mean")

> AggMC <- AggregateMC(Merged, type = "MCT", maxrank = 100)

> GeneSel <- GeneSelector(list(ordT, BaldiLongT, FoxDimmicT, sam, wilcox,

+ wilcoxeb), threshold="user", maxrank=50)

> show(GeneSel)

GeneSelector run with gene rankings from the following statistics:

ordinaryT

BaldiLongT

FoxDimmicT

Sam

Wilcoxon

WilcEbam

Number of genes below threshold rank 50 in all statistics:29

> sel <- sum(slot(GeneSel, "selected"))

> cbind(mean = toplist(AggMean, top = sel, show = F), MC = toplist(AggMC, top

+ = sel, show = F), GeneSelector = toplist(GeneSel, top = sel, show = F)[,1])

index index GeneSelector

1 5 5 4

2 4 4 11

3 11 11 2

4 2 2 26

5 9 9 5

6 26 28 9

7 28 26 38

8 38 38 28

9 7 7 40

10 29 29 12

11 14 14 7

12 30 30 29

13 820 40 30

14 40 820 14

15 12 12 33

16 33 33 1799

17 1799 1799 820

18 1146 23 1146

19 1633 1146 1633

20 1677 1633 1551

21 1258 1258 724

22 1551 1 1258

23 937 937 1199

24 1715 1677 100

12



25 724 1551 1370

26 1370 1715 937

27 100 724 1715

28 1641 6 1267

29 1199 1370 476

>

Here, we have first determined the number of genes passing the GeneSelector filter. In
total, 29 genes manage to fall below rank 50 in all six rankings. Although the GeneSelector
attempts to minimize the number of false positives, one still ends up with 14 false positive
genes among the 29 selected ones. In this regard, the Markov chain approach is superior,
because it selects only 11 false positive ones. Simple averaging seems to perform slightly
worse, putting the false positive gene 820 at position 13. In contrast, the first false positive
gene of the GeneSelector occurs at position 16. A nice feature we want to present at
the end is the plot routine for the class GeneSelector. It allows one to obtain a detailed
gene-specific overview:

> plot(GeneSel, which = 1)

>

GeneInfoScreen for gene  1

+

selected ? criterion rank

WilcEbam 14

1 − 20
20 − 100
100 − 200
200 − 500
500 − 2000

+

selected ? criterion rank

Wilcoxon 11

1 − 20
20 − 100
100 − 200
200 − 500
500 − 2000

−

selected ? criterion rank

Sam 53

1 − 20
20 − 100
100 − 200
200 − 500
500 − 2000

−

selected ? criterion rank

FoxDimmicT 544

1 − 20
20 − 100
100 − 200
200 − 500
500 − 2000

−

selected ? criterion rank

BaldiLongT 357

1 − 20
20 − 100
100 − 200
200 − 500
500 − 2000+

selected ? criterion rank

ordinaryT 11

1 − 20
20 − 100
100 − 200
200 − 500
500 − 2000

13



Interestingly, for the first, differentially expressed gene, simple approaches such as the
ordinary t- and the Wilcoxon statistic perform well, while the more sophisticated statistics,
which depend on hyperparameters, fail to detect differential expression.

14


