Package ‘MPRAnalyze’

January 26, 2026
Type Package
Title Statistical Analysis of MPRA data
Version 1.29.0

Author Tal Ashuach [aut, cre], David S Fis-
cher [aut], Anat Kriemer [ctb], Fabian J Theis [ctb], Nir Yosef [ctb],

Maintainer Tal Ashuach <tal_ashuach@berkeley.edu>

Description MPRAnalyze provides statistical framework for the analysis of data generated by Mas-
sively Parallel Reporter Assays (MPRAS), used to directly measure enhancer activity. MPRAna-
lyze can be used for quantification of enhancer activity, classification of active en-
hancers and comparative analyses of enhancer activity between conditions. MPRAnalyze con-
struct a nested pair of generalized linear models (GLMs) to relate the DNA and RNA observa-
tions, easily adjustable to various experimental designs and conditions, and provides a set of rig-
orous statistical testig schemes.

License GPL-3
Encoding UTF-8
Imports BiocParallel, methods, progress, stats, SummarizedExperiment

biocViews ImmunoOncology, Software, StatisticalMethod, Sequencing,
GeneExpression, CellBiology, CellBasedAssays,
DifferentialExpression, ExperimentalDesign, Classification

Suggests knitr
ByteCompile true

BugReports https://github.com/YosefLab/MPRAnalyze

URL https://github.com/YosefLab/MPRAnalyze
RoxygenNote 7.1.1

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/MPR Analyze
git_branch devel

git_last_commit €893d06

git_last commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-25

https://github.com/YosefLab/MPRAnalyze
https://github.com/YosefLab/MPRAnalyze

2 analyzeComparative
Contents
analyzeComparative e e e e e e e e 2
analyzeQuantificationo o 3
ChrEpi e 4
estimateDepthFactors 5
getAlpha L e e 6
getDistrParam_DNA L 7
getFits_ DNA o e 8
getFits_ RNA o e 9
getModelParameters_DNA L 10
MpraObject e e 11
setDepthFactors e 14
setModel e 15
simulateMPRA oL 16
testCoefficient L 17
testEmpirical Lo 18
testLrt . . . e 19
Index 21
analyzeComparative Run a comparative analysis between conditions
Description
Run a comparative analysis between conditions
Usage
analyzeComparative(
obj,
rnaDesign,
dnaDesign = NULL,
fit.se = FALSE,
reducedDesign = NULL,
correctControls = TRUE,
verbose = TRUE,
mode = "classic”,
BPPARAM = NULL
)
Arguments
obj the MpraObject
rnaDesign the design for the RNA model.
dnaDesign the design for the DNA model. Only terms that are matched with the RNA

design should be included.

analyzeQuantification 3

fit.se logical, if TRUE the standard errors of the coefficients are extracted from the
model. These are necessary for computing coefficient- based testing, but make
the model fitting slower. Deafult: FALSE

reducedDesign the design for the reduced RNA model, for a likelihood- ratio testing scheme.
The Reduced design must be nested within the full design (i.e all terms in the
reduced must be included in the full).

correctControls
if TRUE (default), use the negative controls to establish the null hypothesis,
correcting for systemic bias in the data

verbose print progress reports (default: TRUE)

mode whether to run in classic mode ("classic") or in scalable mode ("scale"). Scale

mode is only available in situations when each RNA observation has a single
corresponding DNA observation.

BPPARAM a parallelization object created by BiocParallel. This overwrites the BPPARAM
object set in the object creation.

Value

the MpraObject with fitted models for the input enhancers

Examples

data <- simulateMPRA(tr = rep(2,5), da=c(rep(9,2), rep(1,3)),
nbatch=2, nbc=15)

obj <- MpraObject(dnaCounts = data$obs.dna,

rnaCounts = data$obs.rna,

colAnnot = data$annot)
obj <- estimateDepthFactors(obj, lib.factor = "batch”, which.lib = "both")
run an LRT-based analysis, as recommnded:
obj <- analyzeComparative(obj, dnaDesign = ~ batch + barcode + condition,

rnaDesign = ~ condition, reducedDesign = ~ 1)

alternatively, run a coefficient-based analysis:
obj <- analyzeComparative(obj, dnaDesign = ~ batch + barcode + condition,
rnaDesign = ~ condition, fit.se = TRUE)

analyzeQuantification Perform quantitative analysis on the MPRA data. This analysis aims
to determine which sequences have a regulatory function, when no
condition is being tested.

Description

* epirical: the model is fitted as specified, enabling future empirical testing (either empiri-
cal p-value if negative controls are provided, or a global devience analysis, see details in
‘test.empirical ‘)

* Irt: only available if negative controls are provided. A likelihood ratio test is used, with the null
hypothesis a joint model of the controls and a given candidate sequence, and the alternative
model being a separate model for controls and candidates.

4 ChrEpi

Usage

analyzeQuantification(obj, dnaDesign = ~1, rnaDesign = ~1, BPPARAM = NULL)

Arguments
obj the MpraObject
dnaDesign the design of the DNA counts
rnaDesign the design of the RNA counts
BPPARAM a parallelization object created by BiocParallel. This overwrites the BPPARAM
object set in the object creation.
Value

the MpraObject, with populated models

Examples

data <- simulateMPRA(tr = rep(2,10), nbatch=2, nbc=15)
obj <- MpraObject(dnaCounts = data$obs.dna,
rnaCounts = data$obs.rna,
colAnnot = data$annot)
obj <- estimateDepthFactors(obj, lib.factor = "batch”, which.lib = "both")

obj <- analyzeQuantification(obj, dnaDesign = ~ batch + barcode,
rnaDesign = ~1)
ChrEpi Sample MPRA data
Description

A subset of MPRA data from Inoue et al., comparing enhancer activity of episomal constructs vs.
chromosomally integrated constructs (integration was performed with a lentivirus). Data included
negative control enhancers, multiple batches and barcodes, a subsample of which are included in
this sample data for runtime purposes.

Usage
data(ChrEpi)
ce.colAnnot
ce.dnaCounts
ce.rnaCounts

ce.control

estimateDepthFactors 5

Format

ce.colAnnot Column annotations for each column (sample) in the data matrices

batch batch identifier, factor

condition condition identifier, factor. WT corresponds to chromosomal and MT corresponds
to episomal

barcode barcode identifier, factor
ce.dnaCounts DNA observations
ce.rnaCounts DNA observations
ce.control indices of control enhancers
An object of class data. frame with 40 rows and 3 columns.
An object of class matrix with 110 rows and 40 columns.
An object of class matrix with 110 rows and 40 columns.

An object of class logical of length 110.

Source

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5204343/

estimateDepthFactors estimate library size correction factors

Description

estimate library size correction factors

Usage

estimateDepthFactors(
obj,
lib.factor = NULL,
which.lib = "both”,

n n

depth.estimator = "uq

)
Arguments
obj the MpraObject
lib.factor the factor associating each sample to a library. Can be a factor or the name of
a column in the object’s colAnnot. If not provided, the data is assumed to have
been generated from a single library, and constant library depth is set.
which.1lib which library to compute the depth factors for. Options are "both" (default),

"dna" or "rna". If the DNA and RNA counts have different library factors, this
function should be called twice: once with "dna" and once with "rna"

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5204343/

6 getAlpha
depth.estimator
a character indicating which depth estimation to use, or a function to perform
the estimation. Currently supported values are "uq" for upper quantile of non-
zero values (default), "rle" for RLE (uses geometric mean, and is therefore not
recommended if libraries have O counts), or "totsum" for total sum. For a func-
tion input: function should take a numeric vector and return a single numeric,
and preferably handle NA values. See examples.
Value
the MpraObject with estimated values for sequencing depth factors
Note
since in most MPRA experiments multiple barcodes exist within a single library, each column in the
matrix is usually not a separate library. For this reason, it is recommended to supply this function
with the appropriate partitioning of the data matrix columns into libraries, see lib.factor
Examples
data <- simulateMPRA(tr = rep(2,10), da=NULL, nbatch=2, nbc=20)
obj <- MpraObject(dnaCounts = data$obs.dna,
rnaCounts = data$obs.rna,
colAnnot = data$annot)
obj <- estimateDepthFactors(obj, lib.factor = "batch”, which.lib = "both")
Upper quantile, using a higher quantile than 0.75:
obj <- estimateDepthFactors(obj, lib.factor = "batch”, which.lib = "both"”,
depth.estimator = function(x) quantile(x, .95,
na.rm=TRUE))
getAlpha return the fitted value for the transcription rate.
Description
return the fitted value for the transcription rate.
Usage
getAlpha(obj, by.factor = NULL, full = TRUE)
Arguments
obj the MpraObject to extract from, must be after model fitting
by.factor return a matrix of values, corresponding to the estimated rates of transcription

under different values of a factor included in the design. Value must be of these
options: NULL: (default) return only the intercept term, a single baseline rate
for each enhancer "all": will return the corresponding transcription rates for all

getDistrParam_DNA 7

values included in the model factor name: must be a factor included in the RNA
annotations and the rna design. Will return the corresponding rates for all values
of the given factor

full if true, return rate of the full model (default), otherwise of the reduced model
(only applies if an LRT-based analysis was used)

Value

the estimate for transcription rate as fitted by the model

Examples

data <- simulateMPRA(tr = rep(2,10), da=c(rep(9,5), rep(1,5)),
nbatch=2, nbc=15)

obj <- MpraObject(dnaCounts = data$obs.dna,

rnaCounts = data$obs.rna,

colAnnot = data$annot)
obj <- estimateDepthFactors(obj, lib.factor = "batch”, which.lib = "both")
obj <- analyzeComparative(obj, dnaDesign = ~ batch + barcode + condition,

rnaDesign = ~ condition, reducedDesign = ~ 1)

get alpha estimate for the two conditions
alpha <- getAlpha(obj, by.factor="condition")

getDistrParam_DNA Get model distribution parameters from an MpraObject of a given can-
didate enhancer

Description

Get model distribution parameters from an MpraObject of a given candidate enhancer

Usage

getDistrParam_DNA(obj, enhancer, full = TRUE)

getDistrParam_RNA(obj, enhancer = NULL, full = TRUE)

Arguments
obj MpraObject to extract from
enhancer enhancer to extract
full whether to extract from full model
Value

fit parameters (numeric, samples x parameters)

Examples

data <- simulateMPRA(tr = rep(2,5), nbatch=2, nbc=15)
obj <- MpraObject(dnaCounts = data$obs.dna,

rnaCounts = data$obs.rna,

colAnnot = data$annot)
obj <- estimateDepthFactors(obj, lib.factor = "batch”, which.lib = "both")
obj <- analyzeQuantification(obj, dnaDesign = ~ batch + barcode,

rnaDesign = ~1)

get distributional parameters of the first enhancer:
dist.params.dna <- getDistrParam_DNA(obj, 1)
dist.params.rna <- getDistrParam_RNA(obj, 1)

getFits_ DNA

getFits_DNA

Get DNA model-based estimates from an MpraObject (the expected
values based on the model). These can be compared with the observed
counts to assess goodness of fit.

Description

Get DNA model-based estimates from an MpraObject (the expected values based on the model).

These can be compared with the observed counts to assess goodness of fit.

Usage
getFits_DNA(
obj,
enhancers = NULL,
depth = TRUE,
full = TRUE,
transition = FALSE
)
Arguments
obj MpraObject to extract from
enhancers which enhancers to get the fits for. Can be character vectors with enhancer
names, logical or numeric enhancer indices, or NULL if all enhancers are to be
extracted (default)
depth include depth correction in the model fitting (default TRUE)
full if LRT modeling was used, TRUE (default) would return the fits of the full
model, FALSEwould return the reduced model fits.
transition use the DNA->RNA transition matrix (deafult: FALSE). This is useful if the

DNA observations need to be distributed to match the RNA observations.

getFits_ RNA 9

Value

DNA fits (numeric, enhancers x samples)

Examples

data <- simulateMPRA(tr = rep(2,5), nbatch=2, nbc=15)
obj <- MpraObject(dnaCounts = data$obs.dna,

rnaCounts = data$obs.rna,

colAnnot = data$annot)
obj <- estimateDepthFactors(obj, lib.factor = "batch”, which.lib = "both")
obj <- analyzeQuantification(obj, dnaDesign = ~ batch + barcode,

rnaDesign = ~1)

dna.fits <- getFits_DNA(obj)

getFits_RNA Get RNA model-based estimates from an MpraObject (the expected
values based on the model). These can be compared with the observed
counts to assess goodness of fit.

Description

Get RNA model-based estimates from an MpraObject (the expected values based on the model).
These can be compared with the observed counts to assess goodness of fit.

Usage

getFits_RNA(obj, enhancers = NULL, depth = TRUE, full = TRUE, rnascale = TRUE)

Arguments
obj MpraObject to extract from
enhancers which enhancers to get the fits for. Can be character vectors with enhancer
names, logical or numeric enhancer indices, or NULL if all enhancers are to be
extracted (default)
depth include depth correction in the model fitting (default TRUE)
full if LRT modeling was used, TRUE (default) would return the fits of the full
model, FALSEwould return the reduced model fits.
rnascale if controls were used to correct the fitting (in comparative analyses), use these
factors to re-adjust the estimates back.
Value

RNA fits (numeric, enhancers x samples)

10 getModelParameters_ DNA

Examples

data <- simulateMPRA(tr = rep(2,5), nbatch=2, nbc=15)
obj <- MpraObject(dnaCounts = data$obs.dna,

rnaCounts = data$obs.rna,

colAnnot = data$annot)
obj <- estimateDepthFactors(obj, lib.factor = "batch”, which.lib = "both")
obj <- analyzeQuantification(obj, dnaDesign = ~ batch + barcode,

rnaDesign = ~1)

rna.fits <- getFits_RNA(obj)

getModelParameters_DNA
extract the DNA model parameters

Description

extract the DNA model parameters

Usage
getModelParameters_DNA(obj, features = NULL, full = TRUE)

getModelParameters_RNA(obj, features = NULL, full = TRUE)

Arguments
obj the MpraObject to extract the parameters from
features the features to extract the parameters from (by default, parameters will be re-
turned for all features)
full if TRUE (default), return the parameters of the full model. Otherwise, return the
parameters of the reduced model (only relevant for LRT-based analyses)
Value

a data.frame of features (rows) by parameters (cols). By convension, the first parameter is related
to the second moment, and the interpretation of it depends on the distributional model used (‘alpha“

for ‘gamma.pois‘, variance for ‘In.nb‘ and ‘In.In*)

Examples

data <- simulateMPRA(tr = rep(2,5), nbatch=2, nbc=15)
obj <- MpraObject(dnaCounts = data$obs.dna,

rnaCounts = data$obs.rna,

colAnnot = data$annot)
obj <- estimateDepthFactors(obj, lib.factor = "batch”, which.lib = "both")
obj <- analyzeQuantification(obj, dnaDesign = ~ batch + barcode,

rnaDesign = ~1)

model.params.dna <- getModelParameters_DNA(obj)

MpraObject 11

model.params.rna <- getModelParameters_RNA(obj)

MpraObject MpraObject

Description

The main object MPRAnalyze works with, contains the input data, associated annotations, model
parameters and analysis results.

Usage

MpraObject(
dnaCounts,
rnaCounts,
dnaAnnot = NULL,
rnaAnnot = NULL,
colAnnot = NULL,
controls = NA_integer_,
rowAnnot = NULL,
BPPARAM = NULL

)
S4 method for signature 'matrix’
MpraObject(

dnaCounts,

rnaCounts,

dnaAnnot = NULL,

rnaAnnot = NULL,

colAnnot = NULL,

controls = NA_integer_,
rowAnnot = NULL,
BPPARAM = NULL

)

S4 method for signature 'SummarizedExperiment'’
MpraObject(

dnaCounts,

rnaCounts,

dnaAnnot = NULL,

rnaAnnot = NULL,

colAnnot = NULL,

controls = NA,

rowAnnot = NULL,

BPPARAM = NULL

12

dnaCounts(obj)

S4 method for
dnaCounts(obj)

rnaCounts(obj)

S4 method for
rnaCounts(obj)

dnaAnnot (obj)

S4 method for
dnaAnnot (obj)

rnaAnnot(obj)

S4 method for
rnaAnnot(obj)

rowAnnot(obj)

S4 method for
rowAnnot(obj)

controls(obj)

S4 method for
controls(obj)

dnaDepth(obj)

S4 method for
dnaDepth(obj)

rnaDepth(obj)

S4 method for
rnaDepth(obj)

model (obj)

S4 method for
model (obj)

signature

signature

signature

signature

signature

signature

signature

signature

signature

'MpraObject'

'"MpraObject'

'MpraObject'

'MpraObject'

'"MpraObject’

'"MpraObject’

'MpraObject'

'"MpraObject'

'"MpraObject'

MpraObject

MpraObject 13

Arguments

dnaCounts the DNA count matrix, or a SummarizedExperiment object containing the DNA
Counts and column annotations for the DNA data. If the input is a Summarized-
Experiment object, the dnaAnnot (or colAnnot) arguments will be ignored

rnaCounts the RNA count matrix, or a SummarizedExperiment object containing the RNA
Counts and column annotations for the RNA data. If the input is a Summarized-
Experiment object, the rnaAnnot (or colAnnot) arguments will be ignored

dnaAnnot data.frame with the DNA column (sample) annotations

rnaAnnot data.frame with the RNA column (sample) annotations

colAnnot if annotations for DNA and RNA are identical, they can be set at the same time
using colAnnot instead of using both rnaAnnot and dnaAnnot

controls IDs of the rows in the matrices that correspond to negative control enhancers.
These are used to establish the null for quantification purposes, and to correct
systemic bias in comparative analyses. Can be a character vectors (correspond-
ing to rownames in the data matrices), logical or numeric indices.

rowAnnot a data.frame with the row (candidate enhancer) annotations. The names must
match the row names in the DNA and RNA count matrices.

BPPARAM a parallelization backend using the BiocParallel package, see more details [here](http://bioconductor.org/p

obj The MpraObject to extract properties from

Value

an initialized MpraObject

Accessors

MpraObject properties can be accessed using accessor functions

dnaCounts the DNA count matrix

rnaCounts the RNA count matrix

dnaAnnot data.frame with the DNA column (sample) annotations
ranAnnot data.frame with the RNA column (sample) annotations
rowAnnot data.frame with the row (candidate enhancers) annotations

model the distributional model used. the Gamma-Poisson convolutional model is used by default.
see setModel

dnaDepth The library size correction factors computed for the DNA libraries. These are computed
by the estimateDepthFactors function and can be set manually using the setDepthFactors
function

rnaDepth The library size correction factors computed for the RNA libraries These are computed
by the estimateDepthFactors function and can be set manually using the setDepthFactors
function

14 setDepthFactors

Examples

data <- simulateMPRA(tr = rep(2,10), da=c(rep(2,5), rep(2.5,5)),
nbatch=2, nbc=20)

use 3 of the non-active enhancers as controls
obj <- MpraObject(dnaCounts = data$obs.dna,

rnaCounts = data$obs.rna,

colAnnot = data$annot,

controls = as.integer(c(1,2,4)))
alternatively, initialize the object with SummarizedExperiment objects:
Not run:
se.DNA <- SummarizedExperiment(list(data$obs.dna), colData=data$annot)
se.RNA <- SummarizedExperiment(list(data$obs.rna), colData=data$annot)
obj <- MpraObject(dnaCounts = se.DNA, rnaCounts = rna.se,

controls = as.integer(c(1,2,4)))

End(Not run)

dnaCounts <- dnaCounts(obj)
rnaCounts <- rnaCounts(obj)
dnaAnnot <- dnaAnnot(obj)
rnaAnnot <- rnaAnnot(obj)
controls <- controls(obj)
rowAnnot <- rowAnnot(obj)
model <- model(obj)

obj <- estimateDepthFactors(obj, lib.factor=c("batch”, "condition"))
dnaDepth <- dnaDepth(obj)
rnaDepth <- rnaDepth(obj)

setDepthFactors Manually set library depth correction factors

Description

Manually set library depth correction factors

Usage

setDepthFactors(obj, dnaDepth, rnaDepth)

Arguments
obj the MpraObject
dnaDepth library size factors for the DNA data, a numeric vector of length of the number
of columns in the DNA data matrix
rnaDepth library size factors for the RNA data, a numeric vector of length of the number

of columns in the RNA data matrix

setModel 15

Value

the MpraObject with library depth factors

Examples

data <- simulateMPRA(tr = rep(2,10), da=NULL, nbatch=2, nbc=20)
obj <- MpraObject(dnaCounts = data$obs.dna,
rnaCounts = data$obs.rna,
colAnnot = data$annot)
set constant depth factors (no depth correction)
obj <- setDepthFactors(obj, dnaDepth = rep(1, NCOL(data$obs.dna)),
rnaDepth = rep(1, NCOL(data$obs.rna)))

setModel Set the distributional model used. Default is gamma.pois, and is rec-
ommended. Other supoprted models are In.nb in which the DNA fol-
lows a log-normal distribution and the RNA follows a negative bino-
mial, and In.In in which both follow log-normal distributions. To use
alternative distributional models, use this function before fitting the
model.

Description

Set the distributional model used. Default is gamma.pois, and is recommended. Other supoprted
models are In.nb in which the DNA follows a log-normal distribution and the RNA follows a nega-
tive binomial, and In.In in which both follow log-normal distributions. To use alternative distribu-
tional models, use this function before fitting the model.

Usage

setModel (obj, model)

Arguments
obj the MPR Analyze object
model the charater identifier of the model to be used. Currently supported models:
"In.nb", "gamma.pois", "In.In"
Value

the MPRAnalyze with the model set for the given value

16

Examples

simulate MPRA

data <- simulateMPRA(tr = rep(2,10), da=NULL, nbatch=2, nbc=20)
obj <- MpraObject(dnaCounts = data$obs.dna,

rnaCounts = data$obs.rna,
colAnnot = data$annot)

obj <- estimateDepthFactors(obj, lib.factor = "batch”, which.lib = "both")
obj <- setModel(obj, "1ln.1n")

obj <- analyzeQuantification(obj, dnaDesign = ~ batch + barcode,
rnaDesign = ~1)
simulateMPRA Simulate an MPRA dataset
Description

Simulate an MPRA dataset

Usage
simulateMPRA(
tr = rep(2, 100),
da = NULL,
dna.noise.sd = 0.2,
rna.noise.sd = 0.3,
dna.inter = 5,
dna.inter.sd = 0.5,
nbc = 100,
coef.bc.sd = 0.5,
nbatch = 3,
coef.batch.sd = 0.5
)
Arguments
tr a vector of the true transcription rates, in log scale. The length of the vector
determines the number of enhancers included in the dataset. Default is 100
enhancers of identical transcription rate of 2.
da a vector determinig differential activity. Values are assumed to be in log scale,
and will be used in the model as log Fold-Change values. If NULL (default) a
single condition is simulated.
dna.noise.sd level of noise to add to the DNA library
rna.noise.sd level of noise to add to the RNA library
dna.inter the baseline DNA levels (intercept term), controlling the true mean abundance
of plasmids
dna.inter.sd the true variation of the plasmid levels
nbc number of unique barcode to include per enhancer

testCoefficient 17

coef.bc.sd true variation between barcodes
nbatch number of batches to simulate

coef.batch.sd the level of true variation that distinguishes batches (the size of the batch effects)

Details

the data is generated by using the same nested-GLM construct that MPRAnalyzes uses, with non-
strandard log-normal noise models (whereas by default MPR Analyze uses a Gamma-Poisson model).
The data generated can have multiple batches, and either 1 or 2 conditions, and the simulated data is
always paired (DNA and RNA extracted from the same library). User can control both true and ob-
served variation levels (noise), the number of expected plasmids per barcode, the true transcription
ratio, the size of the batch and barcode effects.

Value

a list:

¢ true.dna The true dna abundances
* obs.dna the observed dna counts
e true.rna the true rna abundances

* obs.rna the observed rna counts

* annot the annotations data.frame for each sample

Examples

single condition

data <- simulateMPRA()

two conditions

data <- simulateMPRA(da=c(rep(-0.5, 50), rep(0.5, 50)))

more observed noise

data <- simulateMPRA(dna.noise.sd = ©.75, rna.noise.sd = 0.75)
gradually increasing dataset

data <- simulateMPRA(tr = seq(2,3,0.01), da=NULL)

testCoefficient Calculate the significance of a factor in the regression model

Description

Calculate the significance of a factor in the regression model

Usage

testCoefficient(obj, factor, contrast)

18 testEmpirical

Arguments

obj the MpraObject

factor the name of the factor to make the comparison on

contrast the character value of the factor to use as a contrast. See details.
Value

a data.frame of the results this include the test statistic, logFC, p-value and BH-corrected FDR.

Examples

data <- simulateMPRA(tr = rep(2,5), da=c(rep(0,2), rep(1,3)),
nbatch=2, nbc=15)
obj <- MpraObject(dnaCounts = data$obs.dna,
rnaCounts = data$obs.rna,
colAnnot = data$annot)
obj <- estimateDepthFactors(obj, lib.factor = "batch”, which.lib = "both")

fit.se must be TRUE for coefficient based testing to work

obj <- analyzeComparative(obj, dnaDesign = ~ batch + barcode + condition,
rnaDesign = ~ condition, fit.se = TRUE)
results <- testCoefficient(obj, "condition”, "contrast")
testEmpirical test for significant activity (quantitative analysis) using various empir-

ical tests (see details)

Description

test for significant activity (quantitative analysis) using various empirical tests (see details)

Usage

testEmpirical(
obj,
statistic = NULL,
useControls = TRUE,
twoSided = FALSE,
subset = NULL

)
Arguments
obj the MpraObject, after running an analysis function
statistic if null [default], the intercept term is used as the score. An alternate score can

be provided by setting ’statistic’. Must be a numeric vector.

testLrt

useControls

twoSided

subset

Value

19

is TRUE and controls are available, use the controls to establish the background
model and compare against. This allows for more accurate zscores as well as
empircal p-values.

should the p-value be from a two-sided test (default: FALSE, right-side test)

only test a subset of the enhancers in the object (logical, indices or names).
Default is NULL, then all the enhancers are included.

a data.frame of empirical summary statistics based on the model’s estimate of slope, or the given

statistic. These are:

* statistic: the statistic (either the provided, or extracted from the models)

e zscore: Z-score of the statistic (number of standard devisations from the mean). If controls
are available, the score is based on their distribution: so it’s the number of control-sd from the

control-mean

* mad.score: a median-baed equivalent of the Z-score, with less sensitivity to outlier values. If
controls are provided, it’s based on their distribution.

* pval.zscore: a p-value based on the normal approximation of the Z-scores

 pval.empirical: only available if negative controls are provided. empirical P-value, using the
control distribution as the null

Examples

data <- simulateMPRA(tr = rep(2,10), da=NULL, nbatch=2, nbc=15)
obj <- MpraObject(dnaCounts = data$obs.dna,

obj <- estimateDepthFactors(obj, lib.factor

rnaCounts = data$obs.rna,
colAnnot = data$annot)
"batch”, which.lib = "both")

obj <- analyzeQuantification(obj, dnaDesignh = ~ batch + barcode,

rnaDesign = ~1)

results <- testEmpirical(obj)

or test with a different statistic:
aggregated.ratio <- rowSums(data$obs.rna) / rowSums(data$obs.dna)
results <- testEmpirical(obj, aggregated.ratio)

testlLrt

Calculate likelihood ratio test for the specific nested model

Description

Calculate likelihood ratio test for the specific nested model

Usage

testlLrt(obj)

20 testLrt

Arguments

obj the MpraObject containing the full and reduced

Value

results data frame

Note

Must be run after running an LRT-based analysis

Examples

data <- simulateMPRA(tr = rep(2,5), da=c(rep(0,2), rep(1,3)),
nbatch=2, nbc=15)

obj <- MpraObject(dnaCounts = data$obs.dna,

rnaCounts = data$obs.rna,

colAnnot = data$annot)
obj <- estimateDepthFactors(obj, lib.factor = "batch”, which.lib = "both")
obj <- analyzeComparative(obj, dnaDesign = ~ batch + barcode + condition,

rnaDesign = ~ condition, reducedDesign = ~ 1)

results <- testLrt(obj)

Index

x datasets
ChrEpi, 4

analyzeComparative, 2
analyzeQuantification, 3

ce.colAnnot (ChrEpi), 4
ce.control (ChrEpi), 4
ce.dnaCounts (ChrEpi), 4
ce.rnaCounts (ChrEpi), 4
ChrEpi, 4
controls (MpraObject), 11
controls,MpraObject-method
(MpraObject), 11

dnaAnnot (MpraObject), 11
dnaAnnot ,MpraObject-method
(MpraObject), 11
dnaCounts (MpraObject), 11
dnaCounts,MpraObject-method
(MpraObject), 11
dnaDepth (MpraObject), 11
dnaDepth,MpralObject-method
(MpraObject), 11

estimateDepthFactors, 5, 13

extractModelParameters_DNA
(getModelParameters_DNA), 10

extractModelParameters_RNA
(getModelParameters_DNA), 10

getAlpha, 6

getDistrParam_DNA, 7

getDistrParam_RNA (getDistrParam_DNA), 7

getFits_DNA, 8

getFits_RNA, 9

getModelParameters_DNA, 10

getModelParameters_RNA
(getModelParameters_DNA), 10

model (MpraObject), 11

21

model ,MpraObject-method (MpraObject), 11

MpraObject, 11

MpraObject,matrix-method (MpraObject),
11

MpraObject, SummarizedExperiment-method
(MpraObject), 11

rnaAnnot (MpraObject), 11
rnaAnnot,MpraObject-method
(MpraObject), 11
rnaCounts (MpraObject), 11
rnaCounts,MpraObject-method
(MpraObject), 11
rnaDepth (MpraObject), 11
rnaDepth,MpralObject-method
(MpraObject), 11
rowAnnot (MpraObject), 11
rowAnnot ,MpraObject-method
(MpraObject), 11

setDepthFactors, 13, 14
setModel, /3, 15
simulateMPRA, 16

testCoefficient, 17
testEmpirical, 18
testLrt, 19

	analyzeComparative
	analyzeQuantification
	ChrEpi
	estimateDepthFactors
	getAlpha
	getDistrParam_DNA
	getFits_DNA
	getFits_RNA
	getModelParameters_DNA
	MpraObject
	setDepthFactors
	setModel
	simulateMPRA
	testCoefficient
	testEmpirical
	testLrt
	Index

