Package ‘sparrow’

January 23, 2026
Type Package

Title Take command of set enrichment analyses through a unified
interface

Version 1.16.0

Description Provides a unified interface to a variety of GSEA techniques from
different bioconductor packages. Results are harmonized into a single object
and can be interrogated uniformly for quick exploration and interpretation
of results. Interactive exploration of GSEA results is enabled through
a shiny app provided by a sparrow.shiny sibling package.

URL https://github.com/lianos/sparrow

BugReports https://github.com/lianos/sparrow/issues
Depends R (>=4.0)

Imports babelgene (>= 21.4), BiocGenerics, BiocParallel, BiocSet,
checkmate, circlize, ComplexHeatmap (>= 2.0), data.table (>=
1.10.4), DelayedMatrixStats, edgeR (>= 3.18.1), ggplot2 (>=
2.2.0), graphics, grDevices, GSEABase, irlba, limma, Matrix,
methods, plotly (>=4.9.0), stats, utils, viridis

Suggests AnnotationDbi, BiasedUrn, Biobase (>= 2.24.0), BiocStyle,
DESeq2, dplyr, dtplyr, fgsea, GSVA, GO.db, goseq, hexbin,
KernSmooth, knitr, magrittr, matrixStats, msigdbr (>= 10.0),
orthogene, PANTHER.db (>= 1.0.3), R.utils, reactome.db,
rmarkdown, SummarizedExperiment, statmod, stringr, testthat,
webshot

biocViews GeneSetEnrichment, Pathways
BiocType Software

VignetteBuilder knitr

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Collate 'AllClasses.R' 'AllGenerics.R' 'GeneSetDb-class.R'
'GeneSetDb-methods.R' 'SparrowResult-methods.R' 'aaa.R’
'bioc-accessors.R' 'calculateIndividualLogFC.R'
'convertldentifiers.R' 'validateInputs.R' 'do.camera.R’
'do.cameraPR.R' 'do.fgsea.R' 'do.fry.R' 'do.geneSetTest.R'
'do.goseq.R' 'do.logFC.R' 'do.ora.R' 'do.roast.R' 'do.romer.R’

1

https://github.com/lianos/sparrow
https://github.com/lianos/sparrow/issues

'do.svdGeneSetTest.R' 'geneSetSummaryByGenes.R' 'get-kegg.R'
'get-msigdb.R' 'get-panther.R' 'get-reactome.R’
'gsea-helpers.R' ‘package.R' 'plots-corplot.R’
"plots-interactive.R' 'plots-mgheatmap.R' ‘plots-mgheatmap2.R’
'renameCollections.R' 'renameRows.R' 'scale_rows.R'
'scoreSingleSamples.R' 'seas.R’
'single-sample-scoring-methods.R' 'species.R’
'testing-helpers.R' 'utilities.R' 'volcano_plot.R' 'zzz.R'

RoxygenNote 7.3.2

Roxygen list(markdown = TRUE)

git_url https://git.bioconductor.org/packages/sparrow

git_branch RELEASE_3_22

git_last_commit fc1b95c

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-22

Author Steve Lianoglou [aut, cre] (ORCID:
<https://orcid.org/0000-0002-0924-1754>),
Arkadiusz Gladki [ctb],
Aratus Informatics, LLC [fnd] (2023+),
Denali Therapeutics [fnd] (2018-2022),
Genentech [fnd] (2014 - 2017)

Maintainer Steve Lianoglou <slianoglou@gmail.com>

Contents

addGeneSetMetadata oL
allequal.GeneSetDb oo
annotateGeneSetMembership Lo
calculateIndividualLogFC
collectionMetadata
combine,GeneSetDb,GeneSetDb-method
combine,SparrowResult,SparrowResult-method
conform L
CONVEISION . . « . v v v v et ettt e e e e e e e e e
convertldentifiers oo
corplot e
eigenWeightedMean
encode_gskey
exampleExpressionSet L.
failWith
featureldMap
featurelds L
geneSet
geneSetCollectionURLfunction
geneSetDb
GeneSetDb-class
GENESELS e e e e
geneSetsStats L.

Contents

https://orcid.org/0000-0002-0924-1754

addGeneSetMetadata 3

geneSetSummaryByGenes oL oL 35
getKeggCollection L 36
getMSigCollection e e e 37
getPantherCollection L oo 39
getReactomeCollection L e 41
BOSEQ -+« e 42
gsdScore e e e 43
hasGeneSet e e e e 45
hasGeneSetCollection e 46
incidenceMatriX e 46
IPIOt .« . o e e e 47
IS.ACHIVE . . . o o o e e e 48
logFC . . . e 49
mgheatmap e e e e e e e e 50
mgheatmap2 e e e e 53
S o v e e e e e e e e e e e e e e e e e e e 56
103 2 56
PMALTIX . . . o e e e e e e e e e e 58
randomGeneSetDb 59
renameCollections 60
renameROWS oL 60
resultNames e 61
Scale_TOWS o o e e e 63
scoreSingleSamples L 64
SEAS . v e e e e e e e e e e e e e e e e 66
SparrowResult-class 70
sparrow_methods L e 70
species_info L 71
ssGSEA.normalize L 71
subset.GeneSetDb L 72
subsetByFeatures 73
validateInputs L e e e 73
volcanoPlot e e e e 75
volcanoStatsTable 76
ZSCOTE . o v v v e o i e e e e e e e e e e e e e 77
[,GeneSetDb,ANY,ANY,ANY-method 78
Index 79
addGeneSetMetadata Add metadata at the geneset level.
Description

This function adds/updates columns entries in the geneSets(gdb) table. If there already are defined
meta values for the columns of meta in x, these will be updated with the values in meta.

Usage

addGeneSetMetadata(x, meta, ...)

4 all.equal. GeneSetDb

Arguments
X a GeneSetDb object
meta a data. frame-like object with "collection”, "name”, and an arbitrary amount
of columns to add as metadata for the genesets.
not used yet
Details

TODO: should this be a setReplaceMethod, Issue #13 (?) https://github.com/lianos/multiGSEA/issues/13

Value

the updated GeneSetDb object x.

Examples

gdb <- exampleGeneSetDb()
meta.info <- transform(

geneSets(gdb)[, c("collection”, "name")],

someinfo = sample(c(”one”, "two"), nrow(gdb), replace = TRUE))
gdb <- addGeneSetMetadata(gdb, meta.info)

all.equal.GeneSetDb Checks equality (feature parity) between GeneSetDb objects

Description

Checks equality (feature parity) between GeneSetDDb objects

Usage
S3 method for class 'GeneSetDb'
all.equal(target, current, features.only = TRUE, ...)
Arguments
target The reference GeneSetDb to compare against
current The GeneSetDb you wan to compare

features.only Only compare the "core" columns of target@db and target@table. Itis possi-
ble that you added additional columns (to keep track of symbols in target@db,
for instance) that you want to ignore for the purposes of the equality test.

moar args.

Value

TRUE if equal, or character vector of messages if not.

annotateGeneSetMembership 5

annotateGeneSetMembership
Annotates rows of a data.frame with geneset membership from a Gene-
SetDb

Description

This is helpful when you don’t have a monsterly sized GeneSetDb. There will be as many new
columns added to x as there are active genesets in gdb.

Usage
annotateGeneSetMembership(x, gdb, x.ids = NULL, ...)
Arguments
X A data.frame with genes/features in rows
gdb A GeneSetDb() object with geneset membership
X.1ids The name of the column in x that holds the feautre id’s in x that match the
feature_id’s in gdb, or a vector of id’s to use for each row in x that represent
these.
parameters passed down into incidenceMatrix()
Value

Returns the original x with additional columns: each is a logical vector that indicates membership
for genesets defined in gdb.

Examples

vm <- exampleExpressionSet()

gdb <- exampleGeneSetDb()

mg <- seas(vm, gdb, design = vm$design, contrast = 'tumor')
1fc <- logFC(mg)

annotated <- annotateGeneSetMembership(lfc, gdb, 'feature_id')

Show only genes that are part of 'HALLMARK_ANGIOGENESIS' geneset
angio <- subset(annotated, ~c2;;BIOCARTA_AGPCR_PATHWAY™)

calculateIndividuallogFC
Utility function to run limma differential expression analysis

Description

Utility function to run limma differential expression analysis

6 calculatelndividualLogFC

Usage

calculateIndividuallLogFC(
X,
design,
contrast = ncol(design),
robust.fit = FALSE,
robust.eBayes = FALSE,
trend.eBayes = FALSE,
treat.1lfc = NULL,
weights = NULL,
confint = TRUE,
with.fit = FALSE,
use.qlf = TRUE,
xmeta. = NULL,
as.dt = FALSE

robust.eBayes

trend. eBayes

)
Arguments

X The expression object. This can be 1 column matrix if you are not running any
analysis, and this function essentially is just a "pass through"

design The design matrix for the experiment

contrast The contrast you want to test and provide stats for. By default this tests the last
column of the design matrix. If you want to test a custom contrast, this can
be a contrast vector, which means that it should be as long as ncol(design)
and it most-often sum to one. In the future, the user will be able to specify a
range of coefficients over design to perform an ANOVA analysis, cf. Issue #11
(https://github.com/lianos/multiGSEA/issues/11).

robust.fit The value of the robust parameter to pass down to the limma: : ImFit() func-

tion. Defaults to FALSE.

The value of the robust parameter to pass down to the limma::eBayes()] func-
tion.

The value of the trend parameter to pass down to the 1imma: : eBayes() func-
tion.

treat.1lfc If this is numeric, this activates limma’s "treat" functionality and tests for differ-
ential expression against this specified log fold change threshold. This defaults
to NULL.

weights an option matrix of weights to use in 1imma: :ImFit(). If x is an EList already,
and x$weights is already defined, this argument will be ignored.

confint add confidence intervals to topTable output (default TRUE)? Ignored if x is a
DGEL1ist.

with.fit If TRUE, this function returns a list object with both the fit and the table of logFC
statistics, otherwise just the logFC statistics table is returned.

use.qlf If TRUE (default), will use edgeR’s quasilikelihood framework for analysis, oth-
erwise uses glmFit/glmTest.
parameters passed down into the relevant limma/edgeR based functions.

xmeta. a data.frame to add meta data (symbol, primarly) to the outgoing logFC data.frame.

This is used when x was a vector (pre-ranked).

collectionMetadata 7

as.dt If FALSE (default), the data.frame like thing that this funciton returns will be set
to a data.frame. Set this to TRUE to keep this object as a data. table

Details

This function fits linear modles (or glms) to perform differential expression analyses. If the x object
is a DGEList the analysis will be performed using edgeR’s quasi-likelihood framework, otherwise
limma will be used for all other scenarios.

If x is a edgeR: :DGEList () we require that edgeR: :estimateDisp() has already been called. If
you prefer to analyze rnaseq data using voom, be sure that x is the object that has been returned
from a call to 1imma: : voom() (or limma: : voomWithQualityWeights().

The documentation here is speaking the language of a "limma" analysis, however for each parame-
ter, there is an analagous function/parameter that will be delegated to.

Lastly, if x is simply a single column matrix, we assume that we are just passing a single pre-ranked
vector of statistics through sparrow::seas’s analysis pipelines (for use in methods like "fgsea", "cam-
eraPR", etc.), and a logFC-like data.frame is constructed with these statistics in the 1ogFC and t

columns.

Value

If with.fit == FALSE (the default) a data.table of logFC statistics for the contrast under test.
Otherwise, a list is returned with $result containing the logFC statistics, and $fit has the limma
fit for the data/design/contrast under test.

Examples

vm <- exampleExpressionSet(do.voom = TRUE)
1fc <- calculateIndividuallLogFC(vm, vm$design, "tumor")

collectionMetadata Gene Set Collection Metadata

Description

Associates key:value metadata to a gene set collection of a GeneSetDb ().

Usage
collectionMetadata(x, collection, name, ...)
geneSetURL(x, i, j, ...)
featureldType(x, i, ...)

featureldType(x, i) <- value

S4 method for signature 'GeneSetDb,missing,missing'’
collectionMetadata(x, collection, name, as.dt = FALSE)
S4 method for signature 'GeneSetDb,character,missing'
collectionMetadata(x, collection, name, as.dt = FALSE)

8 collectionMetadata

S4 method for signature 'GeneSetDb,character,character’
collectionMetadata(x, collection, name, as.dt = FALSE)

S4 method for signature 'GeneSetDb'
geneSetURL(x, i, j, ...)

S4 replacement method for signature 'GeneSetDb'
featureIdType(x, i) <- value

S4 method for signature 'GeneSetDb'
featureldType(x, i, ...)

addCollectionMetadata(
X)
xcoll,
xname,
value,
validate.value.fn = NULL,
allow.add = TRUE

)
S4 method for signature 'SparrowResult'
geneSetURL(x, i, j, ...)
Arguments
X GeneSetDb ()
collection The geneset collection to to query
name The name of the metadata variable to get the value for

not used yet

i, j The collection,name compound key identifier of the gene set

value The value of the metadata variable

as.dt If FALSE (default), the data.frame like thing that this funciton returns will be set
to a data.frame. Set this to TRUE to keep this object as a data. table

xcoll The collection name

Xxname The name of the metadata variable

validate.value.fn
If a function is provided, it is run on value and msut return TRUE for addition to
be made

allow.add If FALSE, this xcoll,xname should be in the GeneSetDb already, and this will fail
because something is deeply wrong with the world

Details

The design of the GeneSetDb is such that we assume that groups of gene sets are usually defined
together and will therefore share similar metadata. These groups of gene sets will fall into the same
"collection", and, therefore, metadata for particular gene sets are tracked at the collection level.

Types of metadata being referred to could be things like the organism that a batch of gene sets were
defined in, the type of feature identifiers that a collection of gene sets are using (ie. GSEABase: :EntrezIdentifier())

collectionMetadata 9

or a URL pattern that combines the collection,name compound key that one can browse to in order
to find out more information about the gene set.

There are explicit helper functions that set and get these aforementioned metadata, namely featureIdType(),
geneSetCollectionURLfunction(), and geneSetURL(). Aribtrary metadata can be stored at the
collection level using the addCollectionMetadata() function. More details are provided below.

Value

A character vector of URLSs for each of the genesets identified by i, j. NA is returned for genesets
i, j that are not found in x.

The updated GeneSetDb.

Methods (by class)

e collectionMetadata(x = GeneSetDb, collection =missing, name = missing): Returns
metadata for all collections

e collectionMetadata(x = GeneSetDb, collection = character, name = missing): Returns
all metadata for a specific collection

e collectionMetadata(x = GeneSetDb, collection = character, name = character): Re-
turns the name metadata value for a given collection.

* geneSetURL (GeneSetDb): returns the URL for a geneset

* featureIldType(GeneSetDb) <- value: sets the feature id type for a collection

* featureIdType(GeneSetDb): retrieves the feature id type for a collection

» geneSetURL (SparrowResult): returns the URL for a geneset from a SparrowResult object

Gene Set URLSs

A URL function can be defined per collection that takes the collection,name compound key and
generates a URL for the gene set that the user can browse to for futher information. For instance,
the geneSetCollectionURLfunction() for the MSigDB collections are defined like so:

url.fn <- function(collection, name) {
url <- 'http://www.broadinstitute.org/gsea/msigdb/cards/%s.html’
sprintf(url, name)

3

gdb <- getMSigGeneSetDb('H')

geneSetCollectionURLfunction(gdb, 'H') <- url.fn

In this way, a call to geneSetURL (gdb, 'H', 'HALLMARK_ANGIOGENESIS") will return http://www.broadinstitute.org/gse

This function is vectorized over i and j

Feature ID Types

When defining a set of gene sets in a collection, the identifiers used must be of the same type. Most
often you’ll probably be working with Entrez identifiers, simply because that’s what most of the
annotations work with.

As such, you’d define that your collection uses geneset identifiers like so:

gdb <- getMSigGeneSetDb('H')

featureldType(gdb, 'H') <- "ensembl”

or, equivalently (but you don't want to use this)

gdb <- addCollectionMetadata(gdb, 'H', 'id_type', "ensembl")

10 combine,GeneSetDb,GeneSetDb-method

Adding arbitrary collectionMetadata

Adds arbitrary metadata to a gene set collection of a GeneSetDb

Note that this is not a replacement method! You must catch the returned object to keep the one with
the updated collectionMetadata. Although this function is exported, I imagine this being used
mostly through predefined replace methods that use this as a utility function, such as the replacement
methods featureIdType<-, geneSetURLfunction<-, etc.

gdb <- getMSigGeneSetDb('H')
gdb <- addCollectionMetadata(gdb, 'H', 'foo', 'bar')

Examples

gdb <- exampleGeneSetDb()

Gene Set URLs
geneSetURL (gdb, 'c2', 'BIOCARTA_AGPCR_PATHWAY')
geneSetURL (gdb, c('c2', 'c7'),
c('BIOCARTA_AGPCR_PATHWAY', 'GSE14308_TH2_VS_TH1_UP'))

feature id types
featureldType(gdb, "c2") <- "entrez" # GSEABase::EntrezIdentifier()
featureldType(gdb, "c2")

Arbitrary metadata
gdb <- addCollectionMetadata(gdb, 'c2', 'foo', 'bar')
cmh <- collectionMetadata(gdb, 'c2', as.dt = TRUE) ## print this to see

combine, GeneSetDb,GeneSetDb-method
Combines two GeneSetDb objects together

Description

Combines two GeneSetDb objects together

Usage
S4 method for signature 'GeneSetDb,GeneSetDb'
combine(x, vy, ...)
Arguments
X a GeneSetDDb object
y a GeneSetDb object

more things

Value

a new GeneSetDb that contains all genesets from x and y

combine,SparrowResult,SparrowResult-method 11

Examples

gdb1 <- exampleGeneSetDb()
gdb2 <- GeneSetDb(exampleGeneSetDF())
gdb <- combine(gdb1, gdb2)

combine, SparrowResult, SparrowResult-method
Combines two SparrowResult objects together.

Description

This would be useful when you want to add a GSEA result to an already existing one. append
would be more appropriate, but ...

Usage
S4 method for signature 'SparrowResult,SparrowResult'
combine(x, y, rename.x = NULL, rename.y = NULL, ...)
Arguments
X A SparrowResult object
y A SparrowResult object
rename. x A named vector that used to match resultNames(x) and remane them to some-

thing different. names(rename.x) should match whatever you want to change
in resultNames(x), and the values are the new names of the result.

rename.y Same as rename. x, but for the results in y.

more things

Details

When would you want to do that? Imagine a shiny app that drives sparrow. You might want to
present the results of each analysis as they come "online", so you would run them independently
and make them available to the user immediately after they each finish (ie. in combination with the
promises package).

Value

A combined SparrowResult object

Examples

mg1 <- exampleSparrowResult()
mg2 <- exampleSparrowResult()
mgc <- combine(mgl, mg2)

12 conform

conform (Re)-map geneset IDs to the rows in an expression object.

Description

conform-ing, a GeneSetDb to a target expression object is an important step required prior to per-
form any type of GSEA. This function maps the featurelds used in the GeneSetDb to the elements
of a target expression object (ie. the rows of an expression matrix, or the elements of a vector of
gene-level statistics).

After conform-ation, each geneset in the GeneSetDb is flagged as active (or inactive) given the
number of its features that are successfully mapped to target and the minimum and maximum
number of genes per geneset required as specified by the min.gs.size and max.gs.size parame-
ters, respectively.

Only genesets that are marked with active = TRUE will be used in any downstream gene set opera-
tions.

Usage

conform(x, ...)
unconform(x, ...)

S4 method for signature 'GeneSetDb'
conform(

X,

target,

unique.by = c("none”, "mean”, "var"),

min.gs.size = 2L,

max.gs.size = Inf,

match.tolerance = 0.25,

S4 method for signature 'GeneSetDb'
unconform(x, ...)

is.conformed(x, to)

Arguments

X The GeneSetDb
moar args

target The expression object/matrix to conform to. This could also just be a character
vector of IDs.

unique.by If there are multiple rows that map to the identifiers used in the genesets, this is
a means to pick the single row for that ID

min.gs.size Ensure that the genesets that make their way to the GeneSetDb@table are of a

minimum size

conversion 13

max.gs.size Ensure that the genesets that make their way to the GeneSetDb@table are smaller
than this size

match.tolerance
Numeric value between [0,1]. If the fraction of feature_ids used in x that
match rownames(y) is below this number, a warning will be fired.

to the object to test conformation to

Value

A GeneSetDb() that has been matched/conformed to an expression object target y.

Functions

* is.conformed(): Checks to see if GeneSetDb x is conformed to a target object to

Related Functions

* unconform(): Resets the conformation mapping.

e is.conformed(): If to is missing, looks for evidence that conform has been called (at all) on
x. If to is provided, specifically checks that x has been conformed to the target object to.

Examples

es <- exampleExpressionSet()

gdb <- exampleGeneSetDb()

head(geneSets(gdb))

gdb <- conform(gdb, es)

Note the updated values ~“active™ flag, and n (the number of features
mapped per gene set)

head(geneSets(gdb))

conversion Convert a GeneSetDb to other formats.

Description

As awesome as a GeneSetDb is, you might find a time when you’ll need your gene set information
in an other format. To do that, we provide the following functions:

e as(gdb, "BiocSetf'): convertto aBiocSet::BiocSet().
* as(gdb, "GeneSetCollection"): Convert to a GSEABase: :GeneSetCollection() object.

* as.data. (table|frame) (gdb): Perhaps the most natural format to convert to in order to
save locally and examine outside of Bioconductor’s GSEA universe, but not many other tools
accept gene set definitions in this format.

e as.list(gdb): A named list of feature identifiers. This is the format that many of the limma
gene set testing methods use

14 conversion

Usage

S3 method for class 'GeneSetDb'
as.data.table(

X’
keep.rownames = FALSE,
value = c("feature_id"”, "x.id", "x.idx"),

active.only = is.conformed(x),

S3 method for class 'GeneSetDb'
as.data.frame(
X,
row.names = NULL,
optional = NULL,
value = c("feature_id"”, "x.id", "x.idx"),
active.only = is.conformed(x),

)
Arguments
X A GeneSetDb object
keep.rownames included here just for consistency with data.table: :as.data. table, but it is
not used
value The value type to export for the feature ids, defaults to "feature_id".
active.only If the GeneSetDb is conformed, do you want to only return the features and

genests that match target and are "active"?

pass through arguments (not used)

row.names, optional
included here for consistency with as.data.frame generic function definition,
but these are not used.

Details

The as. * functions accept a value parameter which indicates the type of IDs you want to export in
the conversion:

» "feature_id": The ID used as originally entered into the GeneSetDb.

e "x.idx": Only valid if the GeneSetDb x has been conform-ed to an expession container. This
option will export the features as the integer rows of the expression container.

e "x.id": Only valid if the GeneSetDb x has been conform-ed. The target expression container
might use feature identifiers that are different than what is in the GeneSetDb. If an active
featureMap is set on the GeneSetDb, this will convert the original feature identifiers into a
different target space (entrez to ensembl, for instance). Using this option, the features will be
provided in the target space.

Value

a converted GeneSetDb

convertldentifiers

Functions

e as.data.frame(GeneSetDb): convert a GeneSetDb to data.frame

Examples

es <- exampleExpressionSet()

gdb <- conform(exampleGeneSetDb(), es)

bs <- as(gdb, "BiocSet")

gdf <- as.data.frame(gdb)

gdb <- conform(gdb, es)

gdfi <- as.data.frame(gdb, value = 'x.idx')
gdl <- as.list(gdb)

15

convertIdentifiers

ones.

Converts internal feature identifiers in a GeneSetDb to a set of new

Description

The various GeneSetDb data providers (MSigDb, KEGG, etc). limit the identifier types that they

return. Use this function to map the given identifiers to whichever type you like.

Usage

convertIdentifiers(

)

X,

from = NULL,

to = NULL,

id.type = c("ensembl”, "entrez", "symbol"),
xref = NULL,

extra.cols = NULL,

allow.cartesian = FALSE,

method = c("orthogene”, "babelgene"),
min_support = 3,

top = TRUE,

S4 method for signature 'BiocSet'
convertIdentifiers(

X,

from = NULL,

to = NULL,

id.type = c("ensembl”, "entrez", "symbol"),
xref = NULL,

extra.cols = NULL,

allow.cartesian = FALSE,

method = c("orthogene”, "babelgene"),
min_support = 3,

top = TRUE,

16

convertldentifiers

S4 method for signature 'GeneSetDb'
convertIdentifiers(

X,

from = NULL,

to = NULL,

id.type = c("ensembl”, "entrez", "symbol"),
xref = NULL,

extra.cols = NULL,

allow.cartesian = FALSE,

method = c("orthogene”, "babelgene"),
min_support = 3,

top = TRUE,
)
Arguments

X The GeneSetDb with identifiers to convert

from, to If you are doing identifier and/orspecies conversion using babelgene, to is the
species you want to convert to, and from is the species of x. If you are only
doing id type conversion within the same species, specify the current species in
from. If you are providing a data.frame map of identifiers in xref, to is the
name of the column that holds the new identifiers, and from is the name of the
column that holds the current identifiers.

id.type If you are using babelgene conversion, this specifies the type of identifier you
want to convert to. It can be any of "ensembl”, "entrez”, or "symbol”.

xref a data.frame used to map current identifiers to target ones.

extra.cols a character vector of columns from to to add to the features of the new Gene-

allow.cartesian

method

min_support, top

Details

SetDb. If you want to keep the original identifiers of the remapped features,
include "original_id" as one of the values here.

a boolean used to temporarily set the datatable.allow.cartesian global op-
tion. If you are doing a 1:many map of your identifiers, you may trigger this er-
ror. You can temporarily turn this option/error off by setting allow.cartesian
= TRUE. The option will be restored to its "pre-function call" value on.exit.

The method used to convert identifers, either "orthogene” or "babelgene”.
"orthogene” (the default) is more powerful, supports more organisms, and
(unlike "babelgene”) can map between any two arbitrary species — babelgene
requires one of the species in the mapping to be human. The downside to
"orthogene” is that you need internet access to run.

Parameters used in the internal call to babelgene: :orthologs()

pass through args (not used)

For best results, provide your own identifier mapping reference, but we provide a convenience
wrapper around the babelgene: :orthologs() function to change between identifier types and

species.

convertldentifiers 17

When there are multiple target id’s for the source id, they will all be returned. When there is no
target id for the source id, the soucre feature will be axed.

Value

A new GeneSetDb object with converted identifiers. We try to retain any metadata in the original
object, but no guarantees are given. If id_type was stored previously in the collectionMetadata,
that will be dropped.

Methods (by class)

e convertIdentifiers(BiocSet): converts identifiers in a BiocSet

e convertIdentifiers(GeneSetDb): converts identifiers in a GeneSetDb

Custom Mapping

You need to provide a data.frame via the xref paramater that has a column for the current identi-
fiers and another column for the target identifiers. The columns are specified by the from and to
paramters, respectively.

Convenience identifier and species mapping

If you don’t provide a data.frame, you can provide a species name. We will rely on the {babelgene}
package for the conversion, so you will have to provide a species name that it recognizes.

Species and Identifier Conversion via babelgene

We plan to provide a quick wrapper to babelgene’s ortholog mapping function to make identifier
conversion a easier through this function. You can track this in sparrow issue #2.

Species and Identifier Conversion via orthogene

Babelgene is great, but does not support all species (like cynos), but we can rely on the orthogene
package for that. The downside to orthogene is that it requires online acces.

Examples

You can convert the identifiers within a GeneSetDb to some other type
by providing a "translation” table. Check out the unit tests for more
examples.

gdb <- exampleGeneSetDb() # this has no symbols in it

Define a silly conversion table.
xref <- data.frame(
current_id = featurelds(gdb),
new_id = paste@(featurelds(gdb), "_symbol"))
gdb2 <- convertIdentifiers(gdb, from = "current_id”, to = "new_id",
xref = xref, extra.cols = "original_id")
geneSet(gdb2, name = "BIOCARTA_AGPCR_PATHWAY")

Convert entrez to ensembl id's using babelgene

Not run:

The conversion functionality via babelgene isn't yet implemented, but
will look like this.

https://github.com/lianos/sparrow/issues/2

18

corplot

1. convert the human entrez identifiers to ensembl
gdb.ens <- convertldentifiers(gdb, "human”, id.type = "ensembl")

2. convert the human entrez to mouse entrez
gdb.entm <- convertIdentifiers(gdb, "human”, "mouse”, id.type = "entrez")

3. convert the human entrez to mouse ensembl
gdb.ensm <- convertIdentifiers(gdb, "human", "mouse”, id.type = "ensembl”)

End(Not run)

corplot Plots the correlation among the columns of a numeric matrix.

Description

We assume that this is a sample x gene expression matrix, but it can (of course) be any numeric
matrix of your choosing. The column names appear in the main diagonal of the plot. Note that you
might prefer the corrplot package for similar functionality, and this functionality is intentionally
named different from that..

Usage

corplot(
E,
title,
cluster = FALSE,
col.point = "#00000066",
diag.distro = TRUE,
smooth.scatter = nrow(E) > 400,
max.cex.cor = NULL,

)
Arguments
E the matrix used to plot a pairs correlation plot. The vectors used to assess all
pairwise correlation should be in the columns of the matrix.
title The title of the plot
cluster logical indicating whether or not to shuffle genes around into some clustering.
col.point the color of the points in the scatterplots
diag.distro show the distribution of values on the diagnols?

smooth.scatter boolean toindicate wether to use a normal scatter, or a graphics: : smoothScatter().

Defaults to TRUE if nrow(E) > 400

max.cex.cor the numeric value defining the maximum text size (cor) in the correlation panel.
By default there is no limit on the maximum text size and the text size is calcu-
lated with 0.8 / strwidth(text). With max.cex.cor defined the text size is
calculated as min(0.8 / strwidth(text), max.cex.cor).

pass through arguments to internal panel functions

eigenWeightedMean 19

Details

TODO: Add with.signature parameter to allow a box to plot the signature score of all genes in E.

Value

nothing, just creates the plot

See Also

The corrplot package

Examples

x <= matrix(rnorm(1000), ncol=5)

corplot(x)
eigenWeightedMean Single sample gene set score by a weighted average of the genes in
geneset
Description

Weights for the genes in x are calculated by the percent of which they contribute to the principal
component indicated by eigengene.

Usage

eigenWeightedMean(
X,
eigengene = 1L,
center = TRUE,
scale = TRUE,
uncenter = center,
unscale = scale,
retx = FALSE,
weights = NULL,
normalize = FALSE,
all.x = NULL,

.drop.sd = 1e-04

)
Arguments
X An expression matrix of genes x samples. When using this to score geneset
activity, you want to reduce the rows of x to be only the genes from the given
gene set.
eigengene the PC used to extract the gene weights from

center, scale center and/or scale data before scoring?

http://cran.r-project.org/package=corrplot

20 eigenWeightedMean

uncenter, unscale
uncenter and unscale the data data on the way out? Defaults to the respective
values of center and scale

retx Works the same as retx from prcomp. If TRUE, will return a retpcax matrix
that has the rotated variables.

weights a user can pass in a prespecified set of waits using a named numeric vector. The
names must be a superset of rownames(x). If this is NULL, we calculate the
"eigenweights".

normalize If TRUE, each score is normalized to a randomly selected geneset score. The

size of the randomly selected geneset is the same as the corresponding geneset.
This only works with the "ewm" method when unscale and uncenter are TRUE.
By default, this is set to FALSE, and normalization does not happen. Instead of
passing in TRUE, the user can pass in a vector of gene names (identifiers) to be
considered for random geneset creation. If no genes are provided, then all genes
in y are fair game.

all.x if the user is trying to normalize these scores, an expression matrix that has
superset of the control genes needs to be provided, where the columns of all.x
must correspond to this in x.

these aren’t used in here

.drop.sd When zero-sd (non varying) features are scaled, their values are NaN. When the
Features with rowSds < this threshold (default le-4) are identified, and their
scaled values are set to 0.

Details

You will generally want the rows of the gene x sample matrix “xto be z-transformed. If it is not already, ensur
and ‘scale‘ are set to “TRUE".

When uncenter and/or unscale are FALSE, it means that the scores should be applied on the centered
or scaled values, respectively.

Value

A list of useful transformation information. The caller is likely most interested in the $score vector,
but other bits related to the SVD/PCA decomposition are included for the ride.

Normalization

Scores can be normalized against a set of control genes. This results in negative and postiive sample
scores. Positive scores are ones where the specific geneset score is higher than the aggregate control-
geneset score.

Genes used for the control set can either be randomly sampled from the rows of the all. x expres-
sion matrix (when normalize = TRUE), or explicitly specified by a row-identifier character vectore
passed to the normalize parameter. In both cases, the code prefers to select a random-control
geneset to be of equal size as nrow(x). If that’s not possible, we use as many genes as we can get.

Note that normalization requires an expression matrix to be passed into the all. x parameter, whose
columns match 1:1 to the columns in x. Calling scoreSingleSamples() withmethod = "ewm"”, normalize = TRUE
handles this transparently.

This idea to implement this method of normalizatition was inspired from the ctrl. score normal-
ization found in Seurat’s AddModuleScore () function.

encode_gskey 21

See Also

scoreSingleSamples

Examples

vm <- exampleExpressionSet(do.voom=TRUE)

gdb <- conform(exampleGeneSetDb(), vm)

features <- featureIds(gdb, 'c2', 'BURTON_ADIPOGENESIS_PEAK_AT_2HR',
value="x.idx")

ewm <- eigenWeightedMean(vm[features,])

scores <- ewm$score

Use scoreSingleSamples to facilitate scoring of all gene sets

scores.all <- scoreSingleSamples(gdb, vm, 'ewm')

s2 <- with(subset(scores.all, name == 'BURTON_ADIPOGENESIS_PEAK_AT_2HR'),
setNames(score, sample_id))

all.equal(s2, scores)

encode_gskey Converts collection,name combination to key for geneset

Description

The "key" form often comes out as rownames to matrices and such, or particularly for sending
genesets down into wrapped methods, like do.camera.

splt_gskey is the inverse function of encode_gskey ()

Usage
encode_gskey(x, y, sep = ";;")
split_gskey(x, sep = ";;")
Arguments
X a character vector of encoded geneset keys from encode_gskey ()
y if x is a data.frame: nothing, otherwise a character vector of geneset names
sep the separator used in the encoding of geneset names
Value

a character vector

a data.frame with (collection,name) columns

Examples

gdf <- exampleGeneSetDF ()
gskeys <- encode_gskey(gdf)
gscols <- split_gskey(gskeys)

22

exampleExpressionSet

exampleExpressionSet Functions that load data for use in examples and testing.

Description

We provide examplar expression data (counts or voomed) as well as exemplar gene sets in different

forms.

Usage

exampleExpressionSet(
dataset = c("tumor-vs-normal”, "tumor-subtype”),

do.voom

TRUE

exampleGeneSets(x, unlist = !missing(x))

exampleGeneSetDb ()

exampleBiocSet ()

exampleGeneSetDF ()

exampleSparrowResult(cached = TRUE, methods = c("cameraPR", "fry"))

exampleDgeResult(
species = "human”,
id.type = c("entrez", "ensembl"),
induce.bias = NULL

)

Arguments

dataset Character vector indicating what samples wanted, either "tumor-vs-normal”
for a tumor vs normal dataset from TCGA, or just the tumor samples from the
same annotated with subtype.

do.voom If TRUE, a voomed EList is returned, otherwise an ExpressionSet of counts.

X If provided, an expression/matrix object so that the genesets are returned as
(integer) index vectors into the rows of x whose rownames match the ids in the
geneset.

unlist return the genesets as nested list of lists (default: TRUE). The top level lists cor-
responds to the collection, and the lists within each are the inidividual gene sets.
If FALSE, a single list of genesets is returned.

cached If TRUE (default), returns a pre-saved SparrowResult object. Otherwise calcu-
lates a fresh one using the methods provided

methods the methods to use to create a new SparrowResult for.

species the species to return the example result from (right now, only "human")

id.type the type of identifiers to use: "entrez” (default) or "ensembl”

failWith 23

induce.bias We can simulate a bias on the pvalue by the gene’s "effective_length” or
"AveExpr". These are columns that are included in the output. If NULL, no bias
is introduced into the result.

Value

A list of lists of entrezIDs when as == '1ol", or a list of integers into the rows of x.

exampleExpressionSet

The expression data is a subset of the TCGA BRCA indication. Calling exampleExpressionSet(do.voom
= TRUE) will return a voomed EList version of the data. When do.voom = FALSE, you will get a
DGEList of the counts

exampleGeneSets

Returns gene sets as either a list of feature identifiers. Entrez identifiers are used. If x is provided,
integers that index into the expression container x are used (this is a legacy feature that we should
nuke).

exampleGeneSetDb

Returns gene sets as a GeneSetDb object

exampleBiocSet

Returns gene sets as a BiocSet object

exampleGeneSetDF

Returns a data.frame of gene set definitions. A data.frame of this form can be passed into the
GeneSetDb() contructor.

Examples

vim <- exampleExpressionSet()
head(exampleGeneSets())

failWith Utility function to try and fail with grace.

Description

Inspired from one of Hadley’s functions (in plyr or something?)

24 featureldMap

Usage

failWith(
default = NULL,
expr,
frame = parent.frame(),
message = geterrmessage(),
silent = FALSE,
file = stderr()

)
Arguments
default the value to return if expr fails
expr the expression to take a shot at
frame the frame to evaluate the expression in
message the error message to display if expr fails. Deafults to base: : geterrmessage()
silent if TRUE, sends the error message to msg()
file where msg sends the message
Value

the result of expr if successful, otherwise default value.

Examples

look, this doesn't throw an error, it just returns NULL
x <- failWith(NULL, stop("no error, just NULL"), silent = TRUE)

featureIdMap Fetch the featureldMap for a GeneSetDb

Description
The GeneSetDDb has an internal data structure that is used to cross reference the feature_id’s used in
the database construction to the features in the expression object that is used to run GSEA methods
against.

Usage
featureldMap(x, ...)

S4 method for signature 'GeneSetDb'
featureIdMap(x, as.dt = FALSE)

Arguments
X the object to retrieve the featureldMap from
pass through arguments
as.dt If FALSE (default), the data.frame like thing that this funciton returns will be set

to a data.frame. Set this to TRUE to keep this object as a data. table

featurelds 25

Value

a data.frame of input feature_id’s to conformed id’s/rows/etc

Methods (by class)

* featureldMap(GeneSetDb): extract featureldMap from a GeneSetDb

Examples

gdb <- exampleGeneSetDb()
vm <- exampleExpressionSet()
gdb <- conform(gdb, vm)
fmap <- featureIdMap(gdb)

featurelds Returns the relevant featurelds for a given geneset.

Description

Gene sets are defined by the unique compound key consisting of their collection and name. To
fetch the featurelds associated with a specific geneset, you must provide values for i and j. If these
are missing, then a character vector of all the unique feature ids within x are returned.

If the GeneSetDDb x has been conformed to an expression object this will default to return only the
feature_id’s that are matched to the target expression object, and they will be returned using the
same identifiers that the target expression object uses. To change this behavior, tweak the values for
the active.only and value parameters, respectively.

x can be either a GeneSetDb or a SparrowResult. If its the latter, then this call simply delegates to
the internal GeneSetDb.

Usage
featurelds(
X’
i’
j’
value = c("feature_id"”, "x.id", "x.idx"),

active.only = is.conformed(x),

)
S4 method for signature 'GeneSetDb'
featureIds(

X)

i,

i

value = c("feature_id", "x.id", "x.idx"),

active.only = is.conformed(x),

26 featurelds

S4 method for signature 'SparrowResult'

featurelds(
X!
i,
j)
value = c("feature_id", "x.id", "x.idx"),

active.only = TRUE,

)
Arguments
X Object to retrieve the gene set from, either a GeneSetDb or a SparrowResult.
i, j The collection,name compound key identifier of the gene set
value What form do you want the id’s in?
» "feature_id": the IDs used in the original geneset definitions
e "x.id": the ids of the features as they are used in the expression object.
e "x.idx": The integer index into the expresion object x that the ‘Gene-
SetDb* has been conformed to.
active.only only look for gene sets that are "active"? Defaults to TRUE if x is conformed to a
target expression object, else FALSE. conform() for further details.
pass through arguments
Value

A vector of identifiers (or indexes into an expression object, depending on the value argument)
for the features in the specified geneset. NA is returned if the geneset is not "active" (ie. listed in
geneSets())

Examples

gdb <- exampleGeneSetDb()

fids.gs <- featurelds(gdb, 'c2', 'BIOCARTA_AGPCR_PATHWAY')
fids.c2 <- featurelds(gdb, 'c2')

fids.all <- featurelds(gdb)

vm <- exampleExpressionSet(do.voom=TRUE)

gdb <- conform(gdb, vm)

fewer than before

fids.gs2 <- featurelds(gdb, 'c2', 'BIOCARTA_AGPCR_PATHWAY')

same as before

fids.gs3 <- featurelds(gdb, 'c2', 'BIOCARTA_AGPCR_PATHWAY', active.only=FALSE)
returned as row indices into vm

fids.idxs <- featurelds(gdb, 'c2', value='x.idx')

geneSet 27

geneSet Fetches information for a gene set

Description

Gene sets inside a GeneSetDb () are indexed by their collection,name compound key. There is no
special class to represent an individual gene set. Instead, gene sets are returned as a data.frame, the
rows of which enumerate the features that belong to them.

When x is a SparrowResult(), this function will append the differential expression statistics for
the individual features generated across the contrast that defined x.

Usage

geneSet(x, i, j, ...)

S4 method for signature 'GeneSetDb'
geneSet(

X,

i,

i,

active.only = is.conformed(x),

with.feature.map = FALSE,

collection = NULL,

name = NULL,

as.dt = FALSE

S4 method for signature 'SparrowResult'
geneSet(

X,

i,

3,

active.only = TRUE,

with.feature.map = FALSE,

L

collection = NULL,

name = NULL,

as.dt = FALSE
)

Arguments
X Object to retrieve the gene set from, either a GeneSetDb or a SparrowResult.
i, j The collection,name compound key identifier of the gene set
passed down to inner functinos

active.only only look for gene sets that are "active"? Defaults to TRUE if x is conformed to a

target expression object, else FALSE. conform() for further details.

28 geneSetCollectionURLfunction

with.feature.map
If TRUE, then details of the feature mapping from the original feature_id space
to the target feature space are included (default: FALSE).

collection using i as the parameter for "collection" isn’t intuitive so if speficially set this
paramter, it will replace the value for i.

name the same for the collection:i parameter relationship, but for j:name.

as.dt If FALSE (default), the data.frame like thing that this funciton returns will be set

to a data.frame. Set this to TRUE to keep this object as a data. table

Value

adata. (frame|table) of gene set information. If x is a SparrowResult object, then differential
expression statistics are added as columns to this result.

Examples

gdb <- exampleGeneSetDb()

geneSet(gdb, "c2", "KOMMAGANI_TP63_GAMMA_TARGETS")

geneSet(gdb, collection = "c2", name = "KOMMAGANI_TP63_GAMMA_TARGETS")
geneSet (gdb, name = "KOMMAGANI_TP63_GAMMA_TARGETS")

geneSetCollectionURLfunction
Get/set the gene set collection url function for a geneset collection

Description

Reference collectionMetadata() for more info.
Usage

geneSetCollectionURLfunction(x, i, ...)

geneSetCollectionURLfunction(x, i) <- value

S4 method for signature 'GeneSetDb'
geneSetCollectionURLfunction(x, i, ...)

S4 replacement method for signature 'GeneSetDb'
geneSetCollectionURLfunction(x, i) <- value

S4 method for signature 'SparrowResult'

geneSetCollectionURLfunction(x, i, ...)
Arguments
X The GeneSetDb
i The collection to get the url function from

pass through arguments (not used)

geneSetDb 29

value the function to set as the geneset url function for the given collection i. This can
be an actual function object, or the (string) name of the function to pull out of
"the ether" ("pkgname: : functionname” can work, too). The latter is preferred
as it results in smaller serialized GeneSetDb objects.

Value

the function that maps collection,name combinations to an informational URL.

Methods (by class)

» geneSetCollectionURLfunction(GeneSetDb): returns the gene set collection url function
from a GeneSetDb

» geneSetCollectionURLfunction(GeneSetDb) <- value: sets the gene set collection url
function for a GeneSetDb : Collection combination.

e geneSetCollectionURLfunction(SparrowResult): return the url function from a SparrowResult
object.

Examples

gdb <- exampleGeneSetDb()
geneSetCollectionURLfunction(gdb, "c2", "BIOCARTA_AGPCR_PATHWAY")

geneSetDb Fetches the GeneSetDb from SparrowResult

Description

Fetches the GeneSetDb from SparrowResult

Usage

geneSetDb(x)

Arguments

X SparrowResult

Value

The GeneSetDb

Examples

vm <- exampleExpressionSet(do.voom=TRUE)

gdb <- exampleGeneSetDb()

mg <- seas(vm, gdb, design = vm$design, contrast = 'tumor')
geneSetDb(mg)

30

GeneSetDb-class

GeneSetDb-class A container for geneset definitions.

Description

Please refer to the sparrow vignette (vignette("”sparrow”)), (and the "The GeneSetDb Class"
section, in particular) for a more deatiled description of the sematnics of this central data object.

The GeneSetDDb class serves the same purpose as the GSEABase: :GeneSetCollection() class
does: it acts as a centralized object to hold collections of Gene Sets. The reason for its existence
is because there are things that I wanted to know about my gene set collections that weren’t easily
inferred from what is essentially a "list of GeneSets" that is the GeneSetCollection class.

Gene Sets are internally represented by a data.table in "a tidy" format, where we minimally
require non NA values for the following three character columns:

* collection

* name

e feature_id
The (collection, name) compound key is the primary key of a gene set. There will be as many
entries with the same (collection, name) as there are genes/features in that set.

The GeneSetDb tracks metadata about genesets at the collection level. This means that we assume
that all of the feature_id’s used within a collection use the same type of feature identifier (such as
a GSEABase: :EntrezIdentifier(), were defined in the same organism, etc.

Please refer to the '"GeneSetDb'" section of the vignette for more details regarding the construc-
tion and querying of a GeneSetDb object.

Usage
GeneSetDb(x, featureIdMap = NULL, collectionName = NULL, ...)
Arguments
X A GeneSetCollection, a "two deep" list of either GeneSetCollections or

lists of character vectors, which are the gene identifers. The "two deep"” list
represents the different collections (top level) at the top level, and each such list
is a named list itself, which represents the gene sets in the given collection.

featureIdMap A data.frame with 2 character columns. The first column is the ids of the genes
(features) used to identify the genes in gene. sets, the second second column
are IDs that this should be mapped to. Useful for testing probelevel microarray
data to gene level gene set information.

collectionName If x represents a singular collection, ie. a single GeneSetCollection or a "one
deep" (named (by geneset)) list of genesets, then this parameter provides the
name for the collection. If x is multiple collections, this can be character vector
of same length with the names. In all cases, if a collection name can’t be defined
from this, then collections will be named anonymously. If a value is passed here,
it will overide any names stored in the list of x.

these aren’t used for anything in particular, but are here to catch extra arguments
that may get passed down if this function is part of some call chain.

GeneSetDb-class 31

Details

The functionality in the class is useful for the functionality in this package, but for your own per-
sonal usage, you probably want a {BiocSet}.

Value

A GeneSetDb object

Slots

table The "gene set table": a data.table with geneset information, one row per gene set. Columns
include collection, name, N, and n. The end user can add more columns to this data.table as
desired. The actual feature IDs are computed on the fly by doing a db[J(group, id)]

db A data.table to hold all of the original geneset id information that was used to construct this
GeneSetDb.

featureIdMap Maps the ids used in the geneset lists to the ids (rows) over the expression data the
GSEA is run on

collectionMetadata A data.table to keep metadata about each individual geneset collection,
ie. the user might want to keep track of where the geneset definitions come from. Perhaps a
function that parses the collection,name combination to generate an URL that points the user
to more information about that geneset, etc.

GeneSetDb Construction

The GeneSetDb() constructor is sufficiently flexible enough to create a GeneSetDb object from a
variety of formats that are commonly used in the bioconductor echosystem, such as:

* GSEABase: :GeneSetCollection(): If you already have a GeneSetCollection on your hands,
you can simply pass it to the GeneSetDb() constructor.

* list of ids: This format is commonly used to define gene sets in the edgeR/limma universe for
testing with camera, roast, romer, etc. The names of the list items are the gene set names, and
their values are a character vector of gene identifiers. When it’s a single list of lists, you must
provide a value for collectionName. You can embed multiple collections of gene sets by
having a three-deep list-of-lists-of-ids. The top level list define the different collections, the
second level are the genesets, and the third level are the feature identifiers for each gene set.
See the examples for clarification.

* a data.frame-like object: To keep track of your own custom gene sets, you have probably
realized the importance of maintaing your own sanity, and likely have gene sets organized in
a table like object that has something like the collection, name, and feature_id required
for a GeneSetDb. Simply rename the appropriate columns to the ones prescribed here, and
pass that into the constructor. Any other additional columns (symbol, direction, etc.) will be
copied into the GeneSetDb.

Interrogating a GeneSetDb

You might wonder what gene sets are defined in a GeneSetDb: see the geneSets() function.
Curious about what features are defined in your GeneSetDb? See the featureIds() function.

Want the details of a particular gene set? Try the geneSet () function. This will return a data. frame
of the gene set definition. Calling geneSet () on a SparrowResult () will return the same data. frame
along with the differential expression statistics for the individual members of the geneSet across the
contrast that was tested in the seas() call that created the SparrowResult().

32 geneSets

GeneSetDb manipulation

You can subset a GeneSetDb to include a subset of genesets defined in it. To do this, you need
to provide an indexing vector that is as long as length(gdb), ie. the number of gene sets de-
fined in GeneSetDb. You can construct such a vector by performing your boolean logic over the
geneSets(gdb) table.

Look at the Examples section to see how this works, where we take the MSIgDB c7 collection (aka.
"ImmuneSigDB") and only keep gene sets that were defined in experiments from mouse.

See Also

?conversion

Examples

exampleGeneSetDF provides gene set definitions in "long form”. We show
how this can easily turned into a GeneSetDb from this form, or convert
it to other forms (list of features, or list of list of features) to
do the same.

gs.df <- exampleGeneSetDF()

gdb.df <- GeneSetDb(gs.df)

list of ids

gs.df$key <- encode_gskey(gs.df)

gs.list <- split(gs.df$feature_id, gs.dfskey)

gdb.list <- GeneSetDb(gs.list, collectionName='custom-sigs"')

A list of lists, where the top level list splits the collections.

The name of the collection in the GeneSetDb is taken from this top level
hierarchy

gs.lol <- as.list(gdb.df, nested=TRUE) ## examine this list-of lists
gdb.lol <- GeneSetDb(gs.lol) ## note that collection is set propperly

GeneSetDb Interrogation
gsets <- geneSets(gdb.df)
nkcells <- geneSet(gdb.df, 'cellularity', 'NK cells')
fids <- featurelds(gdb.df)

GeneSetDb Manipulation e
Subset down to only t cell related gene sets

gdb.t <- gdb.df[grepl("T cell”, geneSets(gdb.df)$name)]

gdb.t

geneSets Fetch the active (or all) gene sets from a GeneSetDb or SparrowResult

Description

Fetch the active (or all) gene sets from a GeneSetDb or SparrowResult

geneSetsStats 33
Usage
geneSets(x, ...)

S4 method for signature 'GeneSetDb'
length(x)

S4 method for signature 'GeneSetDb'
geneSets(x, active.only = is.conformed(x), ..., as.dt = FALSE)

S4 method for signature 'GeneSetDb'
nrow(x)

S4 method for signature 'SparrowResult'

geneSets(x, ..., as.dt = FALSE)
Arguments
X Object to retrieve the gene set from, either a GeneSetDb or a SparrowResult.

pass through arguments

active.only only look for gene sets that are "active"? Defaults to TRUE if x is conformed to a
target expression object, else FALSE. conform() for further details.

as.dt If FALSE (default), the data.frame like thing that this funciton returns will be set
to a data.frame. Set this to TRUE to keep this object as a data. table

Value

a data.table with geneset information.

Methods (by class)

* length(GeneSetDb): Returns the number of genesets in a GeneSetDb
* geneSets(GeneSetDb): return all genesets from a GeneSetDb
* nrow(GeneSetDb): return number of genesets in GeneSetDb

» geneSets(SparrowResult): return the active genesets from a SparrowResult

Examples

gdb <- exampleGeneSetDb()
gs <- geneSets(gdb)

geneSetsStats Summarizes useful statistics per gene set from a SparrowResult

Description

This function calculates the number of genes that move up/down for the given contrasts, as well
as mean and trimmed mean of the logFC and t-statistics. Note that the statistics calculated and
returned here are purely a function of the statistics generated at the gene-level stage of the analysis.

34

Usage

geneSetsStats

geneSetsStats(

feature.min.logFC = 1,
feature.max.padj = 0.1,

trim = 0.1,
reannotate.significance = FALSE,
as.dt = FALSE

Arguments

X

A SparrowResult object

feature.min.logFC

used with feature.max.padj to identify the individual features that are to be
considered differentially expressed.

feature.max.padj

trim

used with feature.min.logFC to identify the individual features that are to be
considered differentially expressed.

The amount to trim when calculated trimmed t and logFC statistics for each
geneset.

reannotate.significance

this is internally by the package, and should left as FALSE when used by the user.

as.dt If FALSE (default), the data.frame like thing that this funciton returns will be set

Value

to a data.frame. Set this to TRUE to keep this object as a data. table

A data.table with statistics at the gene set level across the prescribed contrast run on x. These
statistics are independent of any particular GSEA method, but rather summarize aggregate shifts of
the gene sets individual features. The columns included in the output are summarized below:

* n.sig: The number of individual features whose abs(logFC) and padj thersholds satisfy the

criteria of the feature.min.logFC and feature.max.padj parameters of the original seas ()
call

n.neutral: The number of individual features whose abs(logFC) and padj thersholds do not
satisfy the feature. * criteria named above.

n.up, n.down: The number of individual features with 1ogFC > @ or 1ogFC < @, respectively,
irrespective of the feature. * thresholds referenced above.

n.sig.up, n.sig.down: The number of individual features that pass the feature.* thresh-
olds and have logFC > 0 or logFC < 0, respectively.

mean.logFC, mean.logFC.trim: The mean (or trimmed mean) of the individual logFC esti-
mates for the features in the gene set. The amount of trim is specified in the trim parameter
of the seas() call.

mean.t, mean.t.trim: The mean (or trimmed mean) of the individual t-statistics for the
features in the gene sets. These are NA if the input expression object was a DGEList.

Examples

vm <- exampleExpressionSet(do.voom=TRUE)
gdb <- exampleGeneSetDb()

geneSetSummaryByGenes 35

mg <- seas(vm, gdb, design = vm$design, contrast = 'tumor')
head(geneSetsStats(mg))

geneSetSummaryByGenes Summarize geneset:feature relationships for specified set of features

Description

This function creates a geneset by feature table with geneset membership information for the
features specified by the user. Only the gene sets that have any of the features are included
in the table returned.

Usage

geneSetSummaryByGenes(
X,
features,
with.features = TRUE,
feature.rename = NULL,

as.dt = FALSE
)

S4 method for signature 'GeneSetDb'
geneSetSummaryByGenes(
X,
features,
with.features = TRUE,
feature.rename = NULL,

as.dt = FALSE
)

S4 method for signature 'SparrowResult'
geneSetSummaryByGenes(

X,

features,

with.features = TRUE,

feature.rename = NULL,

method = NULL,

max.p = 0.3,

p.col = c("padj"”, "padj.by.collection”, "pval”),

as.dt = FALSE
Arguments

X GeneSetDb or SparrowResult

features a character vector of featurelds

36

with.features

feature.rename

as.dt

method

max.p

p.col

Value

getKeggCollection

Include columns for features? If x is is a GeneSetDb, these columns are
TRUE/FALSE. If x is a SparrowResult object, the values are the logFC of the
feature if present in the gene set, otherwise its NA.

if NULL, the feature columns are prefixed with featureId_, if FALSE, no renam-
ing is done. If x is a SparrowResult, then this can be the column name found in
logFC(x), in which case the value for the feature from the given column name
would be used (setting this to "symbol”) would be a common thing to do, for
instance.

pass through arguments

If FALSE (default), the data.frame like thing that this funciton returns will be set
to a data.frame. Set this to TRUE to keep this object as a data. table

The GSEA method to pull statistics from

the maximum p-value from the analysis method to allow for the geneSets in-
cluded in the returned table

which p-value column to select from: 'padj', 'padj.by.collection’, or
"pval’

a data.frame of geneset <-> feature incidence/feature matrix.

Methods (by class)

* geneSetSummaryByGenes(SparrowResult): get geneset:feature incidence table from a Spar-
rowResult, optionally filtered by statistical significance from a given gsea method

Examples

vm <- exampleExpressionSet(do.voom=TRUE)

gdb <- conform(exampleGeneSetDb(), vm)

mg <- seas(vm, gdb, design = vm$design, contrast = 'tumor')

features <- c("55839", "8522", "29087")

gsm.hit <- geneSetSummaryByGenes(gdb, features)

gsm.fid <- geneSetSummaryByGenes(mg, features, feature.rename=NULL)
gsm.sym <- geneSetSummaryByGenes(mg, features, feature.rename='symbol')

getKeggCollection

Retrieves the KEGG gene set collection via its REST API

Description

Uses 1limma: : getGeneKEGGLinks () and limma: : getKEGGPathwayNames () internally.

Usage

getKeggCollection(species = "human"”, id.type = c("ensembl”, "entrez"), ...)

getKeggGeneSetDb(species = "human”, id.type = c("ensembl”, "entrez"), ...)

getMSigCollection 37

Arguments

species "human”, "mouse” or any of the bioconductor or kegg-style abbreviations.

id. type Gene identifiers are returned by the REST service as entrez identifiers. Set this
to "ensembl” to translate them internally using convertIdentifiers(). If
speciesis not "human” or "mouse”, you need to provide an idxref table that
works with convertIdentifiers().
pass through arguments

Details

Currently we just support the pathway database, and only entrez ids.

Note that it is your responsibility to ensure that you can use the KEGG database according to their
licensing requirements.

Value

A BiocSet of the kegg stuffs

Functions

* getKeggGeneSetDb(): method that returns a GeneSetDb

Examples
connects to the internet and takes a while
mouse.entrez <- getKeggCollection("mouse”, id.type = "entrez")
human.enrez <- getKeggCollection("human”, id.type = "entrez")
getMSigCollection Fetches gene set collections from the moleular signature database
(MSigDB)
Description

This provides versioned genesets from gene set collections defined in MSigDB. Collections can be
retrieved by their collection name, ie c("H", "C2", "C7").

Usage

getMSigCollection(
collection = NULL,
species = "human”,
id.type = c("ensembl”, "entrez", "symbol"”, "uniprot"),
with.kegg = FALSE,
promote.subcollection = FALSE,
prefix.collection = FALSE,
strip.subcollection.prefix = TRUE,
merge.human.into.mouse = TRUE,

http://software.broadinstitute.org/gsea/msigdb

38 getMSigCollection

getMSigGeneSetDb(
collection = NULL,
species = "human”,
id.type = c("ensembl”, "entrez", "symbol"”, "uniprot"),
with.kegg = FALSE,
promote.subcollection = FALSE,
prefix.collection = FALSE,
strip.subcollection.prefix = TRUE,
merge.human.into.mouse = TRUE,
refetch = FALSE,

)
Arguments

collection character vector specifying the collections you want (cl, c2, ..., ¢7, h). By de-
fault we load just the hallmark collecitons. Setting this to NULL loads all col-
lections. Alternative you can also include named subsets of collections, like
"reactome”. Refer to the Details section for more information.

species "human” or "mouse”? Really, this is anything available in the alias column of
the sparrow: : : species_info() table (except cyno).

id. type do you want the feature id’s used in the gene sets to be "ensembl” (default),
"entrez", or "symbol”.

with.kegg The Broad distributes the latest versions of the KEGG genesets as part of the c2

collection. These genesets come with a restricted license, so by default we do
not return them as part of the GeneSetDb. To include the KEGG gene sets when
asking for the c2 collection, set this flag to TRUE.
promote.subcollection
there are different sources of genesets for a number of the collections in MSigDB.
These are included in the gs_subcollection column of geneSets(this). When
this is set to TRUE, the collection column for the genesets is appended with the
subcollection. So, instead of having a massive "C2" collection, you’ll have
bunch of collections like "C2_CGP", "C2_CP:BIOCARTA", etc.
prefix.collection
When TRUE (default: FALSE), the "C1", "C2", etc. is prefixed with "MSigDB_x"
strip.subcollection.prefix
removes the CGP: type prefixes for the gs_subcollection column, except for
the C5 GO collection.
merge.human.into.mouse
When TRUE (default), the OG human collections are merged into the newly
minted (as of 2024) M* mouse collections. Set to FALSE to not do that.
pass through parameters

refetch If TRUE, this function will requiry the msigdbr package to fetch genesets it has
already retrieved and converted. When FALSE, the cached version of the genesets
will be returned.

Value

aBiocSet of the MSigDB collections

getPantherCollection 39

Functions

e getMSigGeneSetDb(): retrieval method for a GeneSetDb container

Species and Identifier types

This function utilizes the functionality from the {msigdbr} and {babelgene} packages to retrieve
gene set definitions from a variety of organisms and identifier types.

KEGG Gene Sets

Due to the licensing restrictions over the KEGG collections, they are not returned from this function
unless they are explicitly asked for. You can ask for them through this function by either (i) querying
for the "c2" collection while setting with.kegg = TRUE; or (ii) explicitly calling with collection
= n kegg n”n .

Citing the Molecular Signatures Database

To cite your use of the Molecular Signatures Database (MSigDB), please reference Subramanian,
Tamayo, et al. (2005, PNAS 102, 15545-15550) and one or more of the following as appropriate:

e Liberzon, et al. (2011, Bionformatics);
 Liberzon, et al. (2015, Cell Systems); and

* The source for the gene set as listed on the gene set page.

Examples

these take a while to load initially, so put them in dontrun blocks.
you should run these interactively to understand what they return
bcs <- getMSigCollection(”h", "human”, "entrez")

bcs.h.entrez <- getMSigCollection(c("h"”, "c2"), "human”, "entrez")
bcs.h.ens <- getMSigCollection(c("h"”, "c2"), "human”, "ensembl")
bcs.m.entrez <- getMSigCollection(c("h", "c2"), "mouse”, "entrez")

gdb <- getMSigGeneSetDb("h", "human”, "entrez")

getPantherCollection Get pathways/GOslim collections from PANTHER.db Biocondcutor
package.

Description

This is a convience function that orchestrates the PANTHER.db package to return GeneSetDb ob-
jects for either pathway or GOslim information for human or mouse.

40 getPantherCollection

Usage

getPantherCollection(
type = c("pathway”, "goslim"),

species = c("human”, "mouse")
)
getPantherGeneSetDb(
type = c("pathway"”, "goslim"),
species = c("human”, "mouse")
)
Arguments
type "pathway" or, "goslim"
species "human" or "mouse"
Details

Note that for some reason the PANTHER. db package needs to be installed in a user-writable package
location for this to work properly. If you see an error like "Error in resqlite_send_query ... attempt
to write a readonly database", this is the problem. Please install another version of the PANTHER. db
package in a user-writable directory using BiocManager: :install().

Value

A BiocSet of panther pathways

Functions

* getPantherGeneSetDb(): returns a GeneSetDb

GOSLIM

GO Slims are "cut down" versions of the GO ontology that contain a subset of the terms in the
whole GO.

PANTHER provides their own set of GO slims, although it’s not clear how often these get updated.

Examples

this requires you have the PANTHER.db package installed via BiocManager
bsc.panther <- getPantherCollection(species = "human")

http://geneontology.org/page/go-slim-and-subset-guide
http://www.pantherdb.org/panther/ontologies.jsp

getReactomeCollection 41

getReactomeCollection Retrieve gene set collections from from reactome.db

Description

Retrieve gene set collections from from reactome.db

Usage
getReactomeCollection(
species = "human”,
id.type = c("entrez", "ensembl"),
rm.species.prefix = TRUE
)
getReactomeGeneSetDb(
species = "human”,
id.type = c("entrez”, "ensembl"),
rm.species.prefix = TRUE
)
Arguments
species the species to get pathay information for
id.type "entrez" or "ensembl”

rm.species.prefix
pathways are provided with species prefixes from reactome.db, when TRUE
(default), these are stripped from the gene set names.

Value

a reactome BiocSet object

Functions

* getReactomeGeneSetDb(): returns a GeneSetDb object

Examples

bsc.h <- getReactomeCollection(”human")
gdb.h <- getReactomeGeneSetDb("human")

42

goseq

goseq

Perform goseq Enrichment tests across a GeneSetDb.

Description

Note that we do not import things from goseq directly, and only load it if this function is fired. I
can’t figure out a way to selectively import functions from the goseq package without it having to
load its dependencies, which take a long time — and I don’t want loading sparrow to take a long
time. So, the goseq package has moved to Suggests and then is loaded within this function when

necessary.

Usage

goseq(
gsd,
selected,
universe,

feature.bias,

method = c("Wallenius”, "Sampling", "Hypergeometric"),
repcnt = 2000,

use_genes_without_cat = TRUE,

plot.fit = FALSE,

do.conform

TRUE,

as.dt = FALSE,
.pipelined = FALSE

)

Arguments
gsd
selected
universe

feature.bias

method

repcnt

The GeneSetDb object to run tests against
The ids of the selected features
The ids of the universe

a named vector as long as nrow(x) that has the "bias" information for the fea-
tures/genes tested (ie. vector of gene lengths). names(feature.bias) should
equal rownames(x). If this is not provided, all feature lengths are set to 1 (no
bias). The goseq package provides a getlength function which facilitates get-
ting default values for these if you do not have the correct values used in your
analysis.

The method to use to calculate the unbiased category enrichment scores

Number of random samples to be calculated when random sampling is used.
Ignored unless method="Sampling".

use_genes_without_cat

plot.fit

A boolean to indicate whether genes without a categorie should still be used.
For example, a large number of gene may have no GO term annotated. If this
option is set to FALSE, those genes will be ignored in the calculation of p-values
(default behaviour). If this option is set to TRUE, then these genes will count
towards the total number of genes outside the category being tested.

parameter to pass to goseq: :nullp().

gsdScore 43

do.conform By default TRUE: does some gymnastics to conform the gsd to the universe
vector. This should neber be set to FALSE, but this parameter is here so that when
this function is called from the seas() codepath, we do not have to reconform
the GeneSetDb object, because it has already been done.

as.dt If FALSE (default), the data.frame like thing that this funciton returns will be set
to a data.frame. Set this to TRUE to keep this object as a data. table

.pipelined If this is being called external to a seas pipeline, then some additional cleanup of
columns name output will be done when FALSE (default). Otherwise the column
renaming and post processing is left to the do.goseq caller.

Value

A data. table of results, similar to goseq output. The output from nullp is added to the outgoing
data.table as an attribue named "pwf".

References

Young, M. D., Wakefield, M. J., Smyth, G. K., Oshlack, A. (2010). Gene ontology analysis for
RNA-seq: accounting for selection bias. Genome Biology 11, R14. http://genomebiology.com/2010/11/2/R14

Examples

vm <- exampleExpressionSet()
gdb <- conform(exampleGeneSetDb(), vm)

Identify DGE genes
mg <- seas(vm, gdb, design = vm$design)
1fc <- logFC(mg)

wire up params

selected <- subset(lfc, significant)$feature_id
universe <- rownames(vm)

mylens <- setNames(vm$genes$size, rownames(vm))

degenes <- setNames(integer(length(universe)), universe)
degenes[selected] <- 1L

gostats <- sparrow::goseq(
gdb, selected, universe, mylens,

method = "Wallenius"”, use_genes_without_cat = TRUE)
gsdScore Single sample geneset score using SVD based eigengene value per
sample.
Description

This method was developed by Jason Hackney and first introduced in the following paper doi: 10.1038/ng.3520.
It produces a single sample gene set score in values that are in "expression space,” the innards of
which mimic something quite similar to an eigengene based score.

To easily use this method to score a number of gene setes across an experiment, you’ll want to
have the scoreSingleSamples() method drive this function via specifying "svd” as one of the
methods.

https://doi.org/10.1038/ng.3520

gsdScore

Usage

gsdScore(
X,
eigengene = 1L,
center = TRUE,
scale = TRUE,
uncenter = center,
unscale = scale,
retx = FALSE,
.use_irlba = FALSE,
.drop.sd = 1e-04

)
Arguments
X An expression matrix of genes x samples. When using this to score geneset
activity, you want to reduce the rows of x to be only the genes from the given
gene set.
eigengene the "eigengene" you want to get the score for. only accepts a single value for
now.

center, scale center and/or scale data before scoring?

uncenter, unscale
uncenter and unscale the data data on the way out? Defaults to the respective
values of center and scale

retx Works the same as retx from prcomp. If TRUE, will return a retpcax matrix
that has the rotated variables.

. these aren’t used in here
.use_irlba when TRUE, used irlba: :svdr() instead of base: : svd(). Default: FALSE.

.drop.sd When zero-sd (non varying) features are scaled, their values are NaN. When the
Features with rowSds < this threshold (default 1e-4) are identified, and their
scaled values are set to 0.

Details

The difference between this method vs the eigengene score is that the SVD is used to calculate
the eigengene. The vector of eigengenes (one score per sample) is then multiplied through by the
SVD'’s left matrix. This produces a matrix which we then take the colSums of to get back to a single
sample score for the geneset.

Why do all of that? You get data that is back "in expression space" and we also run around the
problem of sign of the eigenvector. The scores you get are very similar to average zscores of the
genes per sample, where the average is weighted by the degree to which each gene contributes
to the principal component chosen by eigengene, as implemented in the eigenWeightedMean()
function.

The core functionality provided here is taken from the soon to be released GSDecon package by
Jason Hackney

Value

A list of useful transformation information. The caller is likely most interested in the $score vector,
but other bits related to the SVD/PCA decomposition are included for the ride.

hasGeneSet 45

Examples

vm <- exampleExpressionSet(do.voom=TRUE)

gdb <- conform(exampleGeneSetDb(), vm)

features <- featurelds(gdb, "c2", "BURTON_ADIPOGENESIS_PEAK_AT_2HR")
scores <- gsdScore(vm[features,])$score

Use scoreSingleSamples to facilitate scoring of all gene sets

scores.all <- scoreSingleSamples(gdb, vm, 'gsd')

s2 <- with(subset(scores.all, name == 'BURTON_ADIPOGENESIS_PEAK_AT_2HR'),
setNames(score, sample_id))

all.equal(s2, scores)

hasGeneSet Check to see if the GeneSetDb has a collection,name GeneSet defined

Description

Check to see if the GeneSetDDb has a collection,name GeneSet defined

Usage

hasGeneSet(x, collection, name, as.error = FALSE)

Arguments
X GeneSetDb
collection character indicating the collection
name character indicating the name of the geneset
as.error If TRUE, a test for the existance of the geneset will throw an error if the geneset
does not exist
Value

logical indicating whether or not the geneset is defined.

Examples

gdb <- exampleGeneSetDb()
hasGeneSet(gdb, c('c2', 'c7'), c('BIOCARTA_AGPCR_PATHWAY', 'something'))

46 incidenceMatrix

hasGeneSetCollection Check if a collection exists in the GeneSetDb

Description

Check if a collection exists in the GeneSetDb

Usage

hasGeneSetCollection(x, collection, as.error = FALSE)

Arguments
X A GeneSetDb ()
collection character vector of name(s) of the collections to query
as.error logical if TRUE, this will error instead of returning FALSE
Value

logical indicating if this collection exists

Examples

gdb <- exampleGeneSetDb()
hasGeneSetCollection(gdb, "c2")
hasGeneSetCollection(gdb, "unknown collection”)

incidenceMatrix Creates a 1/0 matrix to indicate geneset membership to target object.

Description

Generates an inidcator matrix to indicate membership of genes (columns) to gene sets (rows). If y
is provided, then the incidence is mapped across the entire feature-space of y.

Usage
incidenceMatrix(x, vy, ...)
Arguments
X A GeneSetDb()
y (optional) A target (expression) object x is (or can be) conformed to
parameters passed down into conform().
Value

incidence matrix with nrows = number of genesets and columns are featureIDs. If y is passed in,
the columns of the returned value match the rows of y.

iplot 47

Examples

vm <- exampleExpressionSet()
gdb <- exampleGeneSetDb()

im <- incidenceMatrix(gdb)

imv <- incidenceMatrix(gdb, vm)

iplot Visualize gene level behavior of genes within a geneset across a con-
trast.

Description

It is informative to look at the individual log fold changes of the genes within a gene set to explore
the degree to which they (1) are coherent with respect to each other; and (2) see how the compare
to the background distribution of log fold changes of the entire transcriptome.

You can visualize this behavior via a type = "density"” plot, ora type = "boxplot”. It is also common to plot eit

"ne

="logFC"or t-statisticsvalue ="t"*.

Usage

iplot(
X,
name,
value = "logFC",
type = c("density"”, "gsea", "boxplot”),
tools = c("wheel_zoom"”, "box_select”, "reset”, "save"),
main = NULL,
with.legend = TRUE,
collection = NULL,
shiny_source = "mggenes”,
width = NULL,
height = NULL,
ggtheme = ggplot2::theme_bw(),

trim = 0.005,
)
Arguments

X A SparrowResult() object

name the name of the geneset to plot

value A string indicating the column name for the value of the gene-level metadata to
plot. Default is "1ogFC". Anoter often used choice might also be "t", to plot
t-statistics (if they’re in the result). But this can be any numeric column found in
the data.frame returned by geneSet(x, y, j). If this is a named string (vector),
then the value in names(value) will be used on the axis when plotted.

type plot the distributions as a "density"” plot or "boxplot”.

tools the tools to display in the rbokeh plot

main A title to display. If not specified, the gene set name will be used, otherwise you

can pass in a custom title, or NULL will disable the title altogether.

48 is.active

with.legend Draws a legend to map point color to meaning. There are three levels a point
(gene level statistic) can be color as, "notsig", "psig", and "sig". "notsig" implies
that the FDR >= 10%, "psig" means that FDR <= 10%, but the logFC is "unre-
markable" (< 1), and "sig" means that both the FDR <= 10% and the logFC >=

1

collection If you have genesets with duplicate names in x (only possible with a GeneSetDb
object), provide the name of the collection here to disambiguate (default: NULL).

shiny_source the name of this element that is used in shiny callbacks. Defaults to "mggenes”.

width, height the width and height of the output plotly plot

ggtheme a ggplot theme, like the thing returned from ggplot2::theme_bw(), for in-
stance.
trim used to define the upper and lower quantiles to max out the individual gene

statistics in the selected geneset.

pass through parameters to internal boxplot/density/gsea plotting functions

Value

the ploty plot object

Examples

mgr <- exampleSparrowResult()

iplot(mgr, "BURTON_ADIPOGENESIS_PEAK_AT_2HR",
value = c("t-statistic” = "t"),
type = "density")

iplot(mgr, "BURTON_ADIPOGENESIS_PEAK_AT_2HR",
value = c("log2FC" = "logFC"),
type = "boxplot")

iplot(mgr, "BURTON_ADIPOGENESIS_PEAK_AT_2HR",
value = c(”-statistic” = "t"),
type = "gsea")

is.active Interrogate "active" status of a given geneset.

Description

Returns the active status of genesets, which are specified by their collection,name compound
keys. This function is vectorized and supports query of multiple gene sets at a time. If a requested
collection,name gene set doesn’t exist, this throws an error.

Usage

is.active(x, i, j)

Arguments
X GeneSetDb ()
i collection of geneset(s)

Jj name of geneset(s) (must be same length as i.

logFC 49

Value

logical indicating if geneset is active. throws an error if any requested geneset does not exist in x.

Examples

dge.stats <- exampleDgeResult()

y <- exampleExpressionSet(do.voom = FALSE)

gdb <- conform(exampleGeneSetDb(), y, min.gs.size = 10)

size 9 geneset:

geneSet(gdb, "c2", "BYSTRYKH_HEMATOPOIESIS_STEM_CELL_IL3RA")
is.active(gdb, "c2", "BYSTRYKH_HEMATOPOIESIS_STEM_CELL_IL3RA")
geneset with >100 genes

is.active(gdb, "c7", "GSE3982_MAC_VS_NEUTROPHIL_LPS_STIM_DN")

logFC Extract the individual fold changes statistics for elements in the ex-
pression object.

Description

Extract the individual fold changes statistics for elements in the expression object.

Usage

logFC(x, as.dt = FALSE)

Arguments
X A SparrowResult()
as.dt If FALSE (default), the data.frame like thing that this funciton returns will be set
to a data.frame. Set this to TRUE to keep this object as a data. table
Value

The log fold change ‘data.table®

Examples

vm <- exampleExpressionSet(do.voom=TRUE)

gdb <- exampleGeneSetDb()

mg <- seas(vm, gdb, design = vm$design, contrast = 'tumor')
1fc <- logFC(mg)

50

mgheatmap

mgheatmap

Creates a "geneset smart" ComplexHeatmap::Heatmap

Description

Before we get started, note that you probably want to use mgheatmap2().

This function encapsulates many common "moves" you’ll make when trying to make a heatmap,
especially if you are trying to show geneset activity across a panel of samples.

NOTE: this function will almost certainly reorder the rows of the input matrix. If you are conca-
tentating Heatmap objects together horizontally (ie. you if you want to use a rowAnnotation along
side the returned heatmap), you must reorder the rows of the annotation data.frame, ie. ranno.df
<- ranno.df[rownames(out@matrix),]

Usage

mgheatmap(
X)

gdb = NULL,
col = NULL,

n n n n

aggregate.by = c("none”, "ewm", "ewz"”, "zscore"),

split = TRUE,

scores = NULL,
gs.order = NULL,

name = NULL,

rm.collection.prefix = TRUE,

rm.dups =

FALSE,

recenter = FALSE,

rescale =

FALSE,

center = TRUE,

scale = TRUE,

rename.rows = NULL,

zero_center_colramp = NULL,
z1im = NULL,

transpose = FALSE,

Arguments

X

gdb

col

aggregate.by

split

the data matrix

GeneSetDb object that holds the genesets to plot. Defaults to NULL, which will
plot all rows in x.

a colorRamp(2) function

the method used to generate single-sample geneset scores. Default is none
which plots heatmap at the gene level

introduce row-segmentation based on genesets or collections? Defaults is TRUE
which will create split heatmaps based on collection if aggregate.by != "none’,
or based on gene sets if aggregate.by == "none”.

mgheatmap 51

scores If aggregate.by != "none"” you can pass in a precomupted scoreSingleSamples()
result, otherwise one will be computed internally. Note that if this is a data. frame
of pre-computed scores, the gdb is largely irrelevant (but still required).

gs.order This is experimental, and is here to help order the order of the genesets (or gene-
sets collection) in a different way than the default. By default, gs.order = NULL
and genesets are enumerated in alphabetical in the heatmap. You can pass in
a character vector that will dictate the order of the genesets displayed in the
heatmap. Currently this only matches against the "name” value of the geneset
and probably only works when split = TRUE. We will support colleciton,name
tuples soon. This can be a superset of the names found in gdb. As of Complex-
Heatmap v2 (maybe earlier versions), this doesn’t really work when cluster_rows
= TRUE.

name passed down to ComplexHeatmap: :Heatmap ()
rm.collection.prefix

When TRUE (default), removes the collection name from the genesets annotated
on the heatmap.

rm.dups if aggregate.by == 'none’, do we remove genes that appear in more than one
geneset? Defaults to FALSE

recenter do you want to mean center the rows of the heatmap matrix prior to calling
ComplexHeatmap: :Heatmap()?

rescale do you want to standardize the row variance to one on the values of the heatmap
matrix prior to calling ComplexHeatmap: :Heatmap()?

center, scale boolean parameters passed down into the the single sample gene set scoring
methods defined by aggregate.by

rename.rows defaults to NULL, which induces no action. Specifying a paramter here assumes
you want to rename the rows of the heatmap. Please refer to the "Renaming
Rows" section for details.

zero_center_colramp
Used to specify the type of color ramp to generate when col is NULL. By default
(NULL) we try to guess if we should generate a O-centered (blue, white, red)
color ramp, or an absolute (viridis style) one. The guessing functionality isn’t
that great, so it doesn’t hurt to explicitly set this to TRUE or FALSE.

zlim Used to control the color saturation of the heatmap when the col parameter is
not provided. If NULL, (default), extreme values (outside the c(@.025, 0.975)
quantiles) are axed and the colorRamp is based on the remaining value range. If
FALSE, the range of the colorRamp is defined by the min/max values. Otherwise
a length(2) numeric can be supplied. If the values are between [0,1], then
we assume this is a quantile range to be calculated. Otherwise the number are
assumed to mark the top and bottom of the color scale range you want to use.

transpose Flip display so that rows are columns. Default is FALSE.

parameters to send down to scoreSingleSamples(), ComplexHeatmap: :Heatmap(),
renameRows () internal as_matrix().

Details

More info here.

Value

A Heatmap object.

52 mgheatmap

Renaming Heatmap Rows

This function leverages renameRows () so that you can better customize the output of your heatmaps
by tweaking its rownames.

If you are plotting a gene-level heatmap (ie. aggregate.by == "none”" ") and the row-
names()are gene identifiers, but you want the rownames of the heatmap to be gene symbols. You can perf
parameter.

e If rename.rows is NULL, then nothing is done.

e If rename.rows is a string, then we assume that x has an associated metadata data. frame
over its rows and that rename . rows names one of its columns, ie. DGEList$genes[[rename.rows]]
or fData(ExpressionSet)[[rename. rows]]. The values in that column will be swapped out
for x’s rownames

e If rename. rows is a two-column data.frame, the first column is assumed to be rownames (x)
and the second is what you want to rename it to.

* When there are duplicates in the renamed rownames, the rename.duplicates ... param-
eter dictates the behavior. This will happen, for instance, if you are trying to rename the
rows of an affy matrix to gene symbols, where we have multiple probe ids for one gene.
When rename.duplicates is set to "original”, one of the rows will get the new name,
and the remaning duplicate rows will keep the rownames they came in with. When set to
"make.unique”, the new names will contain *.1, x. 2, etc. suffixes, as you would get from
using base: :make.unique().

Maybe you are aggregating the expression scores into geneset scores, and you don’t want the
rownames of the heatmap to be collection; ;name (or just name when rm.collection.prefx =
TRUE), you can pass in a two column data. frame, where the first column is collection;name and
the second is the name you want to rename that to. There is an example of this in the "Examples”
section here.

See Also

mgheatmap2()

Examples

library(ComplexHeatmap)
vm <- exampleExpressionSet()
gdb <- exampleGeneSetDb()
col.anno <- ComplexHeatmap: :HeatmapAnnotation(
df = vm$targets[, c("Cancer_Status”, "PAM5@subtype”)],
col = list(
Cancer_Status = c(normal = "grey”, tumor = "red"),
PAM5@subtype = c(Basal = "purple”, Her2 = "green"”, LumA = "orange")))
mgh <- mgheatmap(vm, gdb, aggregate.by = "ewm"”, split=TRUE,
top_annotation = col.anno, show_column_names = FALSE,
column_title = "Gene Set Activity in BRCA subset")

Maybe you want the rownames of the matrix to use spaces instead of "_"
rr <- geneSets(gdb)[, "name"”, drop = FALSE]
rr$newname <- gsub("_", " ", rr$name)
mg2 <- mgheatmap(vm, gdb, aggregate.by='ewm', split=TRUE,
top_annotation = col.anno, show_column_names = FALSE,
column_title = "Gene Set Activity in BRCA subset”,

rename.rows = rr)

mgheatmap?2 53

mgheatmap?2 Creates a "geneset smart" ComplexHeatmap::Heatmap

Description

Encapsulates many common "moves" you’ll make when trying to make a heatmap, especially if
you are trying to show geneset activity across a panel of samples.

NOTE: this function will almost certainly reorder the rows of the input matrix. If you are conca-
tentating Heatmap objects together horizontally (ie. you if you want to use a rowAnnotation along
side the returned heatmap), you must reorder the rows of the annotation data.frame, ie. ranno.df
<-ranno.df[rownames(out@matrix),]

Usage

mgheatmap2(
X,
gdb = NULL,
col = NULL,
aggregate.by = c("none", "ewm", "ewz", "zscore"),
split = TRUE,
scores = NULL,
gs.order = NULL,
name = NULL,
rm.collection.prefix = TRUE,
rm.dups = FALSE,
recenter = FALSE,
rescale = FALSE,
center = FALSE,
scale = FALSE,
uncenter = FALSE,
unscale = FALSE,
rename.rows = NULL,
zlim = NULL,
transpose = FALSE,

)
Arguments
X the data matrix
gdb GeneSetDb object that holds the genesets to plot. Defaults to NULL, which will
plot all rows in x.
col a colorRamp(2) function

aggregate.by the method used to generate single-sample geneset scores. Default is none
which plots heatmap at the gene level

split introduce row-segmentation based on genesets or collections? Defaults is TRUE
which will create split heatmaps based on collection if aggregate.by != "none’,
or based on gene sets if aggregate.by == "none”.

54 mgheatmap?2

scores If aggregate.by != "none"” you can pass in a precomupted scoreSingleSamples()
result, otherwise one will be computed internally. Note that if this is a data. frame
of pre-computed scores, the gdb is largely irrelevant (but still required).

gs.order This is experimental, and is here to help order the order of the genesets (or gene-
sets collection) in a different way than the default. By default, gs.order = NULL
and genesets are enumerated in alphabetical in the heatmap. You can pass in
a character vector that will dictate the order of the genesets displayed in the
heatmap. Currently this only matches against the "name"” value of the geneset
and probably only works when split = TRUE. We will support colleciton, name
tuples soon. This can be a superset of the names found in gdb. As of Complex-
Heatmap v2 (maybe earlier versions), this doesn’t really work when cluster_rows
= TRUE.

name passed down to ComplexHeatmap: :Heatmap()

rm.collection.prefix
When TRUE (default), removes the collection name from the genesets annotated
on the heatmap.

rm.dups if aggregate.by == 'none’, do we remove genes that appear in more than one
geneset? Defaults to FALSE

recenter do you want to mean center the rows of the heatmap matrix prior to calling
ComplexHeatmap: :Heatmap()? This is passed down to scale_rows(). Look
there for more mojo.

rescale do you want to standardize the row variance to one on the values of the heatmap
matrix prior to calling ComplexHeatmap: :Heatmap()? This is passed down to
scale_rows(). Look there for more mojo.

center, scale, uncenter, unscale

boolean parameters passed down into the the single sample gene set scoring
methods defined by aggregate.by

rename.rows defaults to NULL, which induces no action. Specifying a paramter here assumes
you want to rename the rows of the heatmap. Please refer to the "Renaming
Rows" section for details.

z1lim A length(zlim) == 2 numeric vector that defines the min and max values from
x for the circlize::colorRamp2 call. If the heatmap that is being drawn is
"0-centered"-ish, then this defines the real values of the fenceposts. If not, then
these define the quantiles to trim off the top or bottom.

transpose Flip display so that rows are columns. Default is FALSE.

parameters to send down to scoreSingleSamples(), ComplexHeatmap: :Heatmap(),
renameRows () internal as_matrix().
Details

More info here.

Value

A Heatmap object.

Renaming Heatmap Rows

This function leverages renameRows () so that you can better customize the output of your heatmaps
by tweaking its rownames.

mgheatmap?2 55

If you are plotting a gene-level heatmap (ie. aggregate.by == "none”" ") and the row-
names()are gene identifiers, but you want the rownames of the heatmap to be gene symbols. You can perf
parameter.

* If rename. rows is NULL, then nothing is done.

e If rename.rows is a string, then we assume that x has an associated metadata data. frame
over its rows and that rename . rows names one of its columns, ie. DGEList$genes[[rename.rows]]
or fData(ExpressionSet)[[rename.rows]]. The values in that column will be swapped out
for x’s rownames

e If rename.rows is a two-column data.frame, the first column is assumed to be rownames(x)
and the second is what you want to rename it to.

e When there are duplicates in the renamed rownames, the rename.duplicates ... param-
eter dictates the behavior. This will happen, for instance, if you are trying to rename the
rows of an affy matrix to gene symbols, where we have multiple probe ids for one gene.
When rename.duplicates is set to "original”, one of the rows will get the new name,
and the remaning duplicate rows will keep the rownames they came in with. When set to
"make.unique”, the new names will contain *.1, x. 2, etc. suffixes, as you would get from
using base: :make.unique().

Maybe you are aggregating the expression scores into geneset scores, and you don’t want the
rownames of the heatmap to be collection; ;name (or just name when rm.collection.prefx =
TRUE), you can pass in a two column data. frame, where the first column is collection;name and
the second is the name you want to rename that to. There is an example of this in the "Examples"
section here.

Examples

vm <- exampleExpressionSet()
gdb <- exampleGeneSetDb()
col.anno <- ComplexHeatmap: :HeatmapAnnotation(
df = vm$targets[, c("Cancer_Status”, "PAM5@subtype”)],
col = list(
Cancer_Status = c(normal = "grey”, tumor = "red"),
PAM5@subtype = c(Basal = "purple”, Her2 = "green”, LumA = "orange")))
mgh <- mgheatmap2(vm, gdb, aggregate.by = "ewm", split = TRUE,
top_annotation = col.anno, show_column_names = FALSE,
column_title = "Gene Set Activity in BRCA subset”)
ComplexHeatmap: :draw(mgh)

Center to "normal” group

mgc <- mgheatmap2(vm, gdb, aggregate.by = "ewm"”, split = TRUE,
top_annotation = col.anno, show_column_names = FALSE,
recenter = vm$targets$Cancer_Status == "normal”,
column_title = "Gene Set Activity in BRCA subset”)

ComplexHeatmap: :draw(mgc)

Maybe you want the rownames of the matrix to use spaces instead of "_"

rr <- geneSets(gdb)[, "name”, drop = FALSE]

rr$newname <- gsub(”_", " ", rr$name)

mg2 <- mgheatmap2(vm, gdb, aggregate.by='ewm', split=TRUE,
top_annotation = col.anno, show_column_names = FALSE,
column_title = "Gene Set Activity in BRCA subset”,
rename.rows = rr)

56 ora

msg Utility function to cat a message to stderr (by default)

Description

Utility function to cat a message to stderr (by default)

Usage
msg(..., file = stderr())

Arguments
pieces of the message
file where to send the message. Defaults to stderr()
Value

Nothing, dumps text to file

Examples
msg("this is a message”, "to stderr”)
ora Performs an overrepresentation analysis, (optionally) accounting for
bias.
Description

This function wraps limma: :kegga() to perform biased overrepresntation analysis over gene set
collection stored in a GeneSetDb (gsd) object. Its easiest to use this function when the biases and
selection criteria are stored as columns of the input data.frame dat.

Usage

ora(
X)
gsd,
selected = "significant”,
groups = NULL,
feature.bias = NULL,
universe = NULL,
restrict.universe = FALSE,
plot.bias = FALSE,

as.dt = FALSE

plot_ora_bias(x, selected, feature.bias, ...)

ora 57

Arguments

X A data.frame with feature-level statistics. Minimally, this should have a "feature_id"
(character) column, but read on ...

gsd The GeneSetDb

selected Either the name of a logical column in dat used to subset out the features to run
the enrichement over, or a character vector of "feature_id"s that are selected
from dat[["feature_id"]].

groups Encodes groups of features that we can use to test selected features individual,

as well as "all" together. This can be specified by: (1) specifying a name of a
column in dat to split the enriched features into subgroups. (2) A named list
of features to intersect with selected. By default this is NULL, so we only run
enrichment over all elements in selected. See examples for details.
feature.bias If NULL (default), no bias is used in enrichment analysis. Otherwise, can be
the name of a column in dat to extract a numeric bias vector (gene length, GC
content, average expression, etc.) or a named (using featurelds) numeric vector
of the same. The BiasedUrn CRAN package is required when this is not NULL.
universe Defaults to all elements in dat[["feature_id"]].
restrict.universe
See same parameter in 1imma: :kegga()
plot.bias See plot parameter in 1imma: : kegga(). You can generate this plot without run-
ning ora using the plot_ora_bias(), like so: plot_ora_bias(dat, selected
= selected, groups = groups, feature.bias = feature.bias)
parameters passed to conform()

as.dt If FALSE (default), the data.frame like thing that this funciton returns will be set
to a data.frame. Set this to TRUE to keep this object as a data. table

Details

In principle, this test does what goseq does, however I found that sometimes calling goseq would
throw errors within goseq: : nullp() when calling makesplines. I stumbled onto this implementa-
tion when googling for these errors and landing here: https://support.bioconductor.org/p/65789/#65914

The meat and potatoes of this function’s code was extracted from limma: :kegga(), written by
Gordon Smyth and Yifang Hu.

Note that the BiasedUrn CRAN package needs to be installed to support biased enrichment testing

Value

A data.frame of pathway enrichment. The last N colums are enrichment statistics per pathway,
grouped by the groups parameter. P.all are the stats for all selected features, and the remaingin
P.* columns are for the features specifed by groups.

Functions
* plot_ora_bias(): plots the bias of coviarate to DE / selected status. Code taken from
limma: :kegga()
References

Young, M. D., Wakefield, M. J., Smyth, G. K., Oshlack, A. (2010). Gene ontology analysis for
RNA-seq: accounting for selection bias. Genome Biology 11, R14. http://genomebiology.com/2010/11/2/R14

58 p.matrix

Examples

dgestats <- exampleDgeResult()
gdb <- randomGeneSetDb(dgestats)

Run enrichmnent without accounting for any bias
nobias <- ora(dgestats, gdb, selected = "selected”, groups = "direction”,
feature.bias = NULL)

Run enrichment and account for gene length
lbias <- ora(dgestats, gdb, selected = "selected”,
feature.bias = "effective_length")

plot length bias with DGE status
plot_ora_bias(dgestats, "selected”, "effective_length")

induce length bias and see what is the what
biased <- dgestats[order(dgestats$pval),]

biased$effective_length <- sort(biased$effective_length, decreasing = TRUE)
plot_ora_bias(biased, "selected”, "effective_length")

etest <- ora(biased, gdb, selected = "selected”,
groups = "direction”,
feature.bias = "effective_length")
p.matrix Assembles a matrix of nominal or adjusted pvalues from a spar-

row::seas result

Description

You might want a matrix of pvalues (or FDRs) for the gene sets across all GSEA methods you tried.
I think I did, once, so here it is.

Usage

p.matrix(
X,
names = resultNames(x),
pcol = c("padj"”, "padj.by.collection”, "pval”)

)
Arguments
X A SparrowResult() object.
names the entries from resultNames(x) that you want to include in the matrix. By
default we take all of them.
pcol The name of the column in 1logFC(x) where the type of pvalues are that we are
collection. Pick on of "padj”, "padj.by.collection”, or "pval”
Value

A matrix of the desired pvalues for all genesets

randomGeneSetDb 59

Examples

mg <- exampleSparrowResult()
pm <- p.matrix(mg)

randomGeneSetDb Generates a fake GeneSetDb by sampling from features in a seas input.

Description

I wrote this because initial fetching from msigdbr can be slow, and also having some weird crashes
in the unit tests of bioc3.14-devel.

Usage

randomGeneSetDb(x, n = 10, bias = NULL, include_spaces = TRUE, ...)
Arguments

X an input container to seas()

n number of genesets

bias column in x to bias the geneset creation by

include_spaces If TRUE (default), geneset names will have a space in them. This is used to test
corner cases around the assumption of geneset naming conventions.

pass through args

Details

This is a helper function for development, and shouldn’t be used by normal users of this package.

Value

A randomly generated GeneSetDb you can use against x for testing.

Examples

gdb.rando <- randomGeneSetDb(exampleDgeResult(), 10, bias = "t")

60 renameRows

renameCollections Rename the collections in a GeneSetDb

Description

This function remaps names of collections in the database from their current names to ones specified
by the user, folows the dplyr: :rename convenction where names() of the rename vector are the
new names you want, and its values are the old names it came from.

Usage
renameCollections(x, rename = NULL, ...)
Arguments
X A GeneSetDb object
rename a named character vector. names(rename) are the names of the collection you
want to rename, and their values are the new names.
pass it along
Value

GeneSetDb x with renamed geneSets(x)$collection values.

Examples

gdb <- exampleGeneSetDb()
ngdb <- renameCollections(gdb, c("MSigDB C2" = "c2", "ImmuneSigDb" = "c7"))
all.equal(

unname (geneSetURL (gdb, "c7", "GSE3982_BCELL_VS_TH2_DN")),

unname (geneSetURL(ngdb, "ImmuneSigDb"”, "GSE3982_BCELL_VS_TH2_DN")))

renameRows Smartly/easily rename the rows of an object.

Description

The most common usecase for this is when you have a SummarizedExperiment, DGEList, matrix,
etc. that is "rownamed" by some gene idnetifiers (ensembl, entrez, etc) that you want to "easily"
convert to be rownamed by symbols. And perhaps the most common use-case for this, again, would
be able to easily change rownames of a heatmap to symbols.

Usage

renameRows (x, xref, duplicate.policy = "original”, ...)

resultNames 61

Arguments
X an object to whose rows need renaming
xref an object to help with the renaming.

* A character vector where length(xref) == nrow(x). Every row in x should
correspond to the renamed value in the same position in xref
» If x is a DGEList, SummarizedExperiment, etc. this can be a string. In
this case, the string must name a column in the data container’s fData-like
data.frame. The values in that column will be the new candidate rownames
for the object.
¢ A two column data.frame. The first column has entries in rownames(x), and
the second column is the value to rename it to.
duplicate.policy
The policy used to deal with duplicates in the renamed values. If Multiple ele-
ments in the source can be renamed to the same elements in the target (think of
microarray probes to gene symbols), what to do? By deafult ("original”), one
of the original elements will be renamed to the new name, and the rest will keep
their original (unique) names. When set to "make.unique”, the new name will
be kept, but x. 1, *. 2, etc. will be appended to all but the first multimapper.

pass through variable down to default method

Details
The rownames that can’t successfully remapped will keep their old names. This function should
also guarantee that the rows of the incoming matrix are the same as the outgoing one.

Value

An updated version of x with freshly minted rownames.

Examples

eset <- exampleExpressionSet(do.voom = FALSE)
ess <- renameRows(eset, "symbol")

vm <- exampleExpressionSet(do.voom = TRUE)
vms <- renameRows(vm, "symbol")

resultNames Interrogate the results of a sparrow::seas analysis stored in a Spar-
rowResult

Description

The resultNames, result, and results functions enable you to explore the results of the analysis
run with seas().

The results that are stored within a SparrowResult object have a more or less 1:1 mapping with
the values passed as methods, parameter of the seas() call.

Generates a table to indicate the number of genesets per collection that pass a given FDR. The table
provides separate groups of rows for each of the methods run in the seas() call that generated that
generated x.

62

Usage
resultNames(x)
result(x, ...)

S3 method for class 'SparrowResult'
result(

)

X,

name = NULL,

stats.only = FALSE,

rank.by = c("pval”, "t", "logFC"),
add.suffix = FALSE,

as.dt = FALSE,

results(

X!

names = resultNames(x),

stats.only = TRUE,

rank.by = c("pval”, "logFC", "t"),
add.suffix = length(names) > 1L,
as.dt = FALSE

resultNames

logical, set to FALSE if you want to return all (column-wise) data for each result.

the statistic to use to append a rank column for the geneset result. By default

we rank by pvalue calculated by the GSEA method. You can rank the results
based on the trimmed mean of the logFC’s calculated for all of the features in
the geneset ("1ogFC"), or the trimmed t-statistics of the these features ("t").

If TRUE, adds .name as a suffix to the columns of the method-specific statis-

tics returned, ie. the pval column from the "camera” result will be turned to

If FALSE (default), the data.frame like thing that this funciton returns will be set

)
tabulateResults(
X,
names = resultNames(x),
max.p = 0.2,
p.col = c("padj"”, "padj.by.collection”, "pval”),
as.dt = FALSE
)
Arguments
X A SparrowResult() object.
pass through arguments
name the names of the results desired
stats.only
By default only the pvalues, adjusted pvalues, and rank are returned.
rank.by
add. suffix
pval.camera.
as.dt
to a data.frame. Set this to TRUE to keep this object as a data. table
names

display results for all methods.

the names of the GSEA methods to be reported. By default, this function will

scale_rows 63

max.p The maximum padj value to consider a result significant
p.col use padj or padj.by.collection?
Details

The product of an indivdual GSEA is consumed by the corresponding do.<METHOD> function and
converted into a data.table of results that is internally stored.

Use the resultNames() function to identify which results are available for interrogation. The
result () function returns the statistics of one individual result, and the results() function com-
bines the results from the specified methods into an arbitrarily wide data.table with method-suffixed
column names.

Use the tabulateResults() function to create a summary table that tallies the number of signifi-
cant genesets per collection, per method at the specified FDR thresholds.

Value

a data.table with the results from the requested method.

a data.table that summarizes the significant results per method per collection for the GSEA that was
run

Examples

res <- exampleSparrowResult()

resultNames(res)
head(result(res, "camera"))
head(results(res))
scale_rows Centers and scales the rows of a numeric matrix.
Description
This was for two reasons: (1) to avoid the (more commonly used) t(scale(t(x), ...) idiom;

and (2) to specify what values, columns of x, etc. to use to calculate means and sd’s to use in the
scaling function.

Usage
scale_rows(x, center = TRUE, scale = TRUE, ...)
Arguments
X the matrix-like object
center Either a logical, character, or numeric-like value that specifies what to center
scale Either a logical, characeter, or numeric-like value that specifies what to scale

pass through arguments

64 scoreSingleSamples

Details

For instance, you might want to subtract the mean of a subset of columns from each row in the
matrix (like the columns that come from control samples)

Note that this method returns different attrs() for scaling and center than base:scale does. Our values
are always named.

Value

a scaled version of x

Transformation based on specific columns

center and scale can be a logical, character, or numeric-like vector. The flexibility enables the
following scenarios:

1. The user can set it to TRUE to center all values on the mean of their row. (FALSE does no
centering)

2. A (named) vector of values that is a superset of rownames(x). These will be the values that
are subtracted from each row.

3. A logical vector as long as ncol(x). Each value will be centered to the mean of the values of
the columns specified as TRUE.

4. An integer vector, the is the analog of 3 but specifies the columns to use for centering.

Examples

see tests/testthat/test-scale_rows.R for more examples

m <- matrix(rnorm(50, mean = 1, sd = 2), nrow = 5,
dimnames = 1list(LETTERS[1:5], letters[1:10]))

s@ <- scale_rows(m, center = TRUE, scale = FALSE)

all.equal(s@, t(scale(t(m), center = TRUE, scale = FALSE)))

mean center rows to a specific group of control samples (columns)
ctrl <- sample(colnames(m), 3)

s.ctrl <- scale_rows(m, center = ctrl, scale = FALSE)

ctrl.means <- Matrix::rowMeans(m[, ctrl])

all.equal(s.ctrl, t(scale(t(m), center = ctrl.means, scale = FALSE)))

scoreSingleSamples Generates single sample gene set scores across a datasets by many
methods

Description

It is common to assess the activity of a gene set in a given sample. There are many ways to do that,
and this method is analogous to the seas() function in that it enables the user to run a multitude
of single-sample-gene-set-scoring algorithms over a target expression matrix using a GeneSetDb ()
object.

scoreSingleSamples 65

Usage
scoreSingleSamples(
gdb,
Y,
methods = "ewm",

as.matrix = FALSE,
drop.sd = 1e-04,
drop.unconformed = FALSE,
verbose = FALSE,

recenter = FALSE,

rescale = FALSE,

L

as.dt = FALSE

)
Arguments

gdb A GeneSetDb

y An expression matrix to score genesets against

methods A character vector that enumerates the scoring methods you want to run over
the samples. Please reference the "Single Sample Scoring Methods" section for
more information.

as.matrix Return results as a list of matrices instead of a melted data.frame? Defaults to
FALSE.

drop.sd Genes with a standard deviation across columns in y that is less than this value
will be dropped.

drop.unconformed
When TRUE, genes in y that are not found in gdb are removed from the expres-
sion container. You may want to set this to TRUE when y is very large until
better sparse matrix support is injected. This will change the scores for gsva and
ssGSEA, though. Default is FALSE.

verbose make some noise? Defaults to FALSE.

recenter, rescale
If TRUE, the scores computed by each method are centered and scaled using the
scale function. These variables correspond to the center and scale parame-
ters in the scale function. Defaults to FALSE.

these parameters are passed down into the the individual single sample scoring
funcitons to customize them further.

as.dt If FALSE (default), the data.frame like thing that this funciton returns will be set
to a data.frame. Set this to TRUE to keep this object as a data. table

Details
Please refer to the "Generating Single Sample Gene Set Scores" of the sparrow vignette for further
exposition.

Value

A long data.frame with sample_id,method,score values per row. If as.matrix=TRUE, a matrix with
as many rows as geneSets(gdb) and as many columns as ncol (x)

66 seas

Single Sample Scoring Methods

The following methods are currenly provided.

e "ewm": The eigenWeightedMean() calculates the fraction each gene contributes to a pre-
specified principal component. These contributions act as weights over each gene, which are
then used in a simple weighted mean calculation over all the genes in the geneset per sample.
This is similar, in spirit, to the svd/gsdecon method (ie. method = "gsd"”~ ") You can use this method to perfor
scaleanduncentertoFALSE. "ewz": with unscaleanduncenterset toFALSE®.

» "gsd": This method was first introduced by Jason Hackney in doi:10.1038/ng.3520. Please
refer to the gsdScore() function for more information.

* "ssgsea": Using ssGSEA as implemented in the GSVA package.

e "zscore": The features in the expression matrix are rowwise z transformed. The gene set
level score is then calculated by adding up the zscores for the genes in the gene set, then
dividing that number by either the the size (or its sqaure root (default)) of the gene set.

* "mean”: Simply take the mean of the values from the expression matrix that are in the gene
set. Right or wrong, sometimes you just want the mean without transforming the data.

* "gsva": The gsva method of GSVA package.
* "plage”: Using "plage" as implemented in the GSVA package

Examples

gdb <- exampleGeneSetDb()
vm <- exampleExpressionSet()
scores <- scoreSingleSamples(
gdb, vm, methods = c("ewm”, "gsva", "zscore"),
center = TRUE, scale = TRUE, ssgsea.norm = TRUE, as.dt = TRUE)

sw <- data.table::dcast(scores, name + sample_id ~ method, value.var='score')

corplot(
swl[, c("ewm”, "gsva", "zscore")],
title = "Single Sample Score Comparison”)

zs <- scoreSingleSamples(

gdb, vm, methods = c('ewm', 'ewz', 'zscore'), summary = "mean”,
center = TRUE, scale = TRUE, uncenter = FALSE, unscale = FALSE,
as.dt = TRUE)

zw <- data.table::dcast(zs, name + sample_id ~ method, value.var='score')

n n

corplot(zwl[, c("ewm”, "ewz", "zscore")], title = "EW zscores")

seas Performs a plethora of set enrichment analyses over varied inputs.

https://doi.org/10.1038/ng.3520

seas 67

Description

This is a wrapper function that delegates GSEA analyses to different "workers", each of which
implements the flavor of GSEA of your choosing. The particular analyses that are performed are
specified by the methods argument, and these methods are fine tuned by passing their arguments
down through the . . . of this wrapper function.

Usage

seas(
X,
gsd,
methods = NULL,
design = NULL,
contrast = NULL,
use.treat = FALSE,
feature.min.logFC = if (use.treat) log2(1.25) else 1,
feature.max.padj = 0.1,
trim = 0.1,
verbose = FALSE,
score.by = c("t", "logFC", "pval”),
rank_by = NULL,
rank_order = c("ordered”, "descending"”, "ascending"),
xmeta. = NULL,
BPPARAM = BiocParallel::SerialParam()

)
Arguments

X An object to run enrichment analyses over. This can be an ExpressoinSet-like
object that you can differential expression over (for roast, fry, camera), a named
(by feature_id) vector of scores to run ranked-based GSEA, a data.frame with
feature_id’s, ranks, scores, etc.

gsd The GeneSetDb() that defines the gene sets of interest.

methods A character vector indicating the GSEA methods you want to run. Refer to
the GSEA Methods section for more details. If no methods are specified, only
differential gene expression and geneset level statistics for the contrast are com-
puted.

design A design matrix for the study

contrast The contrast of interest to analyze. This can be a column name of design,
or a contrast vector which performs "coefficient arithmetic" over the columns
of design. The design and contrast parameters are interpreted in exactly the
same way as the same parameters in limma’s 1imma: : camera() and limma: : roast()
methods.

use.treat should we use limma/edgeR’s "treat" functionality for the gene-level differential

expression analysis?

feature.min.logFC
The minimum logFC required for an individual feature (not geneset) to be con-
sidered differentialy expressed. Used in conjunction with feature.max.padj
primarily for summarization of genesets (by geneSetsStats(), but can also be

68

seas

used by GSEA methods that require differential expression calls at the individ-
ual feature level, like goseq().

feature.max.padj
The maximum adjusted pvalue used to consider an individual feature (not gene-
set) to be differentially expressed. Used in conjunction with feature.min.logFC.

trim The amount to trim when calculated trimmed t and logFC statistics for each
geneset. This is passed down to the geneSetsStats() function.

verbose make some noise during execution?

The arguments are passed down into calculateIndividualLogFC() and the
various geneset analysis functions.

score.by This tells us how to rank the features after differential expression analysis when
X is an expression container. It specifies the name of the column to use down-
stream of a differential expression analysis over x. If x is a data.frame that needs
to be ranked, see rank_by.

rank_by Only works when x is a data.frame-like input. The name of a column that should
be used to rank the features in x for pre-ranked gsea tests like cameraPR or fgsea.
rank_by overrides score.by

rank_order Only used when x is a data.frame-like input. Specifies how the features in x
should be used to rank the features in x using the rank_by column. Accepted
values are: "ordered” (default) means that the rows in x are pre-ranked already.
"descendeing”, and "ascending”.

xmeta. A hack to support data.frame inputs for x. End users should not use this.

BPPARAM a BiocParallel parameter definition, like one generated from BiocParallel: :MulticoreParam(),

or BiocParallel: :BatchtoolsParam(), for instance, which is passed down to
BiocParallel::bplapply()]. Default is set to BiocParallel: :SerialParam()

Details

Set enrichment analyses can either be performed over an expression object, which requires the
specification of the experiment design and contrast of interest, or over a set of features to rank
(stored as a data.frame or vector).

Note that we are currently in the middle of a refactor to accept and fully take advantage of data. frame
as inputs for x, which will be used for preranked type of GSEA methods. See the following issue
for more details: https://github.com/lianos/multiGSEA/issues/24

The bulk of the GSEA methods currently available in this package come from edgeR/limma, how-
ever others are included (and are being added), as well. GSEA Methods and GSEA Method Param-
eterization sections for more details.

In addition to performing GSEA, this function also internally orchestrates a differential expression
analysis, which can be tweaked by identifying the parameters in the calculateIndividuallLogFC()
function, and passing them down through ... here. The results of the differential expression
analysis (ie. the limma::topTable()) are accessible by calling the logFC() function on the
SparrowResult () object returned from this function call.

Please Note: be sure to cite the original GSEA method when using results generated from this
function.

Value

A SparrowResult () which holds the results of all the analyses specified in the methods parameter.

seas 69

GSEA Methods

You can choose the methods you would like to run by providing a character vector of GSEA method
names to the methods parameter. Valid methods you can select from include:

e "camera”: from limma: :camera() (¥)

e "cameraPR": from limma: : cameraPR()

n

* "ora": overrepresentation analysis optionally accounting for bias (ora()). This method is
a wrapper function that makes the functionality in limma: :kegga() available to an arbitrary
GeneSetDb.

e "roast”: from limma: :roast() (*)

e "fry": from limma: : fry() (¥)

e "romer": from limma: : romer () (*)

e "geneSetTest"”: from limma: : geneSetTest()
e "goseq": from goseq: : goseq()

e "fgsea": from fgsea: :fgsea()

Methods annotated with a (*) indicate that these methods require a complete expression object, a
valid design matrix, and a contrast specification in order to run. These are all of the same things
you need to provide when performing a vanilla differential gene expression analysis.

Methods missing a (*) can be run on a feature-named input vector of gene level statistics which
will be used for ranking (ie. a named vector of logFC’s or t-statistics for genes). They can also
be run by providing an expression, design, and contrast vector, and the appropriate statistics vector
will be generated internally from the t-statistics, p-values, or log-fold-changes, depending on the
value provided in the score.by parameter.

The worker functions that execute these GSEA methods are functions named do . METHOD within this
package. These functions are not meant to be executed directly by the user, and are therefore not
exported. Look at the respective method’s help page (ie. if you are running "camera”, look at the
limma: : camera() help page for full details. The formal parameters that these methods take can be
passed to them via the . . . in this seas() function.

GSEA Method Parameterization

Each GSEA method can be tweaked via a custom set of parameters. We leave the documentation of
these parameters and how they affect their respective GSEA methods to the documentation available
in the packages where they are defined. The seas() call simply has to pass these parameters down
into the . . . parameters here. The seas function will then pass these along to their worker functions.

What happens when two different GSEA methods have parameters with the same name?

Unfortunately you currently cannot provide different values for these parameters. An upcoming
version version of sparrow will support this feature via slightly different calling semantics. This
will also allow the caller to call the same GSEA method with different parameterizations so that
even these can be compared against each other.

Differential Gene Expression

When the seas() call is given an expression matrix, design, and contrast, it will also internally
orchestrate a gene level differential expression analysis. Depending on the type of expression object
passed in via x, this function will guess on the best method to use for this analysis.

If x is a DGEList, then ensure that you have already called edgeR: :estimateDisp() on x and
edgeR’s quasilikelihood framework will be used, otherwise we’ll use limma (note that x can be

70 sparrow_methods

an EList run through voom(), voomWithQuailityWeights(), or when where you have leveraged
limma’s limma: :duplicateCorrelation() functionality, even.

The parameters of this differential expression analysis can also be customized. Please refer to the
calculatelIndividuallLogFC() function for more information. The use. treat, feature.min. logFC,
feature.max.padj, as well as the . . . parameters from this function are passed down to that funci-

ton.

Examples

vim <- exampleExpressionSet()

gdb <- exampleGeneSetDb()

mg <- seas(vm, gdb, c('camera', 'fry'),
design = vm$design, contrast = 'tumor',
customzie camera parameter:
inter.gene.cor = 0.04)

resultNames(mg)

res.camera <- result(mg, 'camera')

res.fry <- result(mg, 'fry')

res.all <- results(mg)

SparrowResult-class A SparrowResult object holds the results from a sparrow::seas() call.

Description

A call to seas() will produce analyses for an arbitrary number of GSEA methods, the results of
which will be stored and accessible here using the result(), results(), and resultNames().

In addition, the GeneSetDb() used for the analysis is accessible via geneSetDb(), and the results
from the differential expression analysis is available via 1ogFC().

Visualizing results of a geneset based analysis also are functions that operate over a SparrowResult
object, for instance see the iplot () and the sparrow.shiny package.

Slots

gsd The GeneSetDb() this analysis was run over
results The list of individual results generated by each of the GSEA methods that were run.

logFC The differential expression statistics for each individual feature measured in the experiment.

sparrow_methods Lists the supported GSEA methods by sparrow

Description

Lists the supported GSEA methods by sparrow

Usage

sparrow_methods ()

species_info 71

Value

a character vector of GSEA names, or a list of metadata for each method.

Examples

sparrow_methods ()

species_info Match a species query to the regularized species info.

Description

Match a species query to the regularized species info.

Usage
species_info(query = NULL, ...)
Arguments
query the species name to lookup, if NULL (default), returns the internal species info
table, otherwise the row of the table that matches query.
pass through
Value

a data.frame of species-related information that is used to fetch appropriate annotation files and
conversion functions between species for gene identifiers, and such.

Examples

species_info()
species_info("human")

sSGSEA.normalize Normalize a vector of ssGSEA scores in the ssGSEA way.

Description

sSGSEA normalization (as implemented in GSVA (ssgsea.norm)) normalizes the individual scores
based on ALL scores calculated across samples AND genesets. It does NOTE normalize the scores
within each geneset independantly of the others.

Usage

ssGSEA.normalize(x, bounds = range(x))

Arguments

X a numeric vector of sSGSEA scores for a single signature

bounds the maximum and minimum scores obvserved used to normalize against.

72 subset.GeneSetDb
Details

This method is an internal utilit function and not exported on purpose

Value

normalized numeric vector of x

subset.GeneSetDb Subset GeneSetDb to only include specified genesets.

Description

This is a utility function that is called by [.GeneSetDb and is not exported because it is not meant
for external use.

Usage

S3 method for class 'GeneSetDb'
subset(x, keep)

Arguments

X a GeneSetDb ()

keep logical vector as long as nrow(geneSets(x, active.only=FALSE)
Details

DEBUG: If keep is all FALSE, this will explode. What does an empty GeneSetDb look like,
anyway? Something ...

We want to support a better, more fluent subsetting of GeneSetDb objects. See Issue #12 (https://github.com/lianos/multi(

Value

a GeneSetDb that has only the results for the specified genesets.

Examples

gdb.all <- exampleGeneSetDb()
gs <- geneSets(gdb.all)
gdb <- gdb.all[gs$collection %in% c("c2", "c7")]

subsetByFeatures 73

subsetByFeatures Subset a GeneSetDb to only include geneSets with specified features.

Description

Subset a GeneSetDb to only include geneSets with specified features.

Usage

subsetByFeatures(x, features, value = c("feature_id", "x.id", "x.idx"), ...)

S4 method for signature 'GeneSetDb'

subsetByFeatures(x, features, value = c("feature_id”, "x.id", "x.idx"), ...)
Arguments

X GeneSetDb

features Character vector of featurelds

value are you feature id’s entered as themselves (feature_id), which is the default,

or are you querying by their index into a target expression object? This is only
relevant if you are working with a conform-ed GeneSetDb, and further you as a
user won’t likely invoke this argument, but is used internally.

pass through arguments

Value

A subset of x which contains only the geneSets that contain features found in featurelds

Methods (by class)

* subsetByFeatures(GeneSetDb): subset GeneSetDb by feature id’s

Examples

gdb <- exampleGeneSetDb()
features <- c("55839", "8522", "29087")
(gdb.sub <- subsetByFeatures(gdb, features))

validateInputs Validate the input objects to a GSEA call.

Description

Checks to ensure that the values for x, design, and contrast are appropriate for the GSEA
methods being used. If they are kosher, then "normalized" versions of these objects are returned in
an (aptly) named list, otheerwise an error is thrown.

74 validatelnputs

Usage

validateInputs(
X,
design = NULL,
contrast = NULL,
methods = NULL,
xmeta. = NULL,
require.x.rownames = TRUE,

)
Arguments
X The expression object to use
design A design matrix, if the GSEA method(s) require it
contrast A contrast vector (if the GSEA method(s) require it)
methods A character vector of the GSEA methods that these inputs will be used for.
xmeta. hack for supportin data.frame inputs.

require.x.rownames
Leave this alone, should always be TRUE but have it in this package for dev/testing
purposes.

other variables that called methods can check if they want

Details

This function is strange in that we both want to verify the objects, and return them in some canonical
form, so it is normal for the caller to then use the values for x, design, and contrast that are
returned from this call, and not the original values for these objects themselves

I know that the validation/checking logic is a bit painful (and repetitive) here. I will (perhaps) clean
that up some day.

Value

A list with "normalized" versions of $x, $design, and $contrast for downstream use.

Examples

dge.stats <- exampleDgeResult()

ranks <- setNames(dge.stats$t, dge.stats$feature_id)

gdb <- exampleGeneSetDb()

ok <- validateInputs(ranks, gdb, methods = c("cameraPR", "fgsea"))

need full expressionset & design for romer

null <- failWith(NULL, validatelInputs(ranks, gdb, methods = "romer"))

volcanoPlot

75

volcanoPlot

Create an interactive volcano plot

Description

Convenience function to create volcano plots from results generated within this package. This is
mostly used by {sparrow.shiny}.

Usage
volcanoPlot(
X}
stats = "dge",
xaxis = "logFC",
yaxis = "pval”,
idx,

xtfrm = base:

:identity,

ytfrm = function(vals) -logl@(vals),

xlab = xaxis,

ylab = sprintf(”-logl@(%s)", yaxis),
highlight = NULL,

horiz_line =
xhex = NULL,
yhex = NULL,
width = NULL,

c(padj = 0.1),

height = NULL,

shiny_source

= "mgvolcano”,

ggtheme = ggplot2::theme_bw(),

Arguments

X
stats

Xaxis, yaxis

idx

xtfrm

ytfrm

xlab, ylab
highlight

A SparrowResult object, or a data.frame
One of "dge" or resultNames(x)

the column of the the provided (or extracted) data.frame to use for the xaxis
and yaxis of the volcano

The column of the data.frame to use as the identifier for the element in the
row. You probably don’t want to mess with this

A function that transforms the xaxis column to an appropriate scale for the x-
axis. This is the identity function by default, because most often the logFC is
plotted as is.

A function that transforms the yaxis column to an appropriate scale for the y-
axis. This is the -1log1@(yval) function by default, because this is how we most
often plot the y-axis.

x and y axis labels

A vector of featurelds to highlight, or a GeneSetDb that we can extract the fea-
turelds from for this purpose.

76

horiz_line

xhex

yhex

width, height

shiny_source

ggtheme

Value

a ploty plot object

Examples

volcanoStatsTable

A (optionally named) number vecor (length 1) that indicates where a line should
be drawn across the volcano plot. This is usually done to signify statistical
significance. When the number is "named", this indicates that you want to find
an approximation of the values plotted on y based on some transformation of
the values that is the named column of x (like "padj"). The default value c(padj
=0.10) indicates you want to draw a line at approximately where the adjust
pvalue of 0.10 is on the y-axis, which is the nominal pvalues.

The raw .xv (not xtfrm(.xv)) value that acts as a threshold such that values
less than this will be hexbinned.

the . yvt value threshold. Vaues less than this will be hexbinned.
the width and height of the output plotly plot
the name of this element that is used in shiny callbacks. Defaults to "mggenes”.

a ggplot theme, like the thing returned from ggplot2::theme_bw(), for in-
stance.

pass through arguments (not used)

mg <- exampleSparrowResult()

volcanoPlot(mg)

volcanoPlot(mg, xhex=1, yhex=0.05)

volcanoStatsTable

Extracts x and y axis values from objects to create input for volcano
plot

Description

You can, in theory, create a volcano plot from a number of different parts of a SparrowResult()
object. Most often you want to create a volcano plot from the differential expressino results, but you
could imagine building a volcan plot where each point is a geneset. In this case, you would extract
the pvalues from the method you like in the SparrowResult() object using the stats parameter.

Usage

volcanoStatsTable(
X)
stats = "dge",
xaxis = "logFC",
yaxis = "pval”,
idx ="
xtfrm = identity,
ytfrm = function(vals) -logl@(vals)

zScore 77

Arguments
X A SparrowResult object, or a data.frame
stats One of "dge" or resultNames(x)
xaxis, yaxis the column of the the provided (or extracted) data.frame to use for the xaxis
and yaxis of the volcano
idx The column of the data.frame to use as the identifier for the element in the
row. You probably don’t want to mess with this
xtfrm A function that transforms the xaxis column to an appropriate scale for the x-
axis. This is the identity function by default, because most often the logFC is
plotted as is.
ytfrm A function that transforms the yaxis column to an appropriate scale for the y-
axis. This is the -1log1@(yval) function by default, because this is how we most
often plot the y-axis.
Details

Like the volcanoPlot () function, this is mostly used by the sparrow.shiny package.

Value

a data.frame with .xv, .xy, .xvt and .xvy columns that represent the xvalues, yvalues, trans-
formed xvalues, and transformed yvalues, respectively

Examples

mg <- exampleSparrowResult()
v.dge <- volcanoStatsTable(mg)
v.camera <- volcanoStatsTable(mg, 'camera')

zScore Calculate single sample geneset score by average z-score method

Description

Calculate single sample geneset score by average z-score method

Usage
zScore(x, summary = c("mean”, "sqrt"), trim =0, ...)
Arguments
X gene x sample matrix with rows already subsetted to the ones you care about.
summary sqrt or mean
trim calculate trimmed mean?
pass through arguments
Value

A list of stats related to the zscore. You care mostly about $score.

78 [,GeneSetDb,ANY,ANY,ANY-method

Examples

vm <- exampleExpressionSet(do.voom=TRUE)

gdb <- conform(exampleGeneSetDb(), vm)

features <- featurelds(gdb, 'c2', 'BURTON_ADIPOGENESIS_PEAK_AT_2HR',
value="'x.idx")

zscores <- zScore(vm[features,])

Use scoreSingleSamples to facilitate scoring of all gene sets

scores.all <- scoreSingleSamples(gdb, vm, 'zscore', summary = "mean")

s2 <- with(subset(scores.all, name == 'BURTON_ADIPOGENESIS_PEAK_AT_2HR'),
setNames(score, sample_id))

all.equal(s2, zscores$score)

[,GeneSetDb,ANY,ANY, ANY-method
Subset whole genesets from a GeneSetDb

Description

Subset whole genesets from a GeneSetDb

Usage
S4 method for signature 'GeneSetDb,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]
Arguments
X GeneSetDb
i a logical vector as long as nrow(geneSets(x)) indicating which geneSets to
keep
J ignored

pass through arguments

drop ignored

Value

GeneSetDDb x with a subset of the genesets it came in with.k

Index

.GeneSetDb (GeneSetDb-class), 30
.SparrowResult (SparrowResult-class), 70
[,GeneSetDb, ANY,ANY,ANY-method, 78

addCollectionMetadata
(collectionMetadata), 7
addCollectionMetadata(), 9
addGeneSetMetadata, 3
all.equal.GeneSetDb, 4
annotateGeneSetMembership, 5
as.data.frame (conversion), 13
as.data.table (conversion), 13
as.list (conversion), 13

babelgene: :orthologs(), 16
base::geterrmessage(), 24

base: :make.unique(), 52, 55
base::svd(), 44

BiocManager: :install(), 40
BiocParallel, 68

BiocParallel: :BatchtoolsParam(), 68
BiocParallel: :MulticoreParam(), 68
BiocParallel: :SerialParam(), 68
BiocSet: :BiocSet(), I3

calculateIndividuallLogFC, 5
calculateIndividuallLogFC(), 68, 70
collectionMetadata, 7
collectionMetadata(), 28

convertIdentifiers(), 37
convertIdentifiers,BiocSet-method
(convertIdentifiers), 15
convertIdentifiers,GeneSetDb-method
(convertIdentifiers), 15
corplot, 18

edgeR: :DGEList(), 7

edgeR: :estimateDisp(), 7, 69

eigenWeightedMean, 19

eigenWeightedMean(), 44, 66

encode_gskey, 21

encode_gskey(), 21

exampleBiocSet (exampleExpressionSet),
22

exampleDgeResult
(exampleExpressionSet), 22

exampleExpressionSet, 22

exampleGeneSetDb
(exampleExpressionSet), 22

exampleGeneSetDF
(exampleExpressionSet), 22

exampleGeneSets (exampleExpressionSet),
22

exampleSparrowResult
(exampleExpressionSet), 22

failWith, 23
featureIdMap, 24

collectionMetadata,GeneSetDb, character, characteatumedhddap, GeneSetDb-method

(collectionMetadata), 7

(featureldMap), 24

collectionMetadata,GeneSetDb, character,missingeatthefids, 25

(collectionMetadata), 7

featurelds(), 31

collectionMetadata,GeneSetDb,missing,missing-fieahodeIds,GeneSetDb-method

(collectionMetadata), 7
combine, GeneSetDb,GeneSetDb-method, 10

combine, SparrowResult, SparrowResult-method,

11
ComplexHeatmap: :Heatmap(), 51, 54
conform, 12
conform(), 26, 27, 33, 46
conform, GeneSetDb-method (conform), 12
conversion, 13
convertldentifiers, 15

(featurelds), 25
featurelds, SparrowResult-method
(featurelds), 25
featureldType (collectionMetadata), 7
featureIdType,GeneSetDb-method
(collectionMetadata), 7
featureldType<- (collectionMetadata), 7
featureldType<-,GeneSetDb-method
(collectionMetadata), 7
fgsea: :fgsea(), 69

80 INDEX

geneSet, 27 goseq, 42

geneSet (), 31 goseq(), 68

geneSet, GeneSetDb-method (geneSet), 27 goseq: :goseq(), 69

geneSet, SparrowResult-method (geneSet), graphics: :smoothScatter(), I8
27 gsdScore, 43

geneSetCollectionURLfunction, 28 gsdScore(), 66

geneSetCollectionURLfunction,GeneSetDb-methodGSEABase: :EntrezIdentifier(), &, 30
(geneSetCollectionURLfunction), GSEABase: :GeneSetCollection(), 13, 30,
28 31

geneSetCollectionURLfunction, SparrowResult-method
(geneSetCollectionURLfunction), hasGeneSet, 45
28 hasGeneSetCollection, 46
geneSetCollectionURLfunction<-
gifneSetCollectlonURqunctlon), incidenceMatrix(). 5
iplot, 47
geneSetCol1ectionURqunction<—,GeneSetDb—meth%@lgt() 70
gfneSetCollectlonURqunctlonL irlba: :svdr(), 44

is.active, 48
GeneSetDb (GeneSetDb-class), 30 1s.active

is.conformed (conform), 12
geneSetDb, 29

is.conformed(), 13
GeneSetDb(), 5,7, 8, 13, 27,46, 48, 64, 67,

incidenceMatrix, 46

70,72 length,GeneSetDb-method (geneSets), 32
geneSetDb(), 70 limma: : camera(), 67, 69
GeneSetDb-class, 30 limma: :cameraPR(), 69
geneSets, 32 limma: :duplicateCorrelation(), 70
geneSets(), 26, 31 limma: :eBayes(), 6
geneSets,GeneSetDb-method (geneSets), 32 limma:: fry(), 69
geneSets, SparrowResult-method limma: :geneSetTest(), 69

(geneSets), 32 limma: :getGeneKEGGLinks (), 36
geneSetsStats, 33 limma: : getKEGGPathwayNames (), 36
geneSetsStats(), 67, 68 limma: :kegga(), 56, 57, 69
geneSetSummaryByGenes, 35 limma: :1ImFit(), 6
geneSetSummaryByGenes, GeneSetDb-method limma: :roast(), 67, 69

(geneSetSummaryByGenes), 35 limma: :romer(), 69
geneSetSummaryByGenes, SparrowResult-method limma::topTable(), 68

(geneSetSummaryByGenes), 35 limma: :voom(), 7
geneSetURL (collectionMetadata), 7 limma: :voomWithQualityWeights(), 7
geneSetURL, GeneSetDb-method logFC, 49

(collectionMetadata), 7 logFC(), 68, 70
geneSetURL, SparrowResult-method

(collectionMetadata), 7 mgheatmap, 50

mgheatmap2, 53
mgheatmap2(), 50, 52
msg, 56

msg(), 24

getKeggCollection, 36

getKeggGeneSetDb (getKeggCollection), 36
getlength, 42

getMSigCollection, 37

getMSigGeneSetDb (getMSigCollection), 37

c nrow,GeneSetDb-method (geneSets), 32
getPantherCollection, 39

nullp, 43
getPantherGeneSetDb P
(getPantherCollection), 39 ora, 56
getReactomeCollection, 41 ora(), 69
getReactomeGeneSetDb

(getReactomeCollection), 41 p.matrix, 58

INDEX

plot_ora_bias (ora), 56
plot_ora_bias(), 57
prcomp, 20, 44

randomGeneSetDb, 59
renameCollections, 60
renameRows, 60
renameRows (), 51, 52, 54
result (resultNames), 61
result(), 70
resultNames, 61
resultNames(), 70
results (resultNames), 61
results(), 70

scale_rows, 63

scale_rows(), 54

scoreSingleSamples, 64

scoreSingleSamples(), 20, 43, 51, 54

seas, 66

seas(), 31, 34,43, 59,61, 64, 70

sparrow_methods, 70

SparrowResult (SparrowResult-class), 70

SparrowResult(), 27, 31, 47,49, 58, 62, 68,
76

SparrowResult-class, 70

species_info, 71

split_gskey (encode_gskey), 21

ssGSEA.normalize, 71

subset.GeneSetDb, 72

subsetByFeatures, 73

subsetByFeatures, GeneSetDb-method
(subsetByFeatures), 73

tabulateResults (resultNames), 61

unconform (conform), 12
unconform(), 13
unconform, GeneSetDb-method (conform), 12

validateInputs, 73
volcanoPlot, 75
volcanoPlot(), 77
volcanoStatsTable, 76

zScore, 77

81

	addGeneSetMetadata
	all.equal.GeneSetDb
	annotateGeneSetMembership
	calculateIndividualLogFC
	collectionMetadata
	combine,GeneSetDb,GeneSetDb-method
	combine,SparrowResult,SparrowResult-method
	conform
	conversion
	convertIdentifiers
	corplot
	eigenWeightedMean
	encode_gskey
	exampleExpressionSet
	failWith
	featureIdMap
	featureIds
	geneSet
	geneSetCollectionURLfunction
	geneSetDb
	GeneSetDb-class
	geneSets
	geneSetsStats
	geneSetSummaryByGenes
	getKeggCollection
	getMSigCollection
	getPantherCollection
	getReactomeCollection
	goseq
	gsdScore
	hasGeneSet
	hasGeneSetCollection
	incidenceMatrix
	iplot
	is.active
	logFC
	mgheatmap
	mgheatmap2
	msg
	ora
	p.matrix
	randomGeneSetDb
	renameCollections
	renameRows
	resultNames
	scale_rows
	scoreSingleSamples
	seas
	SparrowResult-class
	sparrow_methods
	species_info
	ssGSEA.normalize
	subset.GeneSetDb
	subsetByFeatures
	validateInputs
	volcanoPlot
	volcanoStatsTable
	zScore
	[,GeneSetDb,ANY,ANY,ANY-method
	Index

