Package ‘simplifyEnrichment’

January 23, 2026
Type Package
Title Simplify Functional Enrichment Results
Version 2.4.0
Date 2024-09-13
Depends R (>=4.0.0)

Imports simona, ComplexHeatmap (>= 2.7.4), grid, circlize, GetoptLong,
digest, tm, GO.db, AnnotationDbi, slam, methods, clue,
grDevices, stats, utils, cluster (>= 1.14.2), colorspace,
GlobalOptions (>=0.1.0)

Suggests knitr, ggplot2, cowplot, mclust, apcluster, MCL, dbscan,
igraph, gridExtra, dynamicTreeCut, testthat, gridGraphics,
flexclust, BiocManager, InteractiveComplexHeatmap (>= 0.99.11),
shiny, shinydashboard, cola, hu6800.db, rmarkdown, genefilter,
gridtext, fpc

Description
A new clustering algorithm, " " binary cut", for clustering similarity matrices of functional terms
is implemeted in this package. It also provides functions for visualizing, summarizing and com-
paring the clusterings.

biocViews Software, Visualization, GO, Clustering, GeneSetEnrichment

URL https://github.com/jokergoo/simplifyEnrichment,
https://simplifyEnrichment.github.io

VignetteBuilder knitr

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

git_url https://git.bioconductor.org/packages/simplifyEnrichment

git_branch RELEASE_3_22

git_last_commit 366f2df

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-22

Author Zuguang Gu [aut, cre] (ORCID: <https://orcid.org/0000-0002-7395-8709>)

Maintainer Zuguang Gu <z.gu@dkfz.de>

https://github.com/jokergoo/simplifyEnrichment
https://simplifyEnrichment.github.io
https://orcid.org/0000-0002-7395-8709

2 anno_word_cloud

Contents
anno_word_cloud e 2
anno_word_cloud_from_GO 4
area_above_ecdf e 5
cluster terms e e e e 5
cmp_make_clusters L. 7
count_wWordS e e e e e 9
dend_node_apply e 10
difference_score e e e e e e e 11
export_to_shiny_app e e e e 12
GO_similarity e e e e 13
ht_clusters e e 14
keyword_enrichment_from_GO 16
partition_by_kmeans 17
plot_binary_cut 17
register_clustering_methods L L 19
scale_fontsize e e 20
select_cutoff e 21
SE_OPL « v v e e e e e e e e e e 22
simplifyGO e e e 22
simplifyGOFromMultipleLists L 24
summarizeGO e e e 26
word_cloud_grob 27

Index 30

anno_word_cloud Word cloud annotations
Description

‘Word cloud annotations

Usage

anno_word_cloud(

align_to,

term,

exclude_words = NULL,

max_words = 10,
word_cloud_grob_param = list(),
fontsize_range = c(4, 16),
value_range = NULL,

bg_gp = gpar(fill = "#DDDDDD", col = "#AAAAAA"),
side = c("right”, "left"),
add_new_line = FALSE,
count_words_param = list(),

return_gbl = FALSE

anno_word_cloud 3

Arguments

align_to How to align the annotations to the heatmap. Similar as in ComplexHeatmap: :anno_link,

the value of align_to can be a list of row indices or a categorical vector where
each vector in the list corresponds to a word cloud. If it is a categorical vector,
rows with the same level correspond to a same word cloud. If align_tois a
categorical vector and term is a list, names of term should have overlap to the
levels in align_to. When align_to is set as a categorical vector, normally the
same value is set to row_split in the main heatmap so that each row slice can
correspond to a word cloud.

term The description text used for constructing the word clouds. The value should
have the same format as align_to. If align_to is a list, term should also
be a list. In this case, the length of vectors in term is not necessarily the
same as in align_to. E.g. length(term[[1]]) is not necessarily equal to
length(align_to[[1]]. If align_to is a categorical vector, term should also
be a character vector with the same length as align_to. To make it more gen-
rall, when align_to is a list, term can also be a list of data frames where the
first column contains keywords and the second column contains numeric values
that will be mapped to font sizes in the word clouds.

exclude_words The words excluced for construcing word cloud.

max_words Maximal number of words visualized in the word cloud.
word_cloud_grob_param
A list of graphics parameters passed to word_cloud_grob.

fontsize_range The range of the font size. The value should be a numeric vector with length
two. The font size interpolation is linear.

value_range The range of values to map to font sizes.
bg_gp Graphics parameters for controlling the background.
side Side of the annotation relative to the heatmap.

add_new_line Whether to add new line after every word? If TRUE, each word will be in a
separated line.

count_words_param
A list of parameters passed to count_words.

Other parameters.

return_gbl Internally used.

Details

The word cloud annotation is constructed by ComplexHeatmap: :anno_link.

If the annotation is failed to construct or no keyword is found, the function returns a ComplexHeatmap: : anno_empty
with 1px width.

English stop words, punctuation and numbers are removed by default when counting words. As
specific stop words might coincide with gene or pathway names, and numbers in genes names
might be meaningful it is recommended to adjust this behaviour by passing appropriate arguments
to the count_words function using count_words_param.

Examples

gm = readRDS(system.file("extdata"”, "random_GO_BP_sim_mat.rds", package = "simplifyEnrichment”))
go_id = rownames(gm)
go_term = AnnotationDbi::select(GO.db::G0.db, keys = go_id, columns = "TERM")$TERM

anno_word_cloud_tfrom_GO

split = sample(letters[1:4], 100, replace = TRUE)
align_to = split(1:100, split)
term = lapply(letters[1:4], function(x) sample(go_term, sample(100:400, 1)))

names(term) = letters[1:4]

require(ComplexHeatmap)
mat = matrix(rnorm(100*10), nrow = 100)
Heatmap(mat, cluster_rows = FALSE, row_split = split,

right_annotation

= rowAnnotation(foo = anno_word_cloud(align_to, term)))

anno_word_cloud_from_GO

Word cloud annotations from GO

Description

‘Word cloud annotations from GO

Usage
anno_word_cloud_from_GO(
align_to,
go_id,
stat = c("pvalue”, "count"),
min_stat = ifelse(stat == "count”, 5, 0.05),
term = NULL,
exclude_words = NULL,
)
Arguments
align_to The same format as in anno_word_cloud.
go_id The value should be in the same format as align_to. If go_id is a vector,
it should have the same length as align_to, and if go_id is a list, note, e.g.
length(go_id[[1]1]) is not necessarily equal to length(align_to[[1]]. If
align_to is a categorical vector and go_id is a list, names of go_id should
have overlap to the levels in align_to.
stat What type of value to map to font sizes of the keywords. There are two possible
values. "pvalue": enrichment is applied to keywords and -log10(p-value) is used
to map to font size; "count": simply word frequency of keywords.
min_stat Minimal value for stat for selecting keywords.
term Alternatively the GO description can be set via the term argument. The same

exclude_words

format as in anno_word_cloud.

The words excluced for construcing word cloud. Some words are internally ex-
clucded: c("via", "protein”, "factor”, "side", "type", "specific").

All other arguments passed to anno_word_cloud.

area_above_ecdf 5

area_above_ecdf Area above the eCDF curve

Description

Area above the eCDF curve

Usage

area_above_ecdf (x)

Arguments

X A vector of similarity values.

Details
Denote F(x) as the eCDF (empirical Cumulative Distribution Function) of the similarity vector X,
this function calculates the area above the eCDF curve, whichis 1 - \int_0*1 F(x)dx.

Value

A numeric value.

cluster_terms Cluster terms based on their similarity matrix

Description

Cluster terms based on their similarity matrix

Usage

cluster_terms(
mat,
method = "binary_cut”,
control = 1list(),
verbose = se_opt$verbose

)

cluster_by_kmeans(mat, max_k = max(2, min(round(nrow(mat)/5), 100)), ...)
cluster_by_pam(mat, max_k = max(2, min(round(nrow(mat)/10), 100)), ...)
cluster_by_dynamicTreeCut(mat, minClusterSize = 5, ...)
cluster_by_fast_greedy(mat, ...)

cluster_by_leading_eigen(mat, ...)

6 cluster_terms
cluster_by_louvain(mat, ...)
cluster_by_walktrap(mat, ...)
cluster_by_mclust(mat, G = seqg_len(max(2, min(round(nrow(mat)/5), 100))),
cluster_by_apcluster(mat, s = apcluster::negDistMat(r = 2), ...)
cluster_by_hdbscan(mat, minPts =5, ...)
cluster_by_MCL(mat, addLoops = TRUE, ...)

Arguments
mat A similarity matrix.
method The clustering methods. Value should be in all_clustering_methods().
control A list of parameters passed to the corresponding clustering function.
verbose Whether to print messages.
max_k Maximal k for k-means/PAM clustering. K-means/PAM clustering is applied

from k =2 to k = max_k.
Other arguments.

minClusterSize Minimal number of objects in a cluster. Pass to dynamicTreeCut: : cutreeDynamic().
G Passed to the G argument in mclust: :Mclust () which is the number of clusters.
s Passed to the s argument in apcluster: :apcluster().
minPts Passed to the minPts argument in dbscan: :hdbscan().
addLoops Passed to the addLoops argument in MCL: :mc1().

Details

New clustering methods can be registered by register_clustering_methods().

Please note it is better to directly use cluster_terms() for clustering while not the individual
cluster_by_x* functions because cluster_terms() does additional cluster label adjustment.

By default, there are the following clustering methods and corresponding clustering functions:

* kmeans see cluster_by_kmeans().

e dynamicTreeCut see cluster_by_dynamicTreeCut().
e mclust see cluster_by_mclust().

e apcluster see cluster_by_apcluster().

* hdbscan see cluster_by_hdbscan().

e fast_greedy see cluster_by_fast_greedy().

e louvain see cluster_by_louvain().

* walktrap see cluster_by_walktrap().

* MCL see cluster_by_MCL().

e binary_cut see binary_cut().

cmp_make_clusters 7

The additional argument in individual clustering functions can be set with the control argument in
cluster_terms().

cluster_by_kmeans(): The best k for k-means clustering is determined according to the "elbow"
or "knee" method on the distribution of within-cluster sum of squares (WSS) on each k. All other
arguments are passed from . . . to stats: :kmeans().

cluster_by_pam(): PAM is applied by fpc: :pamk() which can automatically select the best k.
All other arguments are passed from . . . to fpc: :pamk().

cluster_by_dynamicTreeCut(): All other arguments are passed from . . . to dynamicTreeCut: : cutreeDynamic().
cluster_by_fast_greedy(): All other arguments are passed from . . . to igraph: :cluster_fast_greedy().
cluster_by_leading_eigen(): All other arguments are passed from . . . to igraph: :cluster_leading_eigen().
cluster_by_louvain(): All other arguments are passed from . . . to igraph: :cluster_louvain().
cluster_by_walktrap(): All other arguments are passed from . . . to igraph: :cluster_walktrap().
cluster_by_mclust(): All other arguments are passed from ... tomclust: :Mclust().
cluster_by_apcluster(): All other arguments are passed from . . . to apcluster: :apcluster().
cluster_by_hdbscan(): All other arguments are passed from . .. to dbscan: :hdbscan().

cluster_by_MCL(): All other arguments are passed from . .. to MCL: :mc1().

Value

A vector of numeric cluster labels.

cmp_make_clusters Compare clustering methods

Description

Compare clustering methods

Usage

cmp_make_clusters(
mat,
method = setdiff(all_clustering_methods(), "mclust"),
verbose = TRUE

)
cmp_make_plot(mat, clt, plot_type = c("mixed”, "heatmap”), nrow = 3)

compare_clustering_methods(
mat,
method = setdiff(all_clustering_methods(), "mclust"),
plot_type = c("mixed”, "heatmap"),
nrow = 3,
verbose = TRUE

8 cmp_make_clusters

Arguments
mat The similarity matrix.
method Which methods to compare. All available methods arein all_clustering_methods().
A value of "all” takes all available methods. By default "mclust" is excluded
because its long runtime.
verbose Whether to print messages.
Ddetails The function compares following default clustering methods by default:
-kmeans see cluster_by_kmeans. -pamsee cluster_by_pam. -dynamicTreeCut
see cluster_by_dynamicTreeCut. -mclust see cluster_by_mclust. By de-
fault it is not included. -apcluster see cluster_by_apcluster. -hdbscan
see cluster_by_hdbscan. -fast_greedy see cluster_by_fast_greedy. -
louvain see cluster_by_louvain. -walktrap see cluster_by_walktrap. -
MCL see cluster_by_MCL. -binary_cut see binary_cut.
Also the user-defined methods in all_clustering_methods are also compared.
clt A list of clusterings from cmp_make_clusters().
plot_type What type of plots to make. See Details.
nrow Number of rows of the layout when plot_type is set to "heatmap”.
Details

For cmp_make_plot(), if plot_type is the default value "mixed”, a figure with three panels will
be generated:

* A heatmap of the similarity matrix with different classifications as row annotations.

* A heatmap of the pair-wise concordance of the classifications of every two clustering methods.

* Barplots of the difference scores for each method (calculated by difference_score), the
number of clusters (total clusters and the clusters with size >=5) and the mean similarity of
the terms that are in the same clusters.

If plot_type is "heatmap”. There are heatmaps for the similarity matrix under clusterings from
different methods. The last panel is a table with the number of clusters under different clusterings.

compare_clustering_methods() is basically a wrapper function of cmp_make_clusters() and
cmp_make_plot().

Value

cmp_make_clusters() returns a list of cluster label vectors from different clustering methods.
cmp_make_plot () returns no value.

compare_clustering_methods() returns no value.

Examples

mat = readRDS(system.file("extdata”, "random_GO_BP_sim_mat.rds",
package = "simplifyEnrichment"))

compare_clustering_methods(mat)

compare_clustering_methods(mat, plot_type = "heatmap")

count_words 9

count_words Calculate word frequency

Description

Calculate word frequency

Usage

count_words(
term,
exclude_words = NULL,
stop_words = stopwords(),
min_word_length = 1,
tokenizer = "words”,
transform_case = tolower,
remove_numbers = TRUE,
remove_punctuation = TRUE,
custom_transformer = NULL,
stemming = FALSE,
dictionary = NULL

Arguments

term A vector of description texts.
exclude_words The words that should be excluded.
stop_words The stop words that should be be removed.
min_word_length
Minimum length of the word to be counted.
tokenizer The tokenizer function, one of the values accepted by tm: : termFreq.
transform_case The function normalizing lettercase of the words.

remove_numbers Whether to remove numbers.
remove_punctuation

Whether to remove punctuation.
custom_transformer

Custom function that transforms words.

stemming Whether to only keep the roots of inflected words.
dictionary A vector of words to be counted (if given all other words will be excluded).
Details

The text preprocessing followings the instruction from http://www.sthda.com/english/wiki/
word-cloud-generator-in-r-one-killer-function-to-do-everything-you-need.

Value

A data frame with words and frequencies.

http://www.sthda.com/english/wiki/word-cloud-generator-in-r-one-killer-function-to-do-everything-you-need
http://www.sthda.com/english/wiki/word-cloud-generator-in-r-one-killer-function-to-do-everything-you-need

10 dend_node_apply

Examples

gm = readRDS(system.file("extdata”, "random_GO_BP_sim_mat.rds", package = "simplifyEnrichment"))
go_id = rownames(gm)

go_term = AnnotationDbi: :select(GO.db::G0.db, keys = go_id, columns = "TERM")$TERM
count_words(go_term) |> head()

dend_node_apply Apply functions on every node in a dendrogram

Description

Apply functions on every node in a dendrogram

Usage
dend_node_apply(dend, fun)

edit_node(dend, fun = function(d, index) d)

Arguments
dend A dendrogram object.
fun A self-defined function.
Details

dend_node_apply() returns a vector or a list as the same length as the number of nodes in the
dendrogram.

The self-defined function can have one single argument which is the sub-dendrogram at a certain
node. E.g. to get the number of members at every node:

dend_node_apply(dend, function(d) attr(d, "members"))

The self-defined function can have a second argument, which is the index of current sub-dendrogram
in the complete dendrogram. E.g. dend[[11]] is the first child node of the complete dendrogram
and dend[[c(1, 2)1] is the second child node of dend[[1]1], et al. This makes that at a certain
node, it is possible to get information of its child nodes and parent nodes.

dend_node_apply(dend, function(d, index) {
dend[[c(index, 1)1] # is the first child node of d, or simply d[[1]]
dend[[index[-length(index)1]] # is the parent node of d

D

Note for the top node, the value of index is NULL.

In edit_node(), if fun only has one argument, it is basically the same as stats: :dendrapply(),
but it can have a second argument which is the index of the node in the dendrogram, which makes
it possible to get information of child nodes and parent nodes for a specific node.

As an example, we first assign random values to every node in the dendrogram:

difference_score 11

mat = matrix(rnorm(100), 10)
dend = as.dendrogram(hclust(dist(mat)))
dend = edit_node(dend, function(d) {attr(d, 'score') = runif(1); d})

Then for every node, we take the maximal absolute difference to all its child nodes and parent node
as the attribute abs_diff.

dend = edit_node(dend, function(d, index) {
n = length(index)
s = attr(d, "score")
if(is.null(index)) { # d is the top node
s_children = sapply(d, function(x) attr(x, "score"))
s_parent = NULL
} else if(is.leaf(d)) { # d is the leaf
s_children = NULL
s_parent = attr(dend[[index[-n]]], "score")
} else {
s_children = sapply(d, function(x) attr(x, "score"))
s_parent = attr(dend[[index[-n]]], "score")
3
abs_diff = max(abs(s - c(s_children, s_parent)))
attr(d, "abs_diff") = abs_diff
return(d)
)]

Value

dend_node_apply() returns a vector or a list, depends on whether fun returns a scalar or more
complex values.

edit_node() returns a dendrogram object.

Examples

mat = matrix(rnorm(100), 10)

dend = as.dendrogram(hclust(dist(mat)))

number of members on every node

dend_node_apply(dend, function(d) attr(d, "members”))
the depth on every node

dend_node_apply(dend, function(d, index) length(index))

difference_score Difference score

Description

Difference score

Usage

difference_score(mat, cl)

12 export_to_shiny_app

Arguments
mat The similarity matrix.
cl Cluster labels.
Details

This function measures the different between the similarity values for the terms that belong to the
same clusters and in different clusters. The difference score is the Kolmogorov-Smirnov statistic
between the two distributions.

Value

A numeric scalar.

Examples

mat = readRDS(system.file("extdata”, "random_GO_BP_sim_mat.rds",
package = "simplifyEnrichment"))

cl = binary_cut(mat)

difference_score(mat, cl)

export_to_shiny_app Interactively visualize the similarity heatmap

Description

Interactively visualize the similarity heatmap

Usage

export_to_shiny_app(mat, cl = binary_cut(mat))

Arguments
mat A similarity matrix.
cl Cluster labels inferred from the similarity matrix, e.g. from cluster_terms()
or binary_cut().
Value

A shiny application.

Examples

if(interactive()) {
mat = readRDS(system.file("extdata”, "random_GO_BP_sim_mat.rds",
package = "simplifyEnrichment”))
cl = binary_cut(mat)
export_to_shiny_app(mat, cl)

GO_similarity 13

GO_similarity Calculate Gene Ontology (GO) semantic similarity matrix

Description

Calculate Gene Ontology (GO) semantic similarity matrix

Usage

GO_similarity(
go_id,
ont = NULL,
db = "org.Hs.eg.db",
measure = "Sim_XGraSM_2013"

)
guess_ont(go_id, db = "org.Hs.eg.db")

random_GO(n, ont = c("BP", "CC", "MF"), db = "org.Hs.eg.db")

Arguments
go_id A vector of GO IDs.
ont Sub-ontology of GO. Value should be one of "BP", "CC" or "MF". If it is not
specified, the function automatically identifies it by random sampling 10 IDs
from go_id (see guess_ont()).
db Annotation database. It should be an OrgDb package name from https://
bioconductor.org/packages/release/BiocViews.html#___OrgDb. The value
can also directly be an OrgDb object.
measure Semantic measure for the GO similarity, pass to simona::term_sim(). All
valid values are in simona: :all_term_sim_methods().
n Number of GO IDs.
Details

The default similarity method is "Sim_XGraSM_2013". Since the semantic similarities are calcu-
lated based on gene annotations to GO terms, I suggest users also try the following methods:

e "Sim_Lin_1998"

e "Sim_Resnik_1999"

e "Sim_Relevance_2006"

e "Sim_SimIC_2010"

e "Sim_XGraSM_2013"

e "Sim_EISI_2015"

e "Sim_AIC_2014"

e "Sim_Wang_2007"

e "Sim_GOGO_2018"

In guess_ont(), only 10 random GO IDs are checked.

In random_GO(), only GO terms with gene annotations are sampled.

https://bioconductor.org/packages/release/BiocViews.html#___OrgDb
https://bioconductor.org/packages/release/BiocViews.html#___OrgDb

14

Value

GO_similarity() returns a symmetric matrix.

ht_clusters

guess_ont() returns a single character scalar of "BP", "CC" or "MF". If there are more than one
ontologies detected. It returns NULL.

random_GO() returns a vector of GO IDs.

Examples

go_id = random_GO(100)
mat = GO_similarity(go_id)

go_id = random_GO(100)
guess_ont(go_id)

ht_clusters Visualize the similarity matrix and the clustering

Description

Visualize the similarity matrix and the clustering

Usage

ht_clusters(

mat,

cl,

dend = NULL,

col = c("white"”, "red"),

draw_word_cloud = TRUE,

min_term = round(nrow(mat) * 0.01),
order_by_size = FALSE,

stat = "pvalue”,

min_stat = ifelse(stat == "count”, 5, 0.05),
exclude_words = character(9),

max_words = 10,

word_cloud_grob_param = list(),
fontsize_range = c(4, 16),

bg_gp = gpar(fill = "#DDDDDD", col = "#AAAAAA"),
column_title = NULL,

ht_list = NULL,

use_raster = TRUE,

run_draw = TRUE,

ht_clusters 15

Arguments
mat A similarity matrix.
cl Cluster labels inferred from the similarity matrix, e.g. from cluster_terms()
or binary_cut().
dend Used internally.
col A vector of colors that map from O to the 97.5th percentile of the similarity val-

ues. The value can also be a color mapping function generated by circlize: :colorRamp2().

draw_word_cloud
Whether to draw the word clouds.

min_term Minimal number of functional terms in a cluster. All the clusters with size less
than min_term are all merged into one separated cluster in the heatmap.

order_by_size Whether to reorder clusters by their sizes. The cluster that is merged from small
clusters (size < min_term) is always put to the bottom of the heatmap.

stat Type of value for mapping to the font size of keywords in the word clouds. There
are two options: "count": simply number of keywords; "pvalue": enrichment on
keywords is performed (by fisher’s exact test) and -log10(pvalue) is used to map
to font sizes.

min_stat Minimal value for stat for selecting keywords.
exclude_words Words that are excluded in the word cloud.

max_words Maximal number of words visualized in the word cloud.
word_cloud_grob_param
A list of graphic parameters passed to word_cloud_grob().

fontsize_range The range of the font size. The value should be a numeric vector with length
two. The font size interpolation is linear.

bg_gp Graphics parameters for controlling word cloud annotation background.

column_title Column title for the heatmap.

ht_list A list of additional heatmaps added to the left of the similarity heatmap.
use_raster Whether to write the heatmap as a raster image.
run_draw Internally used.

Other arguments passed to ComplexHeatmap: :draw,HeatmapList-method.

Value

A ComplexHeatmap: :HeatmapList object.

Examples

mat = readRDS(system.file("extdata”, "random_GO_BP_sim_mat.rds",
package = "simplifyEnrichment"))

cl = binary_cut(mat)

ht_clusters(mat, cl, word_cloud_grob_param = list(max_width

ht_clusters(mat, cl, word_cloud_grob_param = list(max_width
order_by_size = TRUE)

80))
80),

16 keyword_enrichment_from_GO

keyword_enrichment_from_GO
Keyword enrichment for GO terms

Description

Keyword enrichment for GO terms

Usage

keyword_enrichment_from_GO(go_id, min_bg = 5, min_term = 2)

Arguments
go_id A vector of GO IDs.
min_bg Minimal number of GO terms (in the background, i.e. all GO temrs in the GO
database) that contain a specific keyword.
min_term Minimal number of GO terms (GO terms in go_id) that contain a specific key-
word.
Details

The enrichment is applied by Fisher’s exact test. For a keyword, there is the following 2x2 conti-
gency table:

| contains the keyword | does not contain the keyword
In the GO set | s11 | s12
Not in the GO set | s21 | s22

where s11, s12, s21 and s22 are the counts of GO terms in the four categories.

Value

A data frame with keyword enrichment results.

Examples

go_id = random_GO(100)
keyword_enrichment_from_GO(go_id)

partition_by_kmeans 17

partition_by_kmeans Partition the matrix

Description

Partition the matrix

Usage
partition_by_kmeans(mat, n_repeats = 10)
partition_by_pam(mat)
partition_by_hclust(mat)

partition_by_kmeanspp(mat)

Arguments
mat The submatrix in the binary cut clustering process.
n_repeats Number of repeated runs of k-means clustering.
Details

These functions can be set to the partition_fun argument in binary_cut().

partition_by_kmeans(): Since k-means clustering brings randomness, this function performs k-
means clustering several times (controlled by n_repeats) and uses the final consensus partitioning
results.

partition_by_pam(): The clustering is performed by cluster: :pam() with the pamonce argu-
ment set to 5.

partition_by_hclust(): The "ward.D2" clusering method was used.

partition_by_kmeanspp(): It uses the kmeanspp method from the flexclust package.

Value

All partitioning functions split the matrix into two groups and return a categorical vector of labels
of 1 and 2.

plot_binary_cut Cluster functional terms by recursively binary cutting the similarity
matrix

Description

Cluster functional terms by recursively binary cutting the similarity matrix

18 plot_binary_cut

Usage

plot_binary_cut(
mat,
value_fun = area_above_ecdf,
cutoff = 0.85,
partition_fun = partition_by_pam,

dend = NULL,
dend_width = unit(3, "cm"),
depth = NULL,

show_heatmap_legend = TRUE,

)

binary_cut(
mat,
value_fun = area_above_ecdf,
partition_fun = partition_by_hclust,
cutoff = 0.85,
try_all_partition_fun = TRUE,
partial = nrow(mat) > 1500

)
Arguments
mat A similarity matrix.
value_fun A function that calculates the scores for the four submatrices on a node.
cutoff The cutoff for splitting the dendrogram.

partition_fun A function to split each node into two groups. Pre-defined functions in this pack-
age are partition_by_kmeanspp(), partition_by_pam() and partition_by_hclust().

dend A dendrogram object, used internally.
dend_width Width of the dendrogram on the plot.
depth Depth of the recursive binary cut process.

show_heatmap_legend
Whether to show the heatmap legend.

Other arguments.

try_all_partition_fun
Different partition_fun may give different clusterings. If the vaule of try_all_partition_fun
is set to TRUE, the similarity matrix is clustered by three partitioning method:
partition_by_pam(), partition_by_kmeanspp() and partition_by_hclust().
The clustering with the highest difference score is finally selected as the final
clustering.

partial Whether to generate the complete clustering or the clustering stops when sub-
matrices cannot be split anymore.
Details

After the functions which perform clustering are executed, such as simplifyGO() orbinary_cut(),
the dendrogram is temporarily saved and plot_binary_cut() directly uses this dendrogram.

register_clustering_methods 19

Value

binary_cut() returns a vector of numeric cluster labels.

Examples

mat = readRDS(system.file("extdata”, "random_GO_BP_sim_mat.rds",
package = "simplifyEnrichment"))

plot_binary_cut(mat, depth = 1)

plot_binary_cut(mat, depth = 2)

plot_binary_cut(mat)

mat = readRDS(system.file("extdata”, "random_GO_BP_sim_mat.rds",
package = "simplifyEnrichment"))
binary_cut(mat)

register_clustering_methods
Configure clustering methods

Description

Configure clustering methods

Usage
register_clustering_methods(...)
all_clustering_methods()

remove_clustering_methods(method)

reset_clustering_methods()

Arguments
A named list of clustering functions, see in Details.
method A vector of method names.
Details

The user-defined functions should accept at least one argument which is the input matrix. The sec-
ond optional argument should always be ... so that parameters for the clustering function can be
passed by the control argument from cluster_terms(), simplifyGO() or simplifyEnrichment().
If users forget to add . . ., it is added internally.

Please note, the user-defined function should automatically identify the optimized number of clus-
ters.

The function should return a vector of cluster labels. Internally it is converted to numeric labels.

The default clustering methods are:

e kmeans see cluster_by_kmeans().

20

e dynamicTreeCut see cluster_by_dynamicTreeCut().
e mclust see cluster_by_mclust().

e apcluster see cluster_by_apcluster().

¢ hdbscan see cluster_by_hdbscan().

e fast_greedy see cluster_by_fast_greedy().

e louvain see cluster_by_louvain().

e walktrap see cluster_by_walktrap().

e MCL see cluster_by_MCL().

* binary_cut see binary_cut().

Value

all_clustering_methods() returns a vector of clustering method names.

Examples

register_clustering_methods(

assume there are 5 groups

random = function(mat, ...) sample(5, nrow(mat), replace = TRUE)
)
all_clustering_methods()
remove_clustering_methods(”random”)
all_clustering_methods()
remove_clustering_methods(c("kmeans”, "mclust"))
all_clustering_methods()
reset_clustering_methods()
all_clustering_methods()

scale_fontsize

scale_fontsize Scale font size

Description

Scale font size

Usage

scale_fontsize(x, rg = c(1, 30), fs = c(4, 16))

Arguments

X A numeric vector.

rg The range.

fs Range of the font size.
Details

It is a linear interpolation.

select_cutoff 21

Value

A numeric vector.

Examples

X = runif (10, min = 1, max = 20)
scale x to fontsize 4 to 16.
scale_fontsize(x)

select_cutoff Select the cutoff for binary cut

Description

Select the cutoff for binary cut

Usage

select_cutoff(
mat,
cutoff = seq(@0.6, 0.98, by = 0.01),
verbose = se_opt$verbose,

)
Arguments
mat A similarity matrix.
cutoff A list of cutoffs to test. Note the range of the cutoff values should be inside
[0.5, 11.
verbose Whether to print messages.
Pass to binary_cut().
Details

Binary cut is applied to each cutoff and the clustering results are evaluated by following metrics:

« difference score, calculated by difference_score().
¢ number of clusters.

* block mean, which is the mean similarity in the blocks in the diagonal of the heatmap.

Examples

mat = readRDS(system.file("extdata”, "random_GO_BP_sim_mat.rds",
package = "simplifyEnrichment"))
select_cutoff(mat)

22 simplifyGO

se_opt Global parameters

Description

Global parameters

Usage

se_opt(..., RESET = FALSE, READ.ONLY = NULL, LOCAL = FALSE, ADD = FALSE)
Arguments

Arguments for the parameters, see "details" section.

RESET Whether to reset to default values.

READ.ONLY Please ignore.

LOCAL Please ignore.

ADD Please ignore.
Details

There are the following global options:

* verobse: Whether to print messages.

Value

A GlobalOptionsFun object.

simplifyGO Simplify Gene Ontology (GO) enrichment results

Description

Simplify Gene Ontology (GO) enrichment results

Usage

simplifyGO(
mat,
method = "binary_cut”,
control = list(),
plot = TRUE,
verbose = TRUE,
column_title = qq("@{nrow(mat)} GO terms clustered by '@{method}'"),
ht_list = NULL,

)

simplifyEnrichment(...)

simplifyGO 23

Arguments
mat A GO similarity matrix. You can also provide a vector of GO IDs to this argu-
ment.
method Method for clustering the matrix. See cluster_terms().
control A list of parameters for controlling the clustering method, passed to cluster_terms().
plot Whether to make the heatmap.
verbose Whether to print messages.

column_title Column title for the heatmap.

ht_list A list of additional heatmaps added to the left of the similarity heatmap.

Details

Arguments passed to ht_clusters().

This is basically a wrapper function that it first runs cluster_terms() to cluster GO terms and
then runs ht_clusters() to visualize the clustering.

The arguments in simplifyGO() passed to ht_clusters() are:

Value

draw_word_cloud: Whether to draw the word clouds.

min_term: Minimal number of GO terms in a cluster. All the clusters with size less than
min_term are all merged into one single cluster in the heatmap.

order_by_size: Whether to reorder GO clusters by their sizes. The cluster that is merged
from small clusters (size < min_term) is always put to the bottom of the heatmap.

stat: What values of keywords are used to map to font sizes in the word clouds.
exclude_words: Words that are excluded in the word cloud.

max_words: Maximal number of words visualized in the word cloud.
word_cloud_grob_param: A list of graphic parameters passed to word_cloud_grob().

fontsize_range The range of the font size. The value should be a numeric vector with length
two. The minimal font size is mapped to word frequency value of 1 and the maximal font size
is mapped to the maximal word frequency. The font size interlopation is linear.

bg_gp: Graphic parameters for controlling the background of word cloud annotations.

A data frame with two columns: GO IDs and cluster labels.

Examples

set.seed(123)
go_id = random_G0(500)
mat = GO_similarity(go_id)

df =

simplifyGO(mat, word_cloud_grob_param = list(max_width = 80))

head (df)

24 simplifyGOFromMultipleLists

simplifyGOFromMultiplelLists
Perform simplifyGO analysis with multiple lists of GO IDs

Description

Perform simplifyGO analysis with multiple lists of GO IDs

Usage

simplifyGOFromMultiplelLists(

1t,

go_id_column

padj_column

padj_cutoff =

= NULL,

NULL,
0.01,

filter = function(x) any(x < padj_cutoff),

default = 1,

ont = NULL,

db = "org.Hs.eg.db",

measure = "Sim_XGraSM_2013",
heatmap_param = 1list(NULL),
show_barplot = TRUE,

method = "binary_cut”,
control = list(),

min_term = NULL,

verbose = TRUE,

column_title

Arguments

1t

go_id_column
padj_column
padj_cutoff
filter

default

ont

db

measure
heatmap_param

show_barplot

method

= NULL,

A data frame, a list of numeric vectors (e.g. adjusted p-values) where each
numeric vector has GO IDs as names, or a list of GO IDs.

Column index of GO ID if 1t contains a list of data frames.
Column index of adjusted p-values if 1t contains a list of data frames.
Cut off for adjusted p-values.

A self-defined function for filtering GO IDs. By default it requires GO IDs
should be significant in at least one list.

The default value for the adjusted p-values. See Details.
Pass to GO_similarity().

Pass to GO_similarity().

Pass to GO_similarity().

Parameters for controlling the heatmap, see Details.

Whether draw barplots which shows numbers of significant GO terms in clus-
ters.

Pass to simplifyGO().

simplifyGOFromMultipleLists 25

control Pass to simplifyGO().
min_term Pass to simplifyGO().
verbose Pass to simplifyGO().

column_title Pass to simplifyGO().
Pass to simplifyGO().

Details

The input data can have three types of formats:

* A list of numeric vectors of adjusted p-values where each vector has the GO IDs as names.

* A data frame. The column of the GO IDs can be specified with go_id_column argument and
the column of the adjusted p-values can be specified with padj_column argument. If these
columns are not specified, they are automatically identified. The GO ID column is found
by checking whether a column contains all GO IDs. The adjusted p-value column is found
by comparing the column names of the data frame to see whether it might be a column for
adjusted p-values. These two columns are used to construct a numeric vector with GO IDs as
names.

* A list of character vectors of GO IDs. In this case, each character vector is changed to a
numeric vector where all values take 1 and the original GO IDs are used as names of the
vector.

Now let’s assume there are n GO lists, we first construct a global matrix where columns correspond
to the n GO lists and rows correspond to the "union" of all GO IDs in the lists. The value for the ith
GO ID and in the jth list are taken from the corresponding numeric vector in 1t. If the jth vector in
1t does not contain the ith GO ID, the value defined by default argument is taken there (e.g. in
most cases the numeric values are adjusted p-values, default is set to 1). Let’s call this matrix as
Mo.

Next step is to filter M@ so that we only take a subset of GO IDs of interest. We define a proper
function via argument filter to remove GO IDs that are not important for the analysis. Functions
for filter is applied to every row in M@ and filter function needs to return a logical value to
decide whether to remove the current GO ID. For example, if the values in 1t are adjusted p-values,
the filter function can be set as function(x) any(x < padj_cutoff) so that the GO ID is kept
as long as it is signfiicant in at least one list. After the filter, let’s call the filtered matrix M1.

GO IDs in M1 (row names of M1) are used for clustering. A heatmap of M1 is attached to the left of the
GO similarity heatmap so that the group-specific (or list-specific) patterns can be easily observed
and to corresponded to GO functions.

Argument heatmap_param controls several parameters for heatmap M1:
e transform: A self-defined function to transform the data for heatmap visualization. The most
typical case is to transform adjusted p-values by -1log10(x).
* breaks: break values for color interpolation.
 col: The corresponding values for breaks.
* labels: The corresponding labels.

* name: Legend title.

26 summarizeGO

Examples

perform functional enrichment on the signatures genes from cola anlaysis

require(cola)

data(golub_cola)

res = golub_cola["ATC: skmeans"]

require(hu6800.db)

X = hu680OENTREZID

mapped_probes = mappedkeys(x)

id_mapping = unlist(as.list(x[mapped_probes]))

1t = functional_enrichment(res, k = 3, id_mapping = id_mapping) # you can check the value of ~1t°

a list of data frames
simplifyGOFromMultipleLists(lt, padj_cutoff = 0.001)

a list of numeric values
1t2 = lapply(1lt, function(x) structure(x$p.adjust, names = x$ID))
simplifyGOFromMultiplelLists(1lt2, padj_cutoff = 0.001)

a list of GO IDS
1t3 = lapply(lt, function(x) x$ID[x$p.adjust < 0.001])
simplifyGOFromMultiplelLists(1t3)

summarizeGO A simplified way to visualize enrichment in GO clusters

Description

A simplified way to visualize enrichment in GO clusters

Usage

summarizeGO(
go_id,
value = NULL,
aggregate = mean,
method = "binary_cut”,
control = 1list(),
verbose = TRUE,
axis_label = "Value",
title = "",
legend_title = axis_label,
min_term = round(nrow(mat) * 0.01),
stat = "pvalue”,
min_stat = ifelse(stat == "count”, 5, 0.05),
exclude_words = character(0),
max_words = 6,
word_cloud_grob_param = list(),
fontsize_range = c(4, 16),
bg_gp = gpar(fill = "#DDDDDD", col = "#AAAAAA")

word_cloud_grob 27

Arguments
go_id A vector of GO IDs.
value A list of numeric value associate with go_id. We suggest to use -1log10(p.adjust)
or -log2(fold enrichment) as the values.
aggregate Function to aggregate values in each GO cluster.
method Method for clustering the matrix. See cluster_terms().
control A list of parameters for controlling the clustering method, passed to cluster_terms().
verbose Whether to print messages.
axis_label X-axis label.
title Title for the whole plot.

legend_title Title for the legend.

min_term Minimal number of functional terms in a cluster. All the clusters with size less
than min_term are all merged into one separated cluster in the heatmap.

stat Type of value for mapping to the font size of keywords in the word clouds. There
are two options: "count”": simply number of keywords; "pvalue": enrichment on
keywords is performed (by fisher’s exact test) and -log10(pvalue) is used to map
to font sizes.

min_stat Minimal value for stat for selecting keywords.
exclude_words Words that are excluded in the word cloud.

max_words Maximal number of words visualized in the word cloud.
word_cloud_grob_param
A list of graphic parameters passed to word_cloud_grob.

fontsize_range The range of the font size. The value should be a numeric vector with length
two. The font size interpolation is linear.

bg_gp Graphics parameters for controlling word cloud annotation background.

Details

There are several other ways to specify GO IDs and the associated values.

1. specify value as a named vector where GO IDs are the names.

2. specify value as a list of numeric named vectors. In this case, value contains multiple en-
richment results.

Please refer to https://jokergoo.github.i0/2023/10/02/simplified-simplifyenrichment-plot/
for more examples of this function.

word_cloud_grob A simple grob for the word cloud

Description

A simple grob for the word cloud

https://jokergoo.github.io/2023/10/02/simplified-simplifyenrichment-plot/

28 word_cloud_grob

Usage

word_cloud_grob(
text,
fontsize,
line_space = unit(4, "pt"),
word_space = unit(4, "pt"),
max_width = unit(80, "mm"),

col = function(fs) circlize::rand_color(length(fs), luminosity = "dark"),
add_new_line = FALSE,
test = FALSE

)

S3 method for class 'word_cloud'
widthDetails(x)

S3 method for class 'word_cloud'

heightDetails(x)
Arguments
text A vector of words.
fontsize The corresponding font size. With the frequency of the words known, scale_fontsize

can be used to linearly interpolate frequencies to font sizes.

line_space Space between lines. The value can be a grid: :unit object or a numeric scalar
which is measured in mm.

word_space Space between words. The value can be a grid: :unit object or a numeric
scalar which is measured in mm.

max_width The maximal width of the viewport to put the word cloud. The value can be
a grid::unit object or a numeric scalar which is measured in mm. Note this
might be larger than the final width of the returned grob object.

col Colors for the words. The value can be a vector, in numeric or character, which
should have the same length as text. Or it is a self-defined function that takes
the font size vector as the only argument. The function should return a color
vector. See Examples.

add_new_line Whether to add new line after every word? If TRUE, each word will be in a
separated line.

test Internally used. It basically adds borders to the words and the viewport.
X The word_cloud grob returned by word_cloud_grob.
Value

A grid::grob object. The width and height of the grob can be get by grid: :grobWidth and
grid: :grobHeight.

Examples

very old R versions do not have strrep() function
if(lexists("strrep”)) {
strrep = function(x, i) paste(rep(x, i), collapse = "")
3
words = sapply(1:30, function(x) strrep(sample(letters, 1), sample(3:10, 1)))

word_cloud_grob

require(grid)

gb = word_cloud_grob(words, fontsize = runif(30, min = 5, max = 30),
max_width = 100)

grid.newpage(); grid.draw(gb)

color as a single scalar

gb = word_cloud_grob(words, fontsize = runif (30, min
max_width = 100, col = 1)

grid.newpage(); grid.draw(gb)

5, max = 30),

color as a vector

gb = word_cloud_grob(words, fontsize = runif(30, min = 5, max = 30),
max_width = 100, col = 1:30)

grid.newpage(); grid.draw(gb)

color as a function

require(circlize)

col_fun = colorRamp2(c(5, 17, 30), c("blue”, "black”, "red"))

gb = word_cloud_grob(words, fontsize = runif (30, min = 5, max = 30),
max_width = 100, col = function(fs) col_fun(fs))

grid.newpage(); grid.draw(gb)

Index

all_clustering_methods
(register_clustering_methods),
19

all_clustering_methods(), 6, 8

anno_word_cloud, 2

anno_word_cloud_from_GO, 4

apcluster: :apcluster(), 6, 7

area_above_ecdf, 5

binary_cut (plot_binary_cut), 17
binary_cut(), 6, 12,15, 17,20, 21

circlize::colorRamp2(), 15
cluster::pam(), 17
cluster_by_apcluster (cluster_terms), 5
cluster_by_apcluster(), 6, 20
cluster_by_dynamicTreeCut
(cluster_terms), 5
cluster_by_dynamicTreeCut(), 6, 20
cluster_by_fast_greedy (cluster_terms),
5
cluster_by_fast_greedy(), 6, 20
cluster_by_hdbscan (cluster_terms), 5
cluster_by_hdbscan(), 6, 20
cluster_by_kmeans (cluster_terms), 5
cluster_by_kmeans(), 6, 19
cluster_by_leading_eigen
(cluster_terms), 5
cluster_by_louvain (cluster_terms), 5
cluster_by_louvain(), 6, 20
cluster_by_MCL (cluster_terms), 5
cluster_by_MCL(), 6, 20
cluster_by_mclust (cluster_terms), 5
cluster_by_mclust(), 6, 20
cluster_by_pam (cluster_terms), 5
cluster_by_walktrap (cluster_terms), 5
cluster_by_walktrap(), 6, 20
cluster_terms, 5
cluster_terms(), 12, 15, 19, 23,27
cmp_make_clusters, 7
cmp_make_plot (cmp_make_clusters), 7
compare_clustering_methods
(cmp_make_clusters), 7
ComplexHeatmap: :HeatmapList, 15

30

count_words, 9

dbscan: :hdbscan(), 6, 7
dend_node_apply, 10
difference_score, 11
difference_score(), 21
dynamicTreeCut: :cutreeDynamic(), 6, 7

edit_node (dend_node_apply), 10
export_to_shiny_app, 12

fpc: :pamk(), 7

GO_similarity, 13
GO_similarity(), 24
guess_ont (GO_similarity), 13

heightDetails.word_cloud
(word_cloud_grob), 27

ht_clusters, 14

ht_clusters(), 23

igraph::cluster_fast_greedy(),”7
igraph::cluster_leading_eigen(), 7
igraph::cluster_louvain(), 7
igraph::cluster_walktrap(), 7

keyword_enrichment_from_GO, 16

MCL::mcl(), 6, 7
mclust: :Mclust(), 6, 7

partition_by_hclust
(partition_by_kmeans), 17
partition_by_hclust(), I8
partition_by_kmeans, 17
partition_by_kmeanspp
(partition_by_kmeans), 17
partition_by_kmeanspp(), I8
partition_by_pam (partition_by_kmeans),
17
partition_by_pam(), I8
plot_binary_cut, 17

random_GO (GO_similarity), 13

INDEX

register_clustering_methods, 19

register_clustering_methods(), 6

remove_clustering_methods
(register_clustering_methods),
19

reset_clustering_methods
(register_clustering_methods),
19

scale_fontsize, 20

se_opt, 22

select_cutoff, 21
simona::all_term_sim_methods(), 13
simona::term_sim(), 13
simplifyEnrichment (simplifyGO0), 22
simplifyEnrichment(), 19
simplifyGo, 22
simplifyG0(), 19, 24, 25
simplifyGOFromMultiplelLists, 24
stats: :dendrapply(), 10

stats: :kmeans(), 7

summarizeGo, 26

widthDetails.word_cloud
(word_cloud_grob), 27

word_cloud_grob, 27

word_cloud_grob(), 15, 23

31

	anno_word_cloud
	anno_word_cloud_from_GO
	area_above_ecdf
	cluster_terms
	cmp_make_clusters
	count_words
	dend_node_apply
	difference_score
	export_to_shiny_app
	GO_similarity
	ht_clusters
	keyword_enrichment_from_GO
	partition_by_kmeans
	plot_binary_cut
	register_clustering_methods
	scale_fontsize
	select_cutoff
	se_opt
	simplifyGO
	simplifyGOFromMultipleLists
	summarizeGO
	word_cloud_grob
	Index

