Package ‘BindingSiteFinder’

January 22, 2026

Type Package
Title Binding site defintion based on iCLIP data
Version 2.8.0

Description Precise knowledge on the binding sites of an RNA-binding
protein (RBP) is key to understand (post-) transcriptional regulatory
processes. Here we present a workflow that describes how exact
binding sites can be defined from iCLIP data. The package provides functions
for binding site definition and result visualization. For details please
see the vignette.

License Artistic-2.0
Encoding UTF-8
VignetteBuilder knitr

Imports tidyr, tibble, plyr, matrixStats, stats, ggplot2, methods,
rtracklayer, S4Vectors, ggforce, GenomelnfoDb, ComplexHeatmap,
RColorBrewer, lifecycle, rlang, forcats, dplyr,

GenomicFeatures, IRanges, kableExtra, ggdist

Depends GenomicRanges, R (>=4.2)

Suggests testthat, BiocStyle, knitr, rmarkdown, GenomicAlignments,
scales, Gviz, xlsx, GGally, patchwork, viridis, ggplotify,
SummarizedExperiment, DESeq2, ggpointdensity, ggrastr, ashr,
txdbmaker, ggrepel, stringr

RoxygenNote 7.3.2

Collate 'AllClasses.R' 'AllGenerics.R' 'Functions.R' 'methods.R'
'bindingsites.R' 'helper.R' 'PlotFunction.R’
'CoverageFunctions.R' 'workflow.R' 'helperSpecific.R'
'exports.R' 'coveragePlots.R' 'bsfind.R' 'helperPlots.R'
'differentialFunctions.R’ 'differentialPlots.R’

biocViews Sequencing, GeneExpression, GeneRegulation,
FunctionalGenomics, Coverage, Datalmport
BugReports https://github.com/ZarnackGroup/BindingSiteFinder/issues
git_url https://git.bioconductor.org/packages/BindingSiteFinder
git_branch RELEASE_3_22
git_last_commit 74a4d9c
git_last_commit_date 2025-10-29

https://github.com/ZarnackGroup/BindingSiteFinder/issues

2 Contents

Repository Bioconductor 3.22
Date/Publication 2026-01-22

Author Mirko Briiggemann [aut, cre] (ORCID:
<https://orcid.org/0000-0002-1778-0248>),
Melina Klostermann [aut] (ORCID:
<https://orcid.org/0000-0003-3122-1095>),
Kathi Zarnack [aut] (ORCID: <https://orcid.org/0000-0003-3527-3378>)

Maintainer Mirko Briiggemann <mirko.brueggemann@mail.de>

Contents
add-BSFDataSet e 3
annotateWithScore 4
assignToGenes e 6
assignToTranscriptRegions 7
bindingSiteCoveragePlot 9
bindingSiteDefinednessPlot L o 10
BSFDataSet 11
BSFind 12
calculateBsBackgroundo 16
calculateBsFoldChange 19
calculateSignalToFlankScore 21
clipCoverage i e e 22
collapseReplicates e 24
combineBSF 25
coverageOverRanges L 27
duplicatedSitesPlot 28
estimateBsWidth 29
estimateBsWidthPlot 31
exportTargetGenes 32
exportToBED e 33
filterBsBackground 34
geneOverlapsPlot e 36
geneRegulationPlot 37
getMeta e e e e 39
getNAME e e e e 39
getRANGES e e 40
getSignal L e e e 41
GELSUMMATY o it e e e e e e e e e e e 42
globalScorePlot 42
imputeBsDifferencesForTestdata 43
makeBindingSites L. L 44
makeBsSummaryPlot L. 46
mergeCrosslinkDiagnosticsPlot 47
mergeSummaryPlot L e 47
plotBsBackgroundFilter 48
PIOtBSMA . . . e e 50
plotBsVolcano e e 51
processingStepsFlowChart Lo 52
processingStepsTable 52

pureClipGeneWiseFilter 53

https://orcid.org/0000-0002-1778-0248
https://orcid.org/0000-0003-3122-1095
https://orcid.org/0000-0003-3527-3378

add-BSFDataSet 3

pureClipGlobalFilter 55
pureClipGlobalFilterPlot 56
quickFigure L e e 56
rangeCoveragePlot 58
reproducibilityCutoffPlot oL 59
reproducibilityFilter 60
reproducibilityFilterPlot o 61
reproducibilitySamplesPlot oo 62
reproducibilityScatterPlot L 63
setMeta 64
setName e e 65
setRanges e 65
setSignalo L L 66
SELSUMMATY ot et e e e e e e e 67
show . . L L 68
subset-BSFDataSet 69
SUMMATY + « v v v v v e 69
supportRatio L e 70
supportRatioPlot 71
targetGeneSpectrumPlot oL oL oL 72
transcriptRegionOverlapsPlot L oo 72
transcriptRegionSpectrumPloto 0oL 73
Index 75
add-BSFDataSet Add two BSFDataSet objects
Description

Use ’+’ to add two objects of type BSFDataSet to each other.

Usage
S4 method for signature 'BSFDataSet,BSFDataSet'
el + e2

Arguments

el BSFDataSet; the first dataset
e2 BSFDataSet; the second dataset

Details

Meta data is extended by binding both input tables together. Ranges are added by re-centering
partially overlapping ranges according to their combined coverage maximum.

Input ranges must be of the same size. Differently size objects cannot be added. For this and other
usecases please see combineBSF.

Value

A BSFDataSet object with ranges, signal and meta data from both inputs.

4 annotate WithScore

Examples

load clip data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

make binding sites
bds = makeBindingSites(bds, bsSize = 7)

split ranges in two groups

allRanges = getRanges(bds)

set.seed(1234)

idx = sample(1:length(allRanges), size = length(allRanges)/2, replace = FALSE)
r1 = allRanges[idx]

r2 = allRanges[-idx]

splite meta data
allMeta = getMeta(bds)
ml = allMetal[1:2,]
m2 = allMetal3:4,]

create new objects

bds1 = setRanges(bds, r1)
bds2 = setRanges(bds, r2)
bds1 = setMeta(bds1, m1)

bds2 = setMeta(bds2, m2)

bds1 = setName(bds1, "test1")
bds2 = setName(bds2, "test2")

merge two objects with '+' operator
cl = bds1 + bds2

annotateWithScore Annotation function for BSFDataSet object

Description

This function can be used to annotate a BSFDataSet object with merged binding sites with scores
from the initial ranges (eg. PureCLIP scores).

Usage
annotateWithScore(
object,
match.ranges = NULL,
match.score = "score”,
match.option = c("max", "sum”, "mean”),

scoreRanges = lifecycle: :deprecated(),
MatchColScore = lifecycle: :deprecated(),
quiet = FALSE

annotate WithScore 5

Arguments

object a BSFDataSet object
match.ranges a GRanges object, with numeric column for the score to match

match.score character; meta column name of the crosslink site GenomicRanges object that
holds the score to match

match.option character; option how score should be matched
scoreRanges deprecated -> use match.ranges instead
MatchColScore deprecated -> use match.score instead

quiet logical; whether to print messages

Details

The function is part of the standard workflow performed by BSFind.

Value

an object of class BSFDataSet with updated meta columns of the ranges

See Also

BSFind, globalScorePlot

Examples

if (.Platform$0S.type != "windows") {
load data
csFile <- system.file("extdata”, "PureCLIP_crosslink_sites_examples.bed”,
package="BindingSiteFinder")
cs = rtracklayer::import(con = csFile, format = "BED",
extraCols=c("additionalScores” = "character”))
cs$additionalScores = NULL
clipFiles <- system.file("extdata"”, package="BindingSiteFinder")
two experimental conditions
meta = data.frame(
id = ¢(1,2,3,4),
condition = factor(c("WT", "WT", "KD", "KD"),
levels = c("KD", "WT")),
clPlus = list.files(clipFiles, pattern = "plus.bw$”, full.names = TRUE),
clMinus = list.files(clipFiles, pattern = "minus.bw$",
full.names = TRUE))
bds = BSFDataSetFromBigWig(ranges = cs, meta = meta, silent = TRUE)

merge binding sites
bds <- makeBindingSites(object = bds, bsSize = 9, minWidth = 2,
minCrosslinks = 2, minClSites = 1)

annotate with original pureCLIP score
bdsRe = annotateWithScore(bds, cs)

6 assignToGenes

assignToGenes Assign binding sites to their hosting genes

Description

Function that assigns each binding site in the BSFDataSet to its hosting gene given a gene annota-
tion (anno.annoDB, anno. genes).

Usage
assignToGenes(
object,
overlaps = c("frequency”, "hierarchy”, "remove", "keep"),

overlaps.rule = NULL,
anno.annoDB = NULL,
anno.genes = NULL,
match.genelD = "gene_id",
match.geneName = "gene_name”,
match.geneType = "gene_type",
quiet = FALSE

)
Arguments
object a BSFDataSet object with stored binding sites. This means that ranges should
be > 1
overlaps character; how overlapping gene loci should be handled.

overlaps.rule character vector; a vector of gene type that should be used to handle overlap-
ping cases in a hierarchical manor. The order of the vector is the order of the

hierarchy.

anno.annoDB an object of class OrganismDbi that contains the gene annotation (!!! Experi-
mental !!!).

anno.genes an object of class GenomicRanges that represents the gene ranges directly

match.genelD character; meta column name of the gene ID
match.geneName character; meta column name of the gene name
match.geneType character; meta column name of the gene type

quiet logical; whether to print messages

Details

Regardless of the annotation source that is being used, the respective meta information about the
genes have to be present. They can be set by the match.geneID, match.geneName and match.geneType
arguments.

In the case of overlapping gene annotation, a single binding site will be associated with multiple
genes. The overlaps parameter allows to decide in these cases. Option ‘frequency‘ will take the
most frequently observed gene type, option ‘hierarchy‘ works in conjunction with a user defined
rule (overlaps.rule). Options ‘remove‘ and ‘keep‘ will remove or keep all overlapping cases,
respectively.

assignToTranscriptRegions 7

Note that if an overlaps exists, but gene types are identical options ‘frequency‘ and ‘hierarchy* will
cause the gene that was seen first to be selected as representative.

The function is part of the standard workflow performed by BSFind.

Value
an object of class BSFDataSet with binding sites having hosting gene information added to their
meta columns.

See Also

BSFind, geneOverlapsPlot, targetGeneSpectrumPlot

Examples

load clip data
files <- system.file("extdata”, package="BindingSiteFinder")

load(list.files(files, pattern = ".rda$", full.names = TRUE))
Load GRanges with genes
load(list.files(files, pattern = ".rds$", full.names = TRUE)[1])

bds = makeBindingSites(object = bds, bsSize = 9)
bds = assignToGenes(bds, anno.genes = gns)

assignToTranscriptRegions
Assign binding sites to their hosting transcript regions

Description

Function that assigns each binding site in the BSFDataSet to its hosting transcript region given an
annotation database (anno. annoDB), or a GRanges list/ CompressedGRangesList (anno.transcriptRegionList)
that holds the ranges for the transcript regions of interest.

Usage
assignToTranscriptRegions(
object,
overlaps = c("frequency”, "hierarchy”, "flag", "remove"),

overlaps.rule = NULL,
anno.annoDB = NULL,
anno.transcriptRegionList = NULL,
normalize.exclude.upper = 0.02,
normalize.exclude.lower = 0.02,
quiet = FALSE

8 assignToTranscriptRegions

Arguments
object a BSFDataSet object with stored binding sites. This means that ranges should
be > 1
overlaps character; how overlapping transcript regions should be handled.

overlaps.rule character vector; a vector of transcript region names that should be used to han-
dle overlapping cases in a hierarchical manor. The order of the vector is the
order of the hierarchy.

anno.annoDB an object of class OrganismDbi that contains the transcript region annotation
(!"! Experimental !!!).

anno.transcriptRegionList
an object of class CompressedGRangesList that holds an ranges for each tran-
script region

normalize.exclude.upper
numeric; percentage value that indicates the upper boundary for transcript region
length to be considered when calculating normalization factors for regions.

normalize.exclude.lower
numeric; percentage value that indicates the lower boundary for transcript region
length to be considered when calculating normalization factors for regions.

quiet logical; whether to print messages

Details
Since the assignment is based on the overlaps of annotated transcript ranges and binding sites, no
matching meta data is needed.

In the case of transcript regions overlaps are very frequent. To resolve these cases the overlaps
argument can be used. Option ‘frequency‘ will take the most frequently observed transcript re-
gion, option ‘hierarchy‘ works in conjunction with a user defined rule (overlaps.rule). Options
‘flag® and ‘remove‘ will label binding sites with an ambiguous tag or remove all overlapping cases,
respectively.

The function is part of the standard workflow performed by BSFind.

Value

an object of class BSFDataSet with binding sites having hosting transcript region information added
to their meta columns.

See Also

BSFind, transcriptRegionOverlapsPlot, transcriptRegionSpectrumPlot

Examples

load clip data
files <- system.file("extdata”, package="BindingSiteFinder")

load(list.files(files, pattern = ".rda$", full.names = TRUE))
load(list.files(files, pattern = ".rds$", full.names = TRUE)[1])
load(list.files(files, pattern = ".rds$", full.names = TRUE)[2])

bds = makeBindingSites(object = bds, bsSize = 9)
bds = assignToGenes(bds, anno.genes = gns)
bds = assignToTranscriptRegions(object = bds, anno.transcriptRegionList = regions)

bindingSiteCoveragePlot 9

bindingSiteCoveragePlot
Plot signal coverage of selected ranges

Description

Function plots the coverage of the CLIP data in the signal slot and plots it as coverage. The plot is
centered around a given binding site, which can be selected by an index.

Usage

bindingSiteCoveragePlot(
object,
plotIdx,
flankPos,
shiftPos = NULL,
mergeReplicates = FALSE,
autoscale = FALSE,
highlight = TRUE,
showCentralRange = TRUE,
customRange = NULL,
customRange.name = "custom”,
customAnnotation = NULL,
customAnnotation.name = "anno”,
title = NULL,
colorPalette = NULL

Arguments

object a BSFDataSet object
plotIdx integer, index of the range to plot

flankPos numeric, number of nucleotides by which the plotting frame is symmetrically
extended

shiftPos numeric, nucleotide positions by which the current plotting range should be
shifted

mergeReplicates
logical, if replicates should be merge per condition (TRUE) or if every replicates
should be shown separately (FALSE)

autoscale logical, if y-axis should be scaled to the maximum for all replicates (TRUE), or
not (FALSE)

highlight logical, if the central range should be highlighted (TRUE), or not (FALSE)

showCentralRange

logical, if the central range should be shown (TRUE), or not (FALSE)

customRange GenomicRanges, a custom range object to be shown underneath the coverage
tracks
customRange.name

character, the name of the customRange track

10 bindingSiteDefinednessPlot

customAnnotation

GenomicRanges or TxDb, a custom annotation for eg. gene, exons, etc. to be
shown underneath the coverage tracks
customAnnotation.name

character, the name of the customAnnotation track
title character, set plotting title

colorPalette vector, hex colors used for the conditions

Value

an object of class GVIZ

See Also

BSFDataSet, BSFind

Examples
load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

bindingSiteCoveragePlot(bds, plotIdx = 3, flankPos = 10)

bindingSiteDefinednessPlot
Binding site definedness plot

Description

Binding site definedness is given by the percent of crosslinks that fall diretly inside the binding site
compare to those around the binding site. This plotting function shows the distribution of those
percentage values grouped by what is indicated in the by argument.

Usage

bindingSiteDefinednessPlot(
object,
by = c("all”, "transcript_region”, "gene_type"),

showN.genes = 5,
show.others = FALSE
)
Arguments
object a BSFDataSet object
by character; the option by which the plot should be grouped by. Options are: "all",
"transcript_region", "gene_type"
showN. genes numeric; if by is ‘gene_type°, then this argument set the maximum number of

groups to be shown in the plot
show.others logical; whether to show ’others’ category.

BSFDataSet 11

Details

If by =all’, then all binding site are grouped into one distribution. For options ’transcript_region’
and ’gene_type’ binding sites are split into groups according to the respective assignment. This
requires that the respective assignment function was executed on the dataset prior to calling this
plot function.

Value

a plot of type ggplot

See Also

BSFind, calculateSignalToFlankScore

Examples

load clip data
files <- system.file("extdata”, package="BindingSiteFinder")

load(list.files(files, pattern = ".rda$"”, full.names = TRUE))
load(list.files(files, pattern = ".rds$", full.names = TRUE)[1])
load(list.files(files, pattern = ".rds$"”, full.names = TRUE)[2]1)

bds = BSFind(bds, anno.genes = gns, anno.transcriptRegionList = regions,
est.subsetChromosome = "chr22")

bds = calculateSignalToFlankScore(bds)
bindingSiteDefinednessPlot (bds)

BSFDataSet BSFDataSet object and constructors

Description

BSFDataSet contains the class GenomicRanges, which is used to store input ranges. Alongside with
the iCLIP signal in 1ist structure and additional meta data as data. frame.

Usage

BSFDataSet(ranges, meta, signal, dropSeqlevels = TRUE, silent = FALSE)

BSFDataSet(ranges, meta, signal, dropSeqlevels = TRUE, silent = FALSE)

BSFDataSetFromBigWig(ranges, meta, silent = FALSE, dropSeqlevels = TRUE)

Arguments
ranges a GenomicRanges with the desired ranges to process. The strand slot must be
either + or -.
meta a data. frame with at least two columns. The first column should be a unique

numeric id. The second column holds sample type information, such as the
condition.

12 BSFind

signal a list with the two entries ’signalPlus’ and ’signalMinus’, following a special
representation of SimpleRlelList for counts per replicates (see details for more
information).

dropSeqlevels enforce seqnames to be the same in ranges and signal, by dropping unused se-
qlevels which is required for most downstream functions such as coverageOverRanges

silent suppress messages but not warnings (TRUE/ FALSE)

Details

"non

The ranges are enforced to have to have a "+" or strand annotation,"*" is not allowed. They are
expected to be of the same width and a warning is thrown otherwise.

The meta information is stored as data.frame with at least two required columns, ’id” and ’con-
dition’. They are used to build the unique identifier for each replicate split by ’_’ (eg. id = 1 and
condition = WT will result in 1_WT).

The meta data needs to have the additional columns ’cIPlus’ and ’cIMinus’ to be present if BSFDataSetFromBigWig
is called. It is used to provide the location to the iCLIP coverage files to the import function. On

object initialization these files are loaded and internally represented in the signal slot of the object

(see BSFDataSet).

The iCLIP signal is stored in a special list structure. At the lowest level crosslink counts per nu-
cleotide are stored as Rle per chromosome summarized as a SimpleRlelList. Such a list exits for
each replicate and must be named by the replicate identifier (eg. 1_WT). Therefore this list contains
always exactly the same number of entries as the number of replicates in the dataset. Since we
handle strands initially seperated from each other this list must be given twice, once for each strand.
The strand specific entries must be named ’signalPlus’ and ’signalMinus’.

The option dropSeqlevels forces the seqnames of the ranges and the signal to be the same. If for
a specific chromosome in the ranges no respective entry in the signal list can be found, then entries
with that chromosome are dropped This behavior is needed to keep the BSFDataSet object in sync,
which is required for downstream functions such as coverageOverRanges

Value

A BSFDataSet object.

Examples

load data

files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$"”, full.names = TRUE))
rng = getRanges(bds)

sgn = getSignal(bds)

mta = getMeta(bds)

bdsNew = BSFDataSet(ranges = rng, signal = sgn, meta = mta)

BSFind RBP binding site definition for iCLIP data

BSFind 13

Description

This is the main function that performs the binding site definition analysis through the following
steps:
1. Filter PureCLIP sites by their score distribution: pureClipGlobalFilter

2. Estimate the appropriate binding site width together with the optimal gene-wise filter level:
estimateBsWidth

. Filter PureCLIP sites by their score distribution per gene: pureClipGeneWiseFilter

. Define equally sized binding sites: makeBindingSites

. Perform replicate reproducibility filter: reproducibilityFilter

. Assign binding sites to their hosting genes: assignToGenes

. Assign binding sites to their hosting transcript regions: assignToTranscriptRegions

. Re-assign PureCLIP scores to binding sites: annotateWithScore

O 0 9 & L B~ W

. Calculation of signal-to-flank ratio: calculateSignalToFlankScore

Usage

BSFind(
object,
bsSize = NULL,
cutoff.geneWiseFilter = NULL,
cutoff.globalFilter = 0.01,
est.bsResolution = "medium”,
est.geneResolution = "medium”,
est.maxBsWidth = 13,
est.minimumStepGain = 0.02,
est.maxSites = Inf,
est.subsetChromosome = "chri1”,
est.minWidth = 2,
est.offset = 1,
est.sensitive = FALSE,
est.sensitive.size = 5,
est.sensitive.minWidth = 2,
merge.minWidth = 2,
merge.minCrosslinks = 2,
merge.minClSites = 1,
merge.CenterIsClSite = TRUE,
merge.CenterIsSummit = TRUE,
repro.cutoff = NULL,
repro.nReps = NULL,
repro.minCrosslinks = 1,
overlaps.geneWiseFilter = "keepSingle",
overlaps.geneAssignment = "frequency”,
overlaps.rule.geneAssignment = NULL,
overlaps.TranscriptRegions = "frequency”,
overlaps.rule.TranscriptRegions = NULL,
stf.flank = "bs",
stf.flank.size = NULL,
match.score = "score”,
match.geneID = "gene_id",

14 BSFind

match.geneName = "gene_name”,
match.geneType = "gene_type”,
match.ranges.score = NULL,
match.option.score = "max",
anno.annoDB = NULL,

anno.genes = NULL,
anno.transcriptRegionList = NULL,
quiet = FALSE,

veryQuiet = FALSE,

)
Arguments
object a BSFDataSet object with stored ranges
bsSize an odd integer value specifying the size of the output binding sites

cutoff.geneWiseFilter
numeric; defines the cutoff for which sites to remove in in function pureClipGeneWiseFilter.
The smallest step is 1% (0.01). A cutoff of 5% will remove the lowest 5% sites,
given their score, on each gene, thus keeping the strongest 95%.
cutoff.globalFilter
numeric; defines the cutoff for which sites to keep, the smallest step is 1% (0.01)
in function pureClipGlobalFilter
est.bsResolution
character; level of resolution of the binding site width in function estimateBsWidth
est.geneResolution
character; level of resolution of the gene-wise filtering in function estimateBsWidth

est.maxBsWidth numeric; the largest binding site width which should considered in the testing

est.minimumStepGain
numeric; the minimum additional gain in the score in percent the next binding
site width has to have, to be selected as best option

est.maxSites numeric; maximum number of PureCLIP sites that are used

est.subsetChromosome
character; define on which chromosome the estimation should be done in func-
tion estimateBsWidth

est.minWidth the minimum size of regions that are subjected to the iterative merging routine,
after the initial region concatenation.

est.offset constant added to the flanking count in the signal-to-flank ratio calculation to
avoid division by Zero

est.sensitive logical; whether to enable sensitive pre-filtering before binding site merging or

not
est.sensitive.size

numeric; the size (in nucleotides) of the merged sensitive region
est.sensitive.minWidth
numeric; the minimum size (in nucleoties) of the merged sensitive region
merge.minWidth the minimum size of regions that are subjected to the iterative merging routine,
after the initial region concatenation.
merge.minCrosslinks
the minimal number of positions to overlap with at least one crosslink event in
the final binding sites

BSFind 15

merge.minClSites

the minimal number of crosslink sites that have to overlap a final binding site
merge.CenterIsClSite

logical, whether the center of a final binding site must be covered by an initial

crosslink site
merge.CenterIsSummit

logical, whether the center of a final binding site must exhibit the highest number
of crosslink events
repro.cutoff numeric; percentage cutoff to be used for the reproducibility quantile filtering
repro.nReps numeric; number of replicates that must meet the cutoff defined in repro. cutoff
for a binding site to be called reproducible. Defaults to N-1.
repro.minCrosslinks
numeric; minimal number of crosslinks a binding site needs to have to be called
reproducible. Acts as a lower boundary for repro.cutoff. Defaults to 1.
overlaps.geneWiseFilter
character; how overlaps should be handled in pureClipGeneWiseFilter
overlaps.geneAssignment
character; how overlaps should be handled in assignToGenes
overlaps.rule.geneAssignment
character vector; a vector of gene types that should be used to handle overlaps if
option ’hierarchy’ is selected for assignToGenes. The order of the vector is the
order of the hierarchy.
overlaps.TranscriptRegions
character; how overlaps should be handled in assignToTranscriptRegions
overlaps.rule.TranscriptRegions
character vector; a vector of gene types that should be used to handle overlaps if
option ’hierarchy’ is selected for assignToTranscriptRegions. The order of
the vector is the order of the hierarchy.
stf.flank character; how the flanking region shoule be set. Options are ’bs’, 'manual’
stf.flank.size numeric; if flank="manual’ provide the desired flanking size
match.score character; meta column name of the crosslink site
match.genelD character; meta column name of the genes
match.geneName character; meta column name of the gene name

match.geneType character; meta column name of the gene type

match.ranges.score
a GRanges object, with numeric column for the score to match in function
annotateWithScore

match.option.score

character; meta column name of the crosslink site in function annotateWithScore

anno.annoDB an object of class OrganismDbi that contains the gene annotation !!! Experi-
mental !!!
anno.genes an object of class GenomicRanges that represents the gene ranges directly

anno.transcriptRegionList
an object of class CompressedGRangesList that holds an ranges for each tran-
script region

quiet logical; whether to print messages

veryQuiet logical; whether to suppress all messages

additional arguments passed to estimateBsWidth, makeBindingSites and reproducibilityFilte

16 calculateBsBackground

Details

If only the annotation is provided (anno.genes and anno.transcriptRegionList), then binding
sites size (bsSize) and gene-wise cutoff (cutoff.geneWiseFilter) are estimated using estimateBsWidth.
To avoid this behavior one has to provide input values for the arguments bsSize and cutoff.geneWiseFilter.

If no binding site size is provided through bsSize, then estimateBsWidth is called to estimate the
optimal size for the given data-set. The result of this estimation can be looked at with estimateBsWidthPlot
and arguments can be adjusted if needed.

Use the processingStepsFlowChart function to get an overview of all steps carried out by the
function.

For complete details on each step, see the manual pages of the respective functions. The BSFind
function returns a BSFDataSet with ranges merged into binding sites. A full flowchart for the
entire process can be visualized with processingStepsFlowChart. For each of the individual steps
dedicated diagnostic plots exists. Further information can be found in our Bioconductor vignette:
https://www.bioconductor.org/packages/release/bioc/html/BindingSiteFinder.html

Value

an object of class BSFDataSet with ranges merged into binding sites given the inputs.

See Also

BSFDataSet, estimateBsWidth, pureClipGlobalFilter, pureClipGeneWiseFilter, assignToGenes,
assignToTranscriptRegions, annotateWithScore, reproducibilityFilter, calculateSignalToFlankScore,
processingStepsFlowChart

Examples

load clip data
files <- system.file("extdata”, package="BindingSiteFinder")

load(list.files(files, pattern = ".rda$"”, full.names = TRUE))

Load genes

load(list.files(files, pattern = ".rds$", full.names = TRUE)[1])

load transcript regions

load(list.files(files, pattern = ".rds$"”, full.names = TRUE)[2])
BSFind(object = bds, bsSize = 9, anno.genes = gns,
anno.transcriptRegionlList = regions, est.subsetChromosome = "chr22")

calculateBsBackground Compute background coverage for binding sites per gene

Description

This function computes the background coverage used for the differential binding analysis to correct
for transcript level changes. Essentially, the crosslink signal on each gene is split into crosslinks that
can be attributed to the binding sites and all other signal that can be attributed to the background.

https://www.bioconductor.org/packages/release/bioc/html/BindingSiteFinder.html

calculateBsBackground 17

Usage

calculateBsBackground(
object,
anno.annoDB = NULL,
anno.genes = NULL,
blacklist = NULL,
use.offset = TRUE,
ranges.offset = NULL,
match.geneID.gene = "gene_id",
match.genelD.bs = "genelID",
match.geneID.blacklist = "genelD",
generate.genelD.bs = FALSE,
generate.genelD.blacklist = FALSE,
uniquelD.gene = "gene_id",
uniquelID.bs = "bsID",
uniqueID.blacklist = "bsID",
force.unequalSites = FALSE,
quiet = FALSE,
veryQuiet = TRUE,

)
Arguments
object a BSFDataSet object with two conditions
anno.annoDB an object of class OrganismDbi that contains the gene annotation.
anno.genes an object of class GenomicRanges that represents the gene ranges directly
blacklist GRanges; genomic ranges where the signal should be excluded from the back-
ground
use.offset logical; if an offset region around the binding sites should be used on which the

signal is excluded from the background

ranges.offset numeric; number of nucleotides the offset window around each binding site
should be wide (defaults to 1/2 binding site width - NULL)

match.genelD.gene
character; the name of the column with the gene ID in the genes meta columns
used for matching binding sites to genes

match.genelD.bs
character; the name of the column with the gene ID in the binding sites meta
columns used for matching binding sites to genes

match.genelD.blacklist
character; the name of the column with the gene ID in the blacklist meta columns
used for matching the blacklist regions with the genes

generate.genelD.bs
logical; if the binding site to gene matching should be performed if no matching
gene ID is provided

generate.genelD.blacklist
logical; if the blacklist to gene matching should be performed if no matching
gene ID is provided

uniquelD.gene character; column name of a unique ID for all genes

18 calculateBsBackground

uniquelD.bs character; column name of a unique ID for all binding sites
uniqueID.blacklist

character; column name of a unique ID for all blacklist regions
force.unequalSites

logical; if binding sites of not identical width should be allowed or not

quiet logical; whether to print messages or not
veryQuiet logical; whether to print messages or not

additional arguments; passed to assignToGenes

Details

To avoid that crosslinks from binding sites contaminate the background counts a protective region
around each binding sites can be spanned with use.offset the default width of the offset region is
half of the binding site width, but can also be changed with the ranges.offset parameter.

Additional region that one wants to exclude from contributing to the background signal can be
incorporated as GRanges objects through the blacklist option.

It is expected that binding sites are assigned to hosting genes prior to running this funciton (see
BSFind). This means a unique gene ID is present in the meta columns of each binding site ranges.
If this is not the case one can invoce the binding site to gene assignment with generate.genelD.bs.
The same is true for the blacklist regions with option generate.genelID.blacklist.

It is expected that all binding sites are of the same size (See BSFind on how to achieve this).
If this is however not the case and one wants to keep binding sites of different with then option
force.unequalSites can be used.

This function is intended to be used for the generation of the count matrix used for the differential
binding analysis. It is usually preceded by combineBSF and followed by filterBsBackground.

Value

an object of class BSFDataSet with counts for binding sites, background and total gene added to
the meta column of the ranges

See Also

combineBSF, filterBsBackground

Examples

load clip data

files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$"”, full.names = TRUE))
load(list.files(files, pattern = ".rds$", full.names = TRUE)[1])

make binding sites
bds = makeBindingSites(bds, bsSize = 7)
bds = assignToGenes(bds, anno.genes = gns)

change meta data

m = getMeta(bds)

m$condition = factor(c("WT", "WT", "KO", "KO"), levels = c("WT", "KO"))
bds = setMeta(bds, m)

change signal

calculateBsFoldChange

s = getSignal(bds)

names(s$signalPlus) = paste@(m$id, "_",
names(s$signalMinus) = pasteo(m$id, "_",
bds = setSignal(bds, s)

make example blacklist region
myBlacklist = getRanges(bds)
set.seed(1234)
myBlacklist = sample(myBlacklist, size =
make background

bds.b1 = calculateBsBackground(bds, anno.genes

make background - no offset
bds.b2 = calculateBsBackground(bds, anno.genes

make background - use blacklist
bds.b3 = calculateBsBackground(bds, anno.genes

500) + 4

19

m$condition)
m$condition)

gns)

gns, use.offset = FALSE)

gns, blacklist = myBlacklist)

calculateBsFoldChange Compute fold-changes per binding site

Description

Given count data for binding sites and background regions this function will compute fold-changes
between two condition for each binding site. Computation is based on DESeq using the Likelihood
ratio test to disentangle transcription level changes from binding site level changes.

Usage
calculateBsFoldChange(
object,
fitType = "local”,
sfType = "ratio”,

minReplicatesForReplace = 10,
independentFiltering = TRUE,

alpha = 0.05,

pAdjustMethod = "BH",

minmu = 0.5,

filterFun = NULL,

use.lfc.shrinkage = FALSE,

type = c("ashr”, "apeglm”, "normal”),
svalue = FALSE,

apeAdapt = TRUE,

apeMethod = "nbinomCR",

match.geneID = "genelD”,

quiet = TRUE,
veryQuiet = FALSE,
replaceNegative =
removeNA = FALSE

FALSE,

20

Arguments

object
fitType

sfType

calculateBsFoldChange

a BSFDataSet object

either "parametric”, "local", "mean", or "glmGamPoi" for the type of fitting of
dispersions to the mean intensity. See DESeq for more details.

non

either "ratio", "poscounts”, or "iterate" for the type of size factor estimation. See
DESeq for more details.

minReplicatesForReplace

the minimum number of replicates required in order to use replaceOutliers on a
sample. See DESeq for more details.

independentFiltering

alpha

pAdjustMethod
minmu

filterFun

logical, whether independent filtering should be applied automatically. See
results for more details.

the significance cutoff used for optimizing the independent filtering. See results
for more details.

he method to use for adjusting p-values. See results for more details.
lower bound on the estimated count. See results for more details.

an optional custom function for performing independent filtering and p-value
adjustment. See results for more details.

use.1lfc.shrinkage

type

svalue

apeAdapt

apeMethod

match.genelD

quiet

veryQuiet

replaceNegative

removeNA

Details

logical; whether to compute shrunken log2 fold changes for the DESeq results.
See 1fcShrink for more details.

if “ashr’, ’apeglml’ or *normal’ should be used for fold change shrinkage. See
1fcShrink for more details.

logical, should p-values and adjusted p-values be replaced with s-values when
using apeglm or ashr. See 1fcShrink for more details.

logical, should apeglm use the MLE estimates of LFC to adapt the prior. See
1fcShrink for more details.

what method to run apeglm, which can differ in terms of speed. See 1fcShrink
for more details.

character; the name of the column with the gene ID in the binding sites meta
columns used for matching binding sites to genes

logical; whether to print messages or not

logical; whether to print messages or not

logical; force negative counts to be replaces by 0. Be careful when using this,
having negative counts can point towards problems with the gene annotation in
use.

logical; force binding sites with any NA value to be removed. Be careful when
using this, having negative counts can point towards problems with the gene
annotation in use.

Fold-changes per binding sites are corrected for transcript level changes. Essentially, background
counts are used to model transcript level changes, which are then used to compute fold-changes per
binding site, which are corrected for the observed transcript level changes. This is done by using a

calculateSignal ToFlankScore 21

Likelihood ratio test comparing the full model (~condition + type + condition:type) to the reduced
model (~condition + type).

Fold-changes for the transcript level changes are modeled explicitly in a second round of the DESeq
workflow, using the default Wald test to compare changes between the conditions (~condition).
Counts attributed to binding sites are removed from the gene level counts.

Results from both calculation rounds can be filtered and further manipulated with parameters given
in the DESeq?2 framework (see results, 1fcShrink).

This function is intended to be used right after a call of filterBsBackground.

Value

aBSFDataSet object, with results from the DESeq analysis added to the meta columns of the binding
site ranges.

See Also

calculateBsBackground, filterBsBackground, plotBsBackgroundFilter, DESeq

Examples

load clip data

files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))
load(list.files(files, pattern = ".rds$", full.names = TRUE)[1])

make example dataset

bds = makeBindingSites(bds, bsSize = 7)

bds = assignToGenes(bds, anno.genes = gns)

bds = imputeBsDifferencesForTestdata(bds)

bds = calculateBsBackground(bds, anno.genes = gns)

calculate fold changes - no shrinkage
bds = calculateBsFoldChange(bds)

calculate fold changes - with shrinkage
bds = calculateBsFoldChange(bds, use.lfc.shrinkage = TRUE)

calculateSignalToFlankScore
Calculate signal-to-flank score

Description

This function calculates the signal-to-flank ratio for all present binding sites.

Usage

calculateSignalToFlankScore(
object,
flank = c¢("bs", "manual”),
flank.size = NULL,
quiet = FALSE

22 clipCoverage
Arguments
object a BSFDataSet object
flank character; how the flanking region shoule be set. Options are ’bs’, 'manual’
flank.size numeric; if flank="manual’ provide the desired flanking size
quiet logical; whether to print messages
Details

Each input range is treated as a binding site. For a particular binding site all overlapping crosslinks
are summed up and divided by the normalized sum of the crosslinks in the two adjecent regions of
the same size. This is done for all bining sites and the ratio is reported as a score.

The function is part of the standard workflow performed by BSFind.

Value

Se

an object of class BSFDataSet with signal-to-flank ratios added to the meta column of the ranges.

e Also

BSFind, bindingSiteDefinednessPlot

Examples

load clip data

files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))
bds = makeBindingSites(bds, bsSize = 5)

bds = calculateSignalToFlankScore(bds)

clipCoverage Coverage function for BSFDataSet objects

Description

Function that computes a crosslink coverage with all samples over all ranges given in the BSFDataSet.
The coverage can be summarized over all combinations of the three dimension (samples, ranges,
positions).

Usage
clipCoverage(
object,
ranges.merge = FALSE,
ranges.merge.method = c("sum”, "mean”),
positions.merge = FALSE,
positions.merge.method = c("sum”, "mean”),
samples.merge = TRUE,
samples.group = c("all”, "condition"),

samples.merge.method = c("sum”, "mean"),

clipCoverage 23

out.format = c("granges"”", "data.frame"),
out.format.overwrite = FALSE,
match.rangeID = "bsID”,

quiet = FALSE

Arguments

object a BSFDataSet object

ranges.merge logical; whether to merge ranges
ranges.merge.method

character; how to combine ranges (sum’ or "'mean’)
positions.merge

logical; whether to merge positions
positions.merge.method

character; how to combine positions (’sum’ or 'mean’)

samples.merge logical: whether to merge samples

samples.group character; how samples should be grouped when combining (*all’, ’condition’)
samples.merge.method
charater; how to combine positions ("sum’ or 'mean’)

out.format character; how the coverage should be returned (*data.frame’ or ’granges’). Note
that option ’granges’ only exists if the output coverage is of the same rows as
the input ranges.

out.format.overwrite
logical; if out. format="granges', then decide wheter the meta columns should
be extended by the coverage information or be overwritten

match.rangeID character; unique internal identifier. Name of the meta column of the input
ranges that should be used as identifier to match the coverage back to the in-
put ranges. Is 'bsID’ as default, since that ID exists for all binding sites after
makeBindingSites was called.

quiet logical; whether to print messages

Details

When summarizing the crosslink coverage over samples (samples.merge=TRUE) one can decide
whether to summarize all samples or whether to keep conditions separate (samples.group). This
either reduces the samples dimension to a single matrix, or a list. For a binding site set with 100
binding sites of width=7 and 4 replicates with 2 conditions, the following options are possible.
With merging enabled and samples.group="all' the coverage of all samples is combined. With
samples.group="'condition' only samples of the same condition are grouped.

When summarizing the crosslink coverage over ranges, all ranges are combined which reduces the
ranges dimension to a single vector. This turns eg. a binding site set of 100 binding sites with
width=7 into a vector of length 100 with exactly one column. Depending on how the samples were
summarized, the result can be a single such vector, or a list.

When summarizing the crosslink coverage over positions, all positions are combined which reduces
the positions dimension to a single vector. This turns eq. a binding site set of 100 binding sites with
width=7 into a vector of length 1 with 7 columns. Depending on how the samples were summarized,
the result can be a single such vector, or a list.

For all summarizing operations options sum and mean exists. This allows for normalization by the
eg. the number of binding sites, size of the range, number of sample, etc..

24 collapseReplicates

If the resulting object does have a dimension that fits to the number of input ranges the result can
be directly attached to them. Basically extending the GRanges object (out.format).

Value

an object of class specified in out. format

See Also

BSFDataSet, BSFind

Examples
load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

bds = makeBindingSites(bds, bsSize = 7)

sum of each replicate over each binding site position

cl = clipCoverage(bds, out.format = "data.frame”, positions.merge = TRUE,
ranges.merge = FALSE, samples.merge = FALSE)

total signal per binding site from all samples

c2 = clipCoverage(bds, out.format = "granges"”, positions.merge = FALSE,
ranges.merge = TRUE, samples.merge = TRUE, samples.group = "all")

total signal per binding site from all samples - split by condition

c3 = clipCoverage(bds, out.format = "granges"”, positions.merge = FALSE,
ranges.merge = TRUE, samples.merge = TRUE, samples.group = "condition")
collapseReplicates Collapse signal from replicates
Description

Collapses all replicates merges all samples from a BSFDataSet object into a single signal stream,
only split by minus and plus strand.
Usage

collapseReplicates(object, collapseAll = FALSE)

Arguments

object a BSFDataSet object

collapseAll TRUE/FALSE, if all samples should be collapsed (TRUE), or if samples should
be kept separate by condition (FALSE)

Value

object of type BSFDataSet with updated signal

See Also

BSFDataSet

combineBSF 25

Examples
load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$"”, full.names = TRUE))

bdsNew = collapseReplicates(bds)

combineBSF Combine multiple BSFDataSet objects

Description

This function combines all BSFDataSet objects from the input list into a single BSFDataSet object.

Usage

combineBSF(
list,
overlaps.fix = TRUE,
combine.bsSize = NULL,
combine.name = NULL,
force.reload = FALSE,

quiet = TRUE,
veryQuiet = FALSE
)
Arguments
list list; a list of objects from class BSFDataSet that should be combined

overlaps.fix logical; if partially overlapping binding sites should be re-centered

combine.bsSize numeric; the binding site size that the merged sites should have. Default=NULL,
then bsSize is taken from the input objects in list.

combine.name character; meta table name of the combined object. Default=NULL; then name
is set to ’combined’

force.reload logical; whether the signal should be derived from the merge of the input objects
given in list or if the signal should be re-loaded from the path given in the meta

data.
quiet logical; whether to print messages or not
veryQuiet logical; whether to print status messages or not

Details

Meta-data tables are added to each other by performing a row-wise bind, basically adding all meta
data tables underneath each other.

The default way of signal combination is merging all signal lists on the level of the indivdual
samples. One can also force a re-load of the signal list component by using force.reload=TRUE.
The signal can be combined by

26 combineBSF

The ranges are combined by adding both granges objects together. With option overlaps.fix one
can decide if partially overlapping ranges should be combined into a single range or not. If this
option is FALSE one is likely to have overlapping binding sites after the merge. If this option is
TRUE, then the combined coverage is used to guide the new center point for these cases.

The combine.bsSize option allows one to set a unique bsSize for all objects that should be com-
bined. Although it is recommended to combine only objects with the same bsSize this option can
be used to ensure that the merged result has the same bsSize for all ranges.

This function is usually used to combine two datasets in the context of a differntial testing analysis.

Value

an object of class BSFDataSet with ranges, signal and meta data resulting from the merge of the
input objects.

See Also

processingStepsFlowChart, calculateBsBackground

Examples

load clip data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$"”, full.names = TRUE))

make binding sites
bds = makeBindingSites(bds, bsSize = 7)

split ranges in two groups

allRanges = getRanges(bds)

set.seed(1234)

idx = sample(1:length(allRanges), size = length(allRanges)/2, replace = FALSE)
r1 = allRanges[idx]

r2 = allRanges[-idx]

splite meta data
allMeta = getMeta(bds)
ml = allMetal[1:2,]
m2 = allMetal3:4,]

create new objects

bds1 = setRanges(bds, r1)
bds2 = setRanges(bds, r2)
bds1 = setMeta(bds1, m1)

bds2 = setMeta(bds2, m2)

bds1 = setName(bds1, "test1")
bds2 = setName(bds2, "test2")

merge two objects with '+' operator
cl = bds1 + bds2

merge two objects from list

list = list(bds1, bds2)

cl = combineBSF(list = list, overlaps.fix = TRUE,
combine.bsSize = NULL, combine.name = NULL, quiet = TRUE)

coverageOverRanges 27

coverageOverRanges Coverage function for BSFDataSet objects

Description

The crosslink coverage is computed for all ranges in the the given BSFDataSet object (see BSFDataSet
for details). Depending on the returnOptions the resulting coverage information is summarized,
suitable for diverse computation and plotting tasks. The coverage can only be compute for objects
with identical ranges.

Usage
coverageOverRanges(
object,
returnOptions = c("merge_ranges_keep_positions”, "merge_replicates_per_condition”,
"merge_all_replicates”, "merge_positions_keep_replicates”),
method = "sum”,
allowNA = FALSE,
quiet = TRUE
)
Arguments
object a BSFDataSet object

returnOptions one of merge_ranges_keep_positions, merge_replicates_per_condition, merge_all_replicates,
merge_positions_keep_replicates

method sum/ mean, select how replicates/ ranges should be summarized
allowNA TRUE/ FALSE, allow NA values in the output if input ranges are of different
width
quiet logical, whether to print messages
Details

If returnOptions is set to merge_ranges_keep_positions: Returns a matrix with ncol being the
nucleotides of the ranges (equal to the width of the input ranges) and nrow being the number of
replicates in the meta information.

If returnOptions is set to merge_replicates_per_condition: Returns a list of matrices. Each list
corresponds to one condition set in the meta information. The matrix in each entry has ncols equal
to the ranges width and nrow equal to the number of ranges. Counts per ranges and position are
summed.

If returnOptions is set to merge_all_replicates: Returns a matrix with ncols equal to the range
width and nrow equal to the number of ranges. Counts per range and position are summed.

If returnOptions is set to merge_positions_keep_replicates: Returns a GRanges object where the
counts are summed for each replicate and added to the original granges object.

Value

an object of class specified in returnOptions

28 duplicatedSitesPlot

Examples
load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))
rng = coverageOverRanges(bds, returnOptions = "merge_ranges_keep_positions")
rng = coverageOverRanges(bds, returnOptions = "merge_replicates_per_condition”)
rng = coverageOverRanges(bds, returnOptions = "merge_all_replicates”)
rng = coverageOverRanges(bds, returnOptions = "merge_positions_keep_replicates”)

duplicatedSitesPlot Plot the number of overlaps when assigning crosslink sites to genes

Description

A diagnostic function that plots the number of crosslink sites with their respective overlapping
rate. The function pureClipGeneWiseFilter is expected to be executed prior to calling this plot
function.

Usage

duplicatedSitesPlot(object)

Arguments

object a BSFDataSet object
Value

a plot of type ggplot
See Also

pureClipGeneWiseFilter

Examples

load clip data
files <- system.file("extdata”, package="BindingSiteFinder")

load(list.files(files, pattern = ".rda$"”, full.names = TRUE))
Load GRanges with genes
load(list.files(files, pattern = ".rds$", full.names = TRUE)[1])

apply 5% gene-wise filter

bds = pureClipGeneWiseFilter(object = bds, anno.genes = gns, cutoff = 0.5,
overlaps = "keepSingle")

duplicatedSitesPlot (bds)

estimateBs Width 29

estimateBsWidth Function to estimate the appropriate binding site width together with
the optimal gene-wise filter level.

Description

This function tests different width of binding sites for different gene-wise filtering steps. For each
test the signal-to-score ratio is calculated. The mean over all gene-wise filterings at each binding site

width is used to extract the optimal width, which serves as anchor to select the optimal gene-wise
filter.

Usage
estimateBsWidth(
object,
bsResolution = c("medium”, "fine"”, "coarse"),
geneResolution = c("medium”, "coarse”, "fine", "finest"),

est.maxBsWidth = 13,
est.minimumStepGain = 0.02,
est.maxSites = Inf,
est.subsetChromosome = "chri1”,
est.minWidth = 2,
est.offset = 1,
sensitive = FALSE,
sensitive.size = 5,
sensitive.minWidth
anno.annoDB = NULL,
anno.genes = NULL,
bsResolution.steps = NULL,
geneResolution.steps = NULL,

quiet = TRUE,

veryQuiet = FALSE,
reportScoresPerBindingSite = FALSE,

2,

Arguments

object a BSFDataSet object with stored crosslink sites. This means that ranges should
have a width = 1.

bsResolution character; level of resolution at which different binding site width should be
tested

geneResolution character; level of resolution at which gene-wise filtering steps should be tested

est.maxBsWidth numeric; the largest binding site width which should considered in the testing

est.minimumStepGain
numeric; the minimum additional gain in the score in percent the next binding
site width has to have, to be selected as best option

est.maxSites numeric; maximum number of PureCLIP sites that are used;

30 estimateBsWidth

est.subsetChromosome
character; define on which chromosome the estimation should be done in func-
tion estimateBsWidth

est.minWidth the minimum size of regions that are subjected to the iterative merging routine,
after the initial region concatenation.

est.offset constant added to the flanking count in the signal-to-flank ratio calculation to
avoid division by Zero

sensitive logical; whether to enable sensitive pre-filtering before binding site merging or
not

sensitive.size numeric; the size (in nucleotides) of the merged sensitive region
sensitive.minWidth
numeric; the minimum size (in nucleoties) of the merged sensitive region

anno.annoDB an object of class OrganismDbi that contains the gene annotation (!!! Experi-
mental !!!).
anno.genes an object of class GenomicRanges that represents the gene ranges directly

bsResolution.steps
numeric vector; option to use a user defined threshold for binding site width
directly. Overwrites bsResolution

geneResolution.steps
numeric vector; option to use a user defined threshold vector for gene-wise fil-
tering resolution. Overwrites geneResolution

quiet logical; whether to print messages

veryQuiet logical; whether to suppress all messages

reportScoresPerBindingSite
report the ratio score for each binding site separately. Warning! This is for
debugging and testing only. Downstream functions can be impaired.

additional arguments passed to pureClipGeneWiseFilter

Details

Parameter estimation is done on a subset of all crosslink sites (est . subsetChromosome).

Gene-level filter can be tested with varying levels of accuracy ranging from ‘finest‘ to ‘coarse’,
representing 1 20

Binding site computation at each step can be done on three different accuracy level (bsResolution).
Option ‘fine‘ is equal to a normal run of the makeBindingSites function. ‘medium* will perform
a shorter version of the binding site computation, skipping some of the refinement steps. Option
‘coarse‘ will approximate binding sites by merged crosslinks regions, aligning the center at the site
with the highest score.

For each binding site in each set given the defined resolutions a signal-to- flank score ratio is calcu-
lated and the mean of this score per set is returned. Next a mean of means is created which results in
a single score for each binding site width that was tested. The width that yielded the highest score
is selected as optimal. In addtion the minimumStepGain option allows control over the minimum
additional gain in the score that a tested width has to have to be selected as the best option.

To enhance the sensitivity of the binding site estimation, the sensitivity mode exists. In this mode
crosslink sites undergo a pre-filtering and merging step, to exclude potential artifical peaks (experimental-
, mapping-biases). If sensitivity mode is activated the est.minWidth option should be set to 1.

The optimal geneFilter is selected as the first one that passes the merged mean of the selected
optimal binding site width.

The function is part of the standard workflow performed by BSFind.

estimateBs WidthPlot 31

Value

an object of class BSFDataSet with binding sites with the ‘params® slots ‘bsSize‘ and ‘geneFilter
being filled

See Also

BSFind, estimateBsWidthPlot

Examples

load clip data
files <- system.file("extdata”, package="BindingSiteFinder")

load(list.files(files, pattern = ".rda$", full.names = TRUE))

load(list.files(files, pattern = ".rds$"”, full.names = TRUE)[1]1)
load(list.files(files, pattern = ".rds$", full.names = TRUE)[2])
estimateBsWidth(bds, anno.genes = gns, est.maxBsWidth = 19,

geneResolution = "coarse”, bsResolution = "coarse"”, est.subsetChromosome = "chr22")

estimateBsWidthPlot Plot the signal-to-flank score for varying gene-wise filter and binding
site width

Description

A diagnostic function that plots the the signal-to-flank score as a mean for each binding site width
and gene-wise filter as indicated when executing estimateBsWidth. Additionally a mean of means
visualizes the overall trend and a red line indicates the suggested optimal binding site width. The
function estimateBsWidth is expected to be executed prior to calling this plot function.

Usage

estimateBsWidthPlot (object)

Arguments

object a BSFDataSet object
Value

a plot of type ggplot
See Also

estimateBsWidth

32 exportTargetGenes

Examples

load clip data
files <- system.file("extdata”, package="BindingSiteFinder")

load(list.files(files, pattern = ".rda$"”, full.names = TRUE))

load(list.files(files, pattern = ".rds$", full.names = TRUE)[1])

bds = estimateBsWidth(bds, anno.genes = gns, est.maxBsWidth = 19,

geneResolution = "coarse”, bsResolution = "coarse”, est.subsetChromosome = "chr22")

estimateBsWidthPlot (bds)

exportTargetGenes Function to export sorted RBP target genes

Description

Genes with binding sites are target genes of the RBP. They can be exported as ’csv’ or ’xIsx’ file.
Genes can be sorted by the sum of the individual binding sites score, or by the number of binding
sites per gene.

Usage
exportTargetGenes(
object,
path = "./",
format = c("csv”, "xslx"),
sort = c("score”, "bs"),
split = c("none”, "geneType”, "transcriptRegion")
)
Arguments
object a BSFDataSet object with stored ranges
path A path to where the output should be stored
format output file format
sort sorting rule for genes
split if and how the output file should be split
Details

As output option, one can either output all genes in a single file, or split by either gene-type or
transcript-region. This options requires that either BSFind or the individual functions assignToGenes,
and assignToTranscriptRegions were run.

Value

a file of the type specified in format

exportToBED

Examples

load data

files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))
Not run:

export

exportTargetGenes(bds)

End(Not run)

33

exportToBED Wrapper function to export binding sites as BED files

Description

Function that serves as a wrapper function for rtracklayer: :export.

Usage

exportToBED(object, con)

Arguments

object a BSFDataSet object with stored ranges
con A path or URL

Value

a .bed file

See Also

BSFind

Examples

load data

files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))
Not run:

export

exportToBED(bds, con = "./myfile.bed")

End(Not run)

34 filterBsBackground

filterBsBackground Filter for genes not suitable for differential testing

Description

This function removes genes where the differential testing protocol can not be applied to, using
count coverage information on the binding sites and background regions per gene, through the
following steps:

1. Remove genes with overall not enough crosslinks: minCounts
2. Remove genes with a disproportion of counts in binding sites vs. the background: balanceBackground

3. Remove genes where the expression between conditions is too much off balance: balanceCondition

Usage

filterBsBackground(
object,
minCounts = TRUE,
minCounts.cutoff = 100,
balanceBackground = TRUE,
balanceBackground.cutoff.bs
balanceBackground.cutoff.bg
balanceCondition = TRUE,
balanceCondition.cutoff = 0.05,
match.geneID = "genelD"”,
flag = FALSE,
quiet = FALSE,
veryQuiet = FALSE

1l
[

)
Arguments
object aBSFDataSet object with computed count data for binding sites and background
regions
minCounts logical; whether to use the minimum count filter

minCounts.cutoff

numeric; the minimal number of crosslink per gene over all samples for the gene
to be retained (default = 100)

balanceBackground

logical; whether to use the counts balancing filter between binding sites and
background

balanceBackground.cutoff.bs

numeric; the maximum fraction of the total signal per gene that can be within
binding sites (default = 0.2)

balanceBackground.cutoff.bg

numeric; the minimum fraction of the total signal per gene that can be within
the background (default = 0.8)

balanceCondition
logical; whether to use the counts balancing filter between conditions

filterBsBackground 35

balanceCondition.cutoff
numeric; the maximum fraction of the total signal that can be attributed to only
one condition

match.geneID character; the name of the column with the gene ID in the binding sites meta
columns used for matching binding sites to genes

flag logical; whether to remove or flag binding sites from genes that do not pass any
of the filters
quiet logical; whether to print messages or not
veryQuiet logical; whether to print messages or not
Details

To remove genes with overall not enough crosslinks (minCounts) all counts are summed up per
gene across all samples and compared to the minimal count threshold (minCounts.cutoff).

To remove genes with a count disproportion between binding sites and background regions crosslinks

are summed up for binding sites and background per gene. These sums are combined in a ratio.

Genes where eg. 50% of all counts are within binding sites would be removed (see balanceBackground. cutoff.bs
and balanceBackground. cutoff.bg).

To remove genes with very large expression differences between conditions, crosslinks are summed
up per gene for each condition. If now eg. the total number of crosslinks is for 98% in one condition
and only 2% of the combined signal is in the second condition, expression levels are too different
for a reliable comparisson (see balanceCondition.cutoff).

This function is intended to be used right after a call of calculateBsBackground.

Value

an object of class BSFDataSet with biniding sites filtered or flagged by the above filter options

See Also

calculateBsBackground, plotBsBackgroundFilter

Examples

load clip data

files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$"”, full.names = TRUE))
load(list.files(files, pattern = ".rds$"”, full.names = TRUE)[1])

make testset

bds = makeBindingSites(bds, bsSize = 7)

bds = assignToGenes(bds, anno.genes = gns)

bds = imputeBsDifferencesForTestdata(bds)

bds = calculateBsBackground(bds, anno.genes = gns, use.offset = FALSE)

use all filters and remove binding sites that fail (default settings)
fo = filterBsBackground(bds)

do not use the condition balancing filter
f1 = filterBsBackground(bds, balanceCondition = FALSE)

use only the minimum count filter and flag binding sites instead of
removing them

36

f3 = filterBsBackground(bds, flag = TRUE, balanceCondition = FALSE,

balanceBackground = FALSE)

geneOverlapsPlot

geneOverlapsPlot UpSet-plot to that shows the gene type overlaps

Description

A diagnostic function that plots the gene types of binding sites on overlapping loci genes. The
function assignToGenes is expected to be executed prior to calling this plot function.

Usage
geneOverlapsPlot(object, text.size = NULL, show.title = TRUE)
Arguments
object a BSFDataSet object
text.size numeric; fontsize of all numbers on axis
show.title logical; if plot title should be visible
Value
a plot of type ggplot
See Also
assignToGenes targetGeneSpectrumPlot
Examples
load clip data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$"”, full.names = TRUE))
Load GRanges with genes
load(list.files(files, pattern = ".rds$", full.names = TRUE)[1])

bds = makeBindingSites(object = bds, bsSize = 9)
bds = assignToGenes(bds, anno.genes = gns)
geneOverlapsPlot (bds)

geneRegulationPlot 37

geneRegulationPlot Gene Regulation Plot

Description

Display the fold-change of all binding sites from a given gene on a relative per-nucleotide scale.
Binding sites are displayed as dots and with increasing log2 fold-change, they deviate stronger
from the center line.

Usage

geneRegulationPlot(
object,
plot.geneID = NULL,
anno.annoDB = NULL,
anno.genes = NULL,

match.genelD = "gene_id",
match.geneName = "gene_name”,
plot.gene.n.tiles = 100,
alpha = 0.05,
1fc.cutoff = 2,
transcript.regions.outlier.handle = c("first"”, "second”, "both", "remove"),
quiet = FALSE

)

Arguments
object object; a BSFDataSet object

plot.genelD character; the gene id of the gene to display. The id must match with the gene
ids given in the annotation object.

anno.annoDB object; an object of class OrganismDbi that contains the gene annotation (!!!
Experimental !!!).

anno.genes object; an object of class GenomicRanges that represents the gene ranges di-
rectly.

match.genelD character; meta column name of the gene ID

match.geneName character; meta column name of the gene name
plot.gene.n.tiles
numeric; number of tiles the gene should be split in

alpha numeric; the alpha value to show significantly regulated binding sites. This
should match the alpha value used in calculateBsFoldChange.

1fc.cutoff numeric; log2 fold-change cutoff to show significantly regulated binding sites.
This should match the lfc.cutoff value used in calculateBsFoldChange.

transcript.regions.outlier.handle
character; the option how to handle multiple transcript region annotations being
present for the same binding site.

quiet logical; whether to print messages

38 geneRegulationPlot

Details

For this function to work, binding sites must be assigned to hosting genes using assignToGenes. It
is also recommended to assing binding sites to transcript regions with assignToTranscriptRegions.

It is also necessary to calculate the log2 fold-change of binding sites between two conditions using
the differential binding workflow calculateBsFoldChange.

If in addition the transcript regions of the binding sites are given, then shapes are changed accord-
ingly. An edge case can arise from the merging of two BSFDataSet objects. If binding sites are
overlapping and slightly offset close to the end of a particular transcript region annotation, they
might be assigned to different regions in both objects. This results in some ambiguity after the
merge, where for instance a binding site can be assigned to CDS and 3’UTR. To handle how such
edge cases are displayed, the transcript.regions.outlier.handle exists. As default, simply
the region of the object that was merged first is shown. If one is interested in showing all regions,
then the options both displays both annotations at the same time and labels them accordingly.

Value

an object of class ggplot2

See Also

BSFind, calculateBsFoldChange assignToGenes assignToTranscriptRegions

Examples

load clip data
files <- system.file("extdata”, package="BindingSiteFinder")

load(list.files(files, pattern = ".rda$", full.names = TRUE))
load(list.files(files, pattern = ".rds$", full.names = TRUE)[1])
load(list.files(files, pattern = ".rds$", full.names = TRUE)[2])

make testset

bds = makeBindingSites(bds, bsSize = 7)

bds = assignToGenes(bds, anno.genes = gns)

bds = assignToTranscriptRegions(object = bds, anno.transcriptRegionList = regions)
bds = imputeBsDifferencesForTestdata(bds)

bds = calculateBsBackground(bds, anno.genes = gns, use.offset = FALSE)

use all filters and remove binding sites that fail (default settings)
bds = filterBsBackground(bds)

calculate fold-changes
bds = calculateBsFoldChange (bds)

make example plot
exampleGeneIld = "ENSG00000253352.10"
geneRegulationPlot(bds, plot.geneID = exampleGeneld, anno.genes = gns)

getMeta 39

getMeta Accessor method for the meta data of the BSFDataSet object

Description

Meta data is stored as a data. frame and must contain the columns "condition", "cIPlus" and "clMi-

"

nus".
Usage
getMeta(object)

S4 method for signature 'BSFDataSet'
getMeta(object)

Arguments

object a BSFDataSet object

Value

returns the meta data data. frame with the columns "condition", "cIPlus" and "clMinus".

See Also
BSFDataSet
Examples
load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))
getMeta(bds)
getName Accessor method for the name of the BSFDataSet object
Description

The name slot holds the name of the dataset
Usage
getName(object)

S4 method for signature 'BSFDataSet'
getName(object)

40 getRanges

Arguments

object a BSFDataSet object

Value

returns the name of the dataset

See Also

BSFDataSet
Examples

load data

files <- system.file("extdata”, package="BindingSiteFinder")

load(list.files(files, pattern = ".rda$"”, full.names = TRUE))

getName (bds)

getRanges Accessor method for the ranges of the BSFDataSet object

Description

The ranges slot holds the genomic ranges information of the sites currently in the object. They are
encoded as a GRanges object with each binding site having a single ranges entry.

Usage

getRanges(object)

S4 method for signature 'BSFDataSet'

getRanges(object)
Arguments

object a BSFDataSet object
Value

returns the genomic ranges (GRanges) of the associated ranges

See Also

BSFDataSet

getSignal 41

Examples

load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

getRanges(bds)

getSignal Accessor method for the signal data of the BSFDataSet object

Description
Signal data is loaded from the path specified in getMeta columns "clPlus" and "cIMinus" and stored
as a list of RLE lists.

Usage

getSignal(object)

S4 method for signature 'BSFDataSet'

getSignal (object)
Arguments

object a BSFDataSet object
Value

returns the signal data, as list of RLE list for each strand, named after the meta data columns "cIPlus"
and "cIMinus"

See Also

getMeta BSFDataSet

Examples
load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

getSignal(bds)

42 globalScorePlot

getSummary Accessor method for the summary slot of the BSFDataSet object

Description

The summary slot is used to track information of the filtering steps applied in the makeBindingSites
function

Usage

getSummary(object, ...)

S4 method for signature 'BSFDataSet'

getSummary (object)
Arguments
object a BSFDataSet object

additional arguments

Value

returns the summary information storted in the summary slot after makeBindingSites was run

See Also

BSFDataSet makeBindingSites

Examples
load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

bds <- makeBindingSites(object = bds, bsSize = 9, minWidth = 2,
minCrosslinks = 2, minClSites = 1)

getSummary (bds)

globalScorePlot Plot the PureCLIP score distribution after re-assignment

Description

A diagnostic function that plots the PureCLIP score distribution on a log2 scale after the re-assignment
on binding site level. The function annotateWithScore is expected to be executed prior to calling
this plot function.

imputeBsDifferencesForTestdata 43

Usage

globalScorePlot(object)

Arguments

object a BSFDataSet object

Value

a plot of type ggplot

See Also

annotateWithScore

Examples

load clip data

files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))
bds1 = makeBindingSites(object = bds, bsSize = 9)

bds1 = annotateWithScore(bds1, match.ranges = getRanges(bds))
globalScorePlot(bds1)

imputeBsDifferencesForTestdata
Impute artificial differences in the example data set

Description
A function that works only on the test data set provided with the package. It is used for internal
testing and the making of examples to showcase the differential binding functions.

Usage

imputeBsDifferencesForTestdata(object, size = 5, change.per = 0.1)

Arguments
object a BSFDataSet object; explicitly the test data set from the extdata folder
size numeric; the number of positions on which signal should be deleted, counting
from the start
change.per numeric; the percentage of ranges that should be effected by the change.
Details

Differences between samples are artificially introduced by removing the signal on a random set of
binding sites of the input.

44 makeBindingSites

Value

object a BSFDataSet object with the signal slot adapted to reflect changes in binding between two
artificial conditions

Examples

load clip data
files <- system.file("extdata”, package="BindingSiteFinder")

load(list.files(files, pattern = ".rda$", full.names = TRUE))
load(list.files(files, pattern = ".rds$", full.names = TRUE)[1])
bds = makeBindingSites(bds, bsSize = 7)

bds = assignToGenes(bds, anno.genes = gns)

bds = imputeBsDifferencesForTestdata(bds)
makeBindingSites Define equally sized binding sites from peak calling results and iCLIP
crosslink events.
Description

This function performs the merging of single nucleotide crosslink sites into binding sites of a user
defined width (bsSize). Depending on the desired output width crosslink sites with a distance closer
than bsSize -1 are concatenated. Initially all input regions are concatenated and then imperatively
merged and extended. Concatenated regions smaller than minWidth are removed prior to the merge
and extension routine. This prevents outlier crosslink pileup, eg. mapping artifacts to be integrated
into the final binding sites. All remaining regions are further processed and regions larger than
the desired output width are interactively split up by setting always the position with the highest
number of crosslinks as center. Regions smaller than the desired width are symmetrically extended.
Resulting binding sites are then filtered by the defined constraints.

Usage

makeBindingSites(
object,
bsSize = NULL,
minWidth = 2,
minCrosslinks = 2,
minClSites = 1,
centerIsClSite = TRUE,
centerIsSummit = TRUE,

sub.chr = NA,
quiet = FALSE
)
Arguments
object a BSFDataSet object (see BSFDataSet)

bsSize an odd integer value specifying the size of the output binding sites

makeBindingSites 45

minWidth the minimum size of regions that are subjected to the iterative merging routine,
after the initial region concatenation.

minCrosslinks the minimal number of positions to overlap with at least one crosslink event in
the final binding sites

minClSites the minimal number of crosslink sites that have to overlap a final binding site

centerIsClSite logical, whether the center of a final binding site must be covered by an initial
crosslink site

centerIsSummit logical, whether the center of a final binding site must exhibit the highest number
of crosslink events

sub.chr chromosome identifier (eg, chrl, chr2) used for subsetting the BSFDataSet ob-
ject. This option can be used for testing different parameter options
quiet logical, whether to print info messages
Details

The bsSize argument defines the final output width of the merged binding sites. It has to be an odd
number, to ensure that a binding site has a distinct center.

The minWidth parameter is used to describe the minimum width a ranges has to be after the initial
concatenation step. For example: Consider bsSize = 9 and minWidth = 3. Then all initial crosslink
sites that are closer to each other than 8 nucleotides (bsSize -1) will be concatenated. Any of these
ranges with less than 3 nucleotides of width will be removed, which reflects about 1/3 of the desired
binding site width.

The argument minCrosslinks defines how many positions of the binding sites are covered with
at least one crosslink event. This threshold has to be defined in conjunction with the binding site
width. A default value of 3 with a binding site width of 9 means that 1/3 of all positions in the final
binding site must be covered by a crosslink event. Setting this filter to 0 deactivates it.

The minC1Sites argument defines how many positions of the binding site must have been covered
by the original crosslink site input. If the input was based on the single nucleotide crosslink posi-
tions computed by PureCLIP than this filter checks for the number of positions originally identified
by PureCLIP in the computed binding sites. The default of minC1Sites = 1 essentially deactivates
this filter. Setting this filter to O deactivates it.

The options centerIsClSite and centerIsSummit ensure that the center of each binding site is
covered by an initial crosslink site and represents the summit of crosslink events in the binding site,
respectively.

The option sub.chr allows to run the binding site merging on a smaller subset (eg. "chrl") for
improoved computational speed when testing the effect of various binding site width and filtering
options.

Value

an object of type BSFDataSet with modified ranges

See Also

BSFDataSet, BSFind, mergeCrosslinkDiagnosticsPlot, makeBsSummaryPlot

46 makeBsSummaryPlot

Examples
load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

standard options, no subsetting
bds <- makeBindingSites(object = bds, bsSize = 9, minWidth = 2,
minCrosslinks = 2, minClSites = 1)

standard options, with subsetting

bds <- makeBindingSites(object = bds, bsSize = 9, minWidth = 2,
minCrosslinks = 2, minClSites = 1, sub.chr = "chr22")
makeBsSummaryPlot Plot binding site filter diagnostics
Description

A diagnostic function that plots the number of binding sites retained after each filtering step calcu-
lated in makeBindingSites. The function makeBindingSites is expected to be executed prior to
calling this plot function.

Usage

makeBsSummaryPlot (object)

Arguments

object a BSFDataSet object

Value

a plot of type ggplot

See Also

makeBindingSites

Examples

load clip data

files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))
bds = makeBindingSites(object = bds, bsSize = 9)
makeBsSummaryPlot (bds)

mergeCrosslinkDiagnosticsPlot 47

mergeCrosslinkDiagnosticsPlot
Plot binding site merging diagnostics

Description

A diagnostic function that plots the number of regions to merge over the width of these regions
for each merging iteration calculated in makeBindingSites. The function makeBindingSites is
expected to be executed prior to calling this plot function.

Usage

mergeCrosslinkDiagnosticsPlot(object)

Arguments

object a BSFDataSet object

Value

a plot of type ggplot

See Also

makeBindingSites

Examples

load clip data

files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))
bds = makeBindingSites(object = bds, bsSize = 9)
mergeCrosslinkDiagnosticsPlot(bds)

mergeSummaryPlot Plot summarized results of the different binding site merging and fil-
tering steps

Description

Bar charts produced for the different filter steps in the binding site merging routine. Depending on
the selected option (select) all or only a user defined filter can be shown.

Usage
mergeSummaryPlot (
object,
select = c("all”, "filter", "inputRanges”, "minClSites"”, "mergeCrosslinkSites”,

"minCrosslinks"”, "centerIsClSite"”, "centerIsSummit”),

48 plotBsBackgroundFilter

Arguments
object a BSFDataObject, with the makeBindingSites function already run
select one of "all", "filter", "inputRanges", "minCLSites", "mergeCrosslinkSites", "min-
Crosslinks", "centerIsCISite" or "centerlsSummit". Defines which parameter is
selected for plotting.
further arguments passed to ggplot
Details

If object is a single BSFDataObject a single coverage plot will be drawn, whereas if it is a list of
BSFDataObjects, then faceting is used to make a plot for each list element.

Value

a plot of type ggplot after the makeBindingSites function was run

See Also

makeBindingSites

Examples

load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$"”, full.names = TRUE))

plotting a single object

bds@ <- makeBindingSites(object = bds, bsSize = 9, minWidth
minCrosslinks = 2, minClSites = 1)

mergeSummaryPlot (bds®@)

1
N

plotting mulitple obejcts

bds1 <- makeBindingSites(object = bds, bsSize = 9, minWidth = 2,
minCrosslinks = 2, minClSites = 1, sub.chr = "chr22")

bds2 <- makeBindingSites(object = bds, bsSize = 9, minWidth
minCrosslinks = 2, minClSites = 3, sub.chr = "chr22")

1 = list("1. bsSize = 3~ = bds1, 2. bsSize = 9~ = bds2)
mergeSummaryPlot(l, width = 20)

1l
N

plotBsBackgroundFilter
Diagnostic plots for the differential binding background

Description

To perform differential binding analysis between two conditions the calculateBsBackground
function groups crosslinks per gene into those from binding sites and those from background re-
gions. The filterBsBackground function perfroms certain filtering operations on that background
to ensure that it’s suitable for differential testing. This function visually displays the effect of these
filtering operations.

plotBsBackgroundFilter 49

Usage
plotBsBackgroundFilter(
object,
filter = c("minCounts”, "balanceBackground”, "balanceCondition")
)
Arguments
object a BSFDataSet object with background counts filtered by filterBsBackground
filter character; which filter to display in the plot (one of: *'minCounts’, *balanceBack-
ground’, balanceCondition’)
Value
a plot of type ggplot
See Also

calculateBsBackground

filterBsBackground

Examples

load clip data

files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$"”, full.names = TRUE))
load(list.files(files, pattern = ".rds$"”, full.names = TRUE)[1])

make testset

bds = makeBindingSites(bds, bsSize = 7)

bds = assignToGenes(bds, anno.genes = gns)

bds = imputeBsDifferencesForTestdata(bds)

bds = calculateBsBackground(bds, anno.genes = gns, use.offset = FALSE)

use all filters and remove binding sites that fail (default settings)
bds = filterBsBackground(bds)

display minCount filter
plotBsBackgroundFilter(bds, filter = "minCounts”)

display balance background filter
plotBsBackgroundFilter(bds, filter = "balanceBackground")

display balance condition filter
plotBsBackgroundFilter(bds, filter = "balanceCondition”)

50 plotBsMA

plotBsMA MA style plot

Description
Wrapper that plots differential binding results as MA plot. For each binding site the estimated
baseMean (log2) is shown on X and the fold-change (log2) is shown on Y.

Usage

plotBsMA(object, what = c("bs"”, "bg"), sig.threshold = 0.05)

Arguments
object a BSFDataSet object with results calculated by calculateBsFoldChange
what character; whether to show results for binding sites or the background (one of:

’bS’, ,bg,)

sig.threshold numeric; what P value significance level to use (default = 0.05)

Value

a plot of type ggplot

See Also

calculateBsFoldChange

Examples

load clip data

files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))
load(list.files(files, pattern = ".rds$"”, full.names = TRUE)[11)

make testset

bds = makeBindingSites(bds, bsSize = 7)

bds = assignToGenes(bds, anno.genes = gns)

bds = imputeBsDifferencesForTestdata(bds)

bds = calculateBsBackground(bds, anno.genes = gns, use.offset = FALSE)

use all filters and remove binding sites that fail (default settings)
bds = filterBsBackground(bds)

calculate fold-changes
bds = calculateBsFoldChange(bds)

make MA plot
plotBsMA(bds)

plotBsVolcano 51

plotBsVolcano Volcano style plot

Description
Wrapper that plots differential binding results as volcano plot. For each binding site the estimated
fold-change (log2) is shown on X and the adjusted P value (-log10) is shown on Y.

Usage

plotBsVolcano(object, what = c("bs"”, "bg"), sig.threshold = 0.05)

Arguments
object a BSFDataSet object with results calculated by calculateBsFoldChange
what character; whether to show results for binding sites or the background (one of:

’bS’, ,bg,)

sig.threshold numeric; what P value significance level to use (default = 0.05)

Value

a plot of type ggplot

See Also

calculateBsFoldChange

Examples

load clip data

files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))
load(list.files(files, pattern = ".rds$"”, full.names = TRUE)[11)

make testset

bds = makeBindingSites(bds, bsSize = 7)

bds = assignToGenes(bds, anno.genes = gns)

bds = imputeBsDifferencesForTestdata(bds)

bds = calculateBsBackground(bds, anno.genes = gns, use.offset = FALSE)

use all filters and remove binding sites that fail (default settings)
bds = filterBsBackground(bds)

calculate fold-changes
bds = calculateBsFoldChange(bds)

make volcano plot
plotBsVolcano(bds)

52 processingStepsTable

processingStepsFlowChart
Step-wise flowchart plot

Description

An overview plot that shows all workflow functions that were executed on the current object, with
all input and output binding site numbers and major options that were used. The function can be
called at any time in the analysis. Most optimal usage is after a full run of the wrapper function
BSFind.

Usage

processingStepsFlowChart(object, size.all = 3)

Arguments

object a BSFDataSet object

size.all numeric; size of all numbers

Value

a plot of type ggplot

See Also
BSFind

Examples

load clip data
files <- system.file("extdata”, package="BindingSiteFinder")

load(list.files(files, pattern = ".rda$", full.names = TRUE))
load(list.files(files, pattern = ".rds$"”, full.names = TRUE)[1]1)
load(list.files(files, pattern = ".rds$"”, full.names = TRUE)[2])

bds = BSFind(bds, anno.genes = gns, anno.transcriptRegionList = regions,
est.subsetChromosome = "chr22")

processingStepsFlowChart(bds)

processingStepsTable Create a table of all workflow steps for reporting

Description
Function that creates a printable table with all steps and numbers for each of the workflow steps that
were carried out.

Usage

processingStepsTable(object, option = c("reduced”, "full”, "extended"))

pureClipGeneWiseFilter 53

Arguments
object a BSFDataSet object with stored ranges
option character; how detailed the table should be
Details

If option is set to ‘reduced’, only the most necessary information are collected. Option ‘full
contains a full list of all options and parameters that were set in any of the workflow functions.
Option ‘extended’ contains extra information about the binding site merging step.

Value

a kableExtra table

See Also
BSFind
Examples
load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

apply 5% filter
bds = pureClipGlobalFilter(object = bds, cutoff = 0.05)
processingStepsTable(bds)

pureClipGeneWiseFilter
Filter PureCLIP sites by their score distribution per gene

Description

Function that applies a filter on the crosslink site score distribution at gene level. This allows to
filter for those sites with the strongest signal on each gene. Since scores are tied to the expression
level of the hosting transcript this function allows a fair filter for all genes partially independent of
the expression level.

Usage
pureClipGeneWiseFilter(
object,
cutoff = 0.05,

overlaps = c("keepSingle”, "removeAll”, "keepAll”),
anno.annoDB = NULL,

anno.genes = NULL,

match.score = "score”,

match.genelD = "gene_id",

quiet = FALSE

54 pureClipGeneWiseFilter

Arguments

object a BSFDataSet object with stored crosslink ranges of width=1

cutoff numeric; defines the cutoff for which sites to remove, the smallest step is 1%
(0.01). A cutoff of 5% will remove the lowest 5% sites, given their score, on
each gene, thus keeping the strongest 95%.

overlaps character; how overlapping gene loci should be handled.

anno.annoDB an object of class OrganismDbi that contains the gene annotation (!!! Experi-
mental !!!).

anno.genes an object of class GenomicRanges that represents the gene ranges directly

match.score character; meta column name of the crosslink site GenomicRanges object that

holds the score which is used for sub-setting

match.geneID character; meta column name of the genes GenomicRanges object that holds a
unique genelD

quiet logical; whether to print messages

Details

The GenomicRanges contained in the BSFDataSet need to have a meta-column that holds a numeric
score value, which is used for filtering. The name of the column can be set with scoreCol.

In the case of overlapping gene annotation, a single crosslink site will be attributed to multiple
genes. The overlaps parameter allows to control these cases. Option ‘keepSingle‘ will only keep
a single instance of the site; ‘removeAll* will remove both sites; ‘keepAll‘ will keep both sites.

The function is part of the standard workflow performed by BSFind.

Value

an object of class BSFDataSet with its ranges filtered by those that passed the gene-wise threshold
set with cutoff

See Also

BSFind, estimateBsWidthPlot

Examples

load clip data
files <- system.file("extdata”, package="BindingSiteFinder")

load(list.files(files, pattern = ".rda$", full.names = TRUE))
Load GRanges with genes
load(list.files(files, pattern = ".rds$", full.names = TRUE)[1])

apply 5% gene-wise filter
pureClipGeneWiseFilter(object = bds, anno.genes = gns, cutoff = 0.5, overlaps = "keepSingle")

pureClipGlobalFilter 55

pureClipGlobalFilter Filter PureCLIP sites by their score distribution

Description

Function that applies a filter on the global crosslink site score distribution. The GenomicRanges
contained in the BSFDataSet need to have a meta-column that holds a numeric score value, which
is used for filtering. The name of the column can be set with match.score.

Usage
pureClipGlobalFilter(
object,
cutoff = 0.01,
match.score = "score",
quiet = FALSE
)
Arguments
object a BSFDataSet object with stored crosslink ranges of width=1
cutoff numeric; defines the cutoff for which sites to keep, the smallest step is 1% (0.01)
match.score character; meta column name of the crosslink site GenomicRanges object that
holds the score which is used for sub-setting
quiet logical; whether to print messages
Details

The function is part of the standard workflow performed by BSFind.

Value
an object of class BSFDataSet with its ranges filtered by those that passed the threshold set with
cutoff

See Also

BSFind, pureClipGlobalFilterPlot

Examples
load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$"”, full.names = TRUE))

apply 5% filter
pureClipGlobalFilter(object = bds, cutoff = 0.05)

56 quickFigure

pureClipGlobalFilterPlot
Plot the PureCLIP score distribution with global cutoff indicator

Description

A diagnostic function that plots the PureCLIP score distribution on a log2 scale. The function
pureClipGlobalFilter is expected to be executed prior to calling this plot function.

Usage

pureClipGlobalFilterPlot(object)

Arguments
object a BSFDataSet object
Value
a plot of type ggplot
See Also
pureClipGlobalFilter
Examples
load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

apply 5% filter
bds = pureClipGlobalFilter(object = bds, cutoff = 0.05)
pureClipGlobalFilterPlot(bds)

quickFigure Quick figures

Description

Summarize all results in a set of quick figures. Depending on how the function is called a different
set of analytic plots are arranged into either a "'main’ or ’supplementary’ type multi-panel figure.

quickFigure

Usage

quickFigure(
object,
what = c("main”, "supp"),
save.filename = NULL,
save.width = 10,
save.height = 12,

save.device = "pdf”,
quiet = TRUE,
)
Arguments
object a BSFDataSet object
what character; the plotting option. One of: *main’, ’supp’

save.filename File name to create on the disc

save.width numeric; plot size width

save.height numeric; plot size height

save.device charcter; Device to use. One of: "pdf’, *png’, ...
quiet whether to print messages

further arguments passed to ggsave

Value

a plot

See Also

BSFind

Examples

load clip data
files <- system.file("extdata”, package="BindingSiteFinder")

load(list.files(files, pattern = ".rda$", full.names = TRUE))
load(list.files(files, pattern = ".rds$", full.names = TRUE)[1])
load(list.files(files, pattern = ".rds$", full.names = TRUE)[2])

bds = BSFind(bds, anno.genes = gns, anno.transcriptRegionList = regions,
est.subsetChromosome = "chr22")

quickFigure(bds)

57

58 rangeCoveragePlot

rangeCoveragePlot Plot crosslink event coverage over binding site range

Description

A diagnostic plot function that allows to check the coverage of crosslink events over different
merged regions. The coverage is shown as mean over all replicates and conditions, with a stan-
dard deviation corridor.

Usage
rangeCoveragePlot(
object,
width = 20,
show.samples = FALSE,
subset.chromosome = "chril”,
quiet = TRUE
)
Arguments
object a BSFDataSet, or a list of BSFDataSet
width numeric; set the plotting range to show (in nt)

show.samples logical; to show individual samples as lines
subset.chromosome

character; subset by a all ranges on the indicated chromosome. Can also be a
vector with multiple chromosomes. If NULL then all ranges are being used.

quiet logical; whether to print messages

Details

If object is a single BSFDataObject a single coverage plot will be drawn, whereas if it is a list of
BSFDataObjects, then faceting is used to make a plot for each list element.

Value

a plot of type ggplot2 displaying the crosslink coverage over the ranges of the given BSFDataSet

See Also

BSFDataSet, makeBindingSites

Examples
load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

plotting a single object
bds <- makeBindingSites(object = bds, bsSize = 9, minWidth = 2,
minCrosslinks = 2, minClSites = 1)

reproducibilityCutoffPlot 59

rangeCoveragePlot (bds, subset.chromosome = "chr22")

plotting multiple objects

bds1 <- makeBindingSites(object = bds, bsSize = 3, minWidth = 2,
minCrosslinks = 2, minClSites = 1, sub.chr = "chr22")

bds2 <- makeBindingSites(object = bds, bsSize = 9, minWidth = 2,
minCrosslinks = 2, minClSites = 1, sub.chr = "chr22")

1 = 1list("1. bsSize = 3 = bdsl1, ~2. bsSize = 9° = bds2)
rangeCoveragePlot(l, subset.chromosome = "chr22")

reproducibilityCutoffPlot
Plot to that shows how many replicates support each binding site

Description

Plotting function for settings specified in reproducibilityFilter.

Usage
reproducibilityCutoffPlot(
object,
cutoff = 0.05,

min.crosslinks = 1,
max.range = 20,

)
Arguments
object a BSFDataSet object
cutoff a vector of length = 1, or of length = levels(meta$conditions) with a single num-

ber (between 0-1) indicating the quantile cutoff

min.crosslinks numeric of length = 1, defines the lower boundary for the minimum number of
crosslinks a binding site has to be supported by all replicates, regardless of the
replicate specific quantile threshold

max.range maximum number of crosslinks per sites that should be shown

further arguments passed to ggplot

Value

a plot of type ggplot2 showing the per replicate reproducibility cutoffs based on a given quantile
threshold

See Also

reproducibilityFilter

60 reproducibilityFilter

Examples
load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

merge binding sites
bds <- makeBindingSites(object = bds, bsSize = 9, minWidth = 2,
minCrosslinks = 2, minClSites = 1)

use the same cutoff for both conditions
suppressWarnings(reproducibilityCutoffPlot(bds, max.range = 20, cutoff = c(0.05)))

use different cutoffs for each condition
suppressWarnings(reproducibilityCutoffPlot(bds, max.range = 20, cutoff

c(0.1)))

reproducibilityFilter Replicate reproducibility filter function

Description

For each replicate the number of binding sites with a certain number of crosslinks is calculated.
A quantile based threshold (cutoff) is applied to each replicate. This indicates how many of
the merged binding sites are supported by crosslinks from the respective replicate. Next, one can
specify how many replicates need to pass the defined threshold for a binding site to be considered
reproducible.

Usage

reproducibilityFilter(
object,
cutoff = NULL,
nReps = NULL,
minCrosslinks = 1,
returnType = c("BSFDataSet"”, "data.frame"),
n.reps = lifecycle::deprecated(),
min.crosslinks = lifecycle: :deprecated(),
quiet = FALSE

)
Arguments
object a BSFDataSet object
cutoff numeric; percentage cutoff to be used for the reproducibility quantile filtering
nReps numeric; number of replicates that must meet the cutoff defined in cutoff for a

binding site to be called reproducible. Defaults to N-1.

minCrosslinks numeric; minimal number of crosslinks a binding site needs to have to be called
reproducible. Acts as a lower boundary for cutoff. Defaults to 1.

returnType one of "BSFDataSet" or "data.frame". "BSFDataSet" is the default and "matrix"
can be used for easy plotting.

reproducibilityFilterPlot 61

n.reps deprecated -> use nReps instead
min.crosslinks deprecated -> use minCrosslinks instead

quiet logical; whether to print messages

Details

If cutoff is a single number then the indicated cutoff will be applied to all replicates. If it is a vector
then each element in the vector is applied to all replicates of the respective condition. The order is
hereby given by the levels of the condition column of the meta data (see BSFDataSet,getMeta). If
the condition specific filter is applied, a meta column is added to the GRanges of the BSFDataSet
object, indicating the support for each condition.

If nReps is a single number then this number is used as treshold for all binding sites. If it is a
vector then it is applied to the replicates of the respective condition (like in cutoff). This allows
the application of different thresholds for experiments of different experimental conditions. If the
condition specific filter is applied, a meta column is added to the GRanges of the BSFDataSet
object, indicating the support for each condition.

The function is part of the standard workflow performed by BSFind.

Value

an object of type BSFDataSet

See Also
BSFind, reproducibilityFilterPlot, reproducibilitySamplesPlot, reproducibilityScatterPlot

Examples
load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

merge binding sites
bds <- makeBindingSites(object = bds, bsSize = 9)

use default return with condition specific threshold
bds = reproducibilityFilter(bds, cutoff = 0.1, nReps = 1)

reproducibilityFilterPlot
Plot to that shows the crosslink site distribution per replicate

Description

A diagnostic function that plots the number of crosslinks sites over the number of crosslink in these
sites and highlights the replicate specific reproducibility cutoff that is derived from that distribution.
The function reproducibilityFilter is expected to be executed prior to calling this plot function.

Usage

reproducibilityFilterPlot(object, plotRange = 20)

62 reproducibilitySamplesPlot

Arguments
object a BSFDataSet object
plotRange numeric; number of crosslinks per sites that should be shown before summing
them up
Value
a plot of type ggplot
See Also

reproducibilityFilter

Examples

load clip data

files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))
bds = makeBindingSites(object = bds, bsSize = 9)

bds = reproducibilityFilter(bds)
reproducibilityFilterPlot (bds)

reproducibilitySamplesPlot
UpSet-plot to that shows how each replicate supports binding sites

Description

A diagnostic function that plots the set sizes for each replicate, indicating how many binding site
the specific replicate supports given its specific threshold. The function reproducibilityFilter
is expected to be executed prior to calling this plot function.

Usage

reproducibilitySamplesPlot(
object,
nlntersections = 20,
show.title = TRUE,
text.size = NULL

Arguments
object a BSFDataSet object
nIntersections numeric; number of intersection to be shown
show. title logical; if plot title should be visible

text.size numeric; fontsize of all numbers on axis

reproducibilityScatterPlot 63

Value

a plot of type ggplot

See Also

reproducibilityFilter, reproducibilityFilterPlot

Examples

load clip data

files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))
bds = makeBindingSites(object = bds, bsSize = 9)

bds = reproducibilityFilter(bds)
reproducibilitySamplesPlot (bds)

reproducibilityScatterPlot
Plot that shows binding site reproducibility as scatter

Description
Function compute the number of crosslinks per binding site on a log2 scale for each sample. Sam-
ples are pairwise correlated as a scatter and pairwise pearson correlation is shown.

Usage

reproducibilityScatterPlot(object, quiet = FALSE)

Arguments

object a BSFDataSet object

quiet logical; whether to print messages
Details

Unlike most plotting functions, this function is actively calculating the values to plot.

Value

an object of class ggplot2

See Also

BSFind, reproducibilityFilter

64 setMeta

Examples
load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))
bds <- makeBindingSites(object = bds, bsSize = 9, minWidth = 2,
minCrosslinks = 2, minClSites = 3, sub.chr = "chr22")

reproducibilityScatterPlot(bds)

setMeta Setter method for the meta data of the BSFDataSet object

Description

Meta data is stored as a data. frame and must contain the columns "condition", "cIPlus" and "cIMi-

"

nus".
Usage
setMeta(object, ...)

S4 method for signature 'BSFDataSet'
setMeta(object, newMeta)

Arguments
object a BSFDataSet object
additional arguments
newMeta the replacement meta data table
Value

an object of type BSFDataSet with updated meta data

See Also

BSFDataSet

Examples

load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

nMeta = getMeta(bds)
setMeta(bds, nMeta)

setName 65

setName Setter method for the names of the BSFDataSet object The name slot
holds the name information of the dataset

Description

Setter method for the names of the BSFDataSet object The name slot holds the name information
of the dataset

Usage

setName(object, ...)

S4 method for signature 'BSFDataSet'
setName(object, newName)

Arguments
object a BSFDataSet object
additional arguments
newName a character that is the name
Value

object of type BSFDataSet with updated name

See Also

BSFDataSet

Examples

load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

bdsNew = setName(bds, "test@1")

setRanges Setter method for the ranges of the BSFDataSet object The GRanges
object that holds the genomic ranges information can be replaced.

Description

Setter method for the ranges of the BSFDataSet object The GRanges object that holds the genomic
ranges information can be replaced.

66 setSignal

Usage

setRanges(object, ...)

S4 method for signature 'BSFDataSet'
setRanges(object, newRanges, dropSeqlevels = TRUE, quiet = FALSE)

Arguments
object a BSFDataSet object
additional arguments
newRanges an object of type GRanges

dropSeglevels enforce seqnames to be the same in ranges and signal, by dropping unused se-
qlevels which is required for most downstream functions such as coverageOverRanges

quiet logical; whether to print messages

Value

object of type BSFDataSet with updated ranges

See Also

BSFDataSet

Examples

load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

rng = getRanges(bds)
rng rng + 10
bdsNew = setRanges(bds, rng)

setSignal Setter method for the signal data of the BSFDataSet object

Description
Signal data is loaded from the path specified in getMeta columns "cIPlus" and "clMinus" and stored
as a list of RLE lists.

Usage

setSignal(object, ...)

S4 method for signature 'BSFDataSet'
setSignal(object, newSignal, dropSeqlevels = TRUE, quiet = FALSE)

setSummary 67

Arguments
object a BSFDataSet object
additional arguments
newSignal list of RLE lists

dropSeglevels enforce seqnames to be the same in ranges and signal, by dropping unused se-
qlevels which is required for most downstream functions such as coverageOverRanges

quiet logical; whether to print messages

Value

an object of type BSFDataSet with updated signal

See Also

BSFDataSet

Examples

load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

sgn = getSignal (bds)
sgn = lapply(sgn, function(selStrand){
lapply(selStrand, function(chrList){
chrList[names(chrList) == "chr22"]
1))
»
bdsNew = setSignal(bds, sgn)

setSummary Setter method for the summary slot of the BSFDataSet object

Description
The summary slot is used to track information of the filtering steps applied in the makeBindingSites
function
Usage
setSummary(object, ...)
S4 method for signature 'BSFDataSet'
setSummary(object, summary)

Arguments

object a BSFDataSet object
additional arguments

summary a data.frame with the summary information to be stored in BSFDataSet

68 show

Value

an object of type BSFDataSet with updated summary info

See Also

BSFDataSet

Examples

load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

df = data.frame(processingStep = c(1,2),
parameter = c(3,4))
bds = setSummary(bds, df)

show Show method to for the BSFDataSet

Description

Prints the information for each of the input data slots in the BSFDataSet object.

Usage
S4 method for signature 'BSFDataSet'
show(object)

Arguments

object a BSFDataSet object

Value

shows the current object state

See Also

BSFDataSet

Examples

load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

show(bds)

subset-BSFDataSet 69

subset-BSFDataSet Subset a BSFDataSet object

Description

You can subset BSFDataSet by identifier or by position using the ~ [~ operator. Empty seqlevels are
being droppend after the subset.

Usage
S4 method for signature 'BSFDataSet,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]
Arguments
X A BSFDataSet object.
i Position of the identifier or the name of the identifier itself.
j Not used.
Additional arguments not used here.
drop if the signal not covered by the subsetted ranges should be dropped or not
Value
A BSFDataSet object.
Examples
load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

bdsNew = bds[1:10]

summary Summary method to for the BSFDataSet

Description

Prints the summaryinformation for the BSFDataSet object. This includes information on samples,
conditions and crosslinks.

Usage

S4 method for signature 'BSFDataSet'
summary (object)

Arguments

object a BSFDataSet object

70 supportRatio

Value

summary of the current object

See Also

BSFDataSet

Examples

load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

summary (bds)

supportRatio Support ratio function for BSFDataSet objects

Description

Functions that computes a ratio to determine how well a given binding site with is supported by
the crosslink coverage of the data. For a given BSFDataSet object binding sites are computed for
each width indicated in the bsWidths vector (using the coverageOverRanges function). These
coverages are compared to the coverage of regions flanking the binding sites. If not indicated in
bsFlank these regions are of the same width as the binding sites.

Usage
supportRatio(object, bsWidths, bsFlank = NA, sub.chr = NA, ...)
Arguments
object a BSFDataSet object
bsWidths a numeric vector indicating the different binding site width to compute the ratio
for
bsFlank optional; a numeric vector of the same length as bsWidth used to specify the
width of the flanking regions
sub.chr chromosome identifier (eg, chrl, chr2) used for subsetting the BSFDataSet ob-
ject.
further arguments passed to makeBindingSites
Details

Testing the width of 3nt for example, would result in a coverage within all 3nt wide binding sites
(c1) and a coverage computed on the adjacent 3nt flanking the binding sites up- and downstream
(f1, £2). Based on these numbers the ratio is computed by: c1/(1/2(f1+£2)).

The median over all ratios is reported as representative value.

supportRatioPlot 71

Value

an object of class data. frame

Examples
load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

suppressWarnings(supportRatio(bds, bsWidths = c(3,7)))

supportRatioPlot Plot that shows the binding site support ratio

Description

Function that shows a ratio to determine how well a given binding site with is supported by the
crosslink coverage of the data. Ratios are computed using the supportRatio function.

Usage
supportRatioPlot(object, bsWidths, bsFlank = NA, ...)
Arguments
object a BSFDataSet object
bsWidths a numeric vector indicating the different binding site width to compute the ratio
for
bsFlank optional; a numeric vector of the same length as bsWidth used to specify the
width of the flanking regions
further arguments passed to makeBindingSites
Details

The higher the ratio, the more does the given binding site width captures the enrichment of crosslinks
compared the the local surrounding. A ratio equal to 1 would mean no enrichemnt at all.

Value

an object of class ggplot2

Examples
load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$"”, full.names = TRUE))

suppressWarnings(supportRatioPlot(bds, bsWidths = c(3,7),
minWidth = 1, minClSites = 1, minCrosslinks = 2))

72 transcriptRegionOverlapsPlot

targetGeneSpectrumPlot
Bar-chart to show the hosting gene types of binding sites

Description
A diagnostic function that plots the gene type of the hosting gene for each binding site. The function
assignToGenes is expected to be executed prior to calling this plot function.

Usage

targetGeneSpectrumPlot (object, showNGroups = 5, text.size = 4)

Arguments
object a BSFDataSet object
showNGroups numeric; the number of different gene types to show
text.size numeric; the size of the text elments on the plot
Value
a plot of type ggplot
See Also

assignToGenes geneOverlapsPlot

Examples

load clip data

files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))
load(list.files(files, pattern = ".rds$", full.names = TRUE)[1])
bds = makeBindingSites(object = bds, bsSize = 9)

bds = assignToGenes(bds, anno.genes = gns)
targetGeneSpectrumPlot (bds)

transcriptRegionOverlapsPlot
UpSet-plot to that shows the transcript region overlaps

Description

A diagnostic function that plots the transcript regions of binding sites on overlapping loci. The
function assignToTranscriptRegions is expected to be executed prior to calling this plot func-
tion.

Usage

transcriptRegionOverlapsPlot(object, text.size = NULL, show.title = TRUE)

transcriptRegionSpectrumPlot 73

Arguments
object a BSFDataSet object
text.size numeric; fontsize of all numbers on axis
show.title logical; if plot title should be visible
Value
a plot of type ggplot
See Also

assignToTranscriptRegions transcriptRegionSpectrumPlot

Examples

load clip data
files <- system.file("extdata”, package="BindingSiteFinder")

load(list.files(files, pattern = ".rda$", full.names = TRUE))
load(list.files(files, pattern = ".rds$", full.names = TRUE)[1])
load(list.files(files, pattern = ".rds$", full.names = TRUE)[2])

bds = makeBindingSites(object = bds, bsSize = 9)

bds = assignToGenes(bds, anno.genes = gns)

bds = assignToTranscriptRegions(object = bds, anno.transcriptRegionList = regions)
transcriptRegionOverlapsPlot(bds)

transcriptRegionSpectrumPlot
Bar-chart to show the hosting transcript regions of binding sites

Description

A diagnostic function that plots the transcript regions of the hosting gene for each binding site.
The function assignToTranscriptRegions is expected to be executed prior to calling this plot

function.
Usage
transcriptRegionSpectrumPlot(
object,
values = c("asis"”, "percentage"),
normalize = FALSE,
normalize.factor = c("sum”, "median”, "mean"),

show.others = FALSE,
text.size = 4

74

Arguments

object

values

normalize

transcriptRegionSpectrumPlot

a BSFDataSet object

character; if values should be presented ’as-is’, that means for example as fre-
quencies in case normalization = FALSE, or as percentages

logical; whether to normalize values

normalize.factor

show.others

text.size

Details

character; indicate by what factor values should be normalized to region length
by
logical; whether to show ’others’ category. Has to be false if normalize = TRUE

numeric; font size of the numbers to be displayed on each bar

Count frequencies can be normalized to the length of the hosting region with option normalize.
The specific factor how the hosting region length is used is given by normalize.factor. In the
case of normalize. factor = "sum” binding site frequencies are divided by the summed length of
all regions that host the specific binding site.

Further with option values once can indicate whether raw or normalized frequencies should be
shown ’as-is’ or normalized to *percentages’.

Value

a plot of type ggplot

See Also

assignToTranscriptRegions transcriptRegionOverlapsPlot

Examples

load clip data

files <- system.file("extdata”, package="BindingSiteFinder")

load(list.files(files, pattern

".rda$"”, full.names = TRUE))

load(list.files(files, pattern = ".rds$"”, full.names = TRUE)[1]1)
load(list.files(files, pattern = ".rds$", full.names = TRUE)[2])
bds = makeBindingSites(object = bds, bsSize = 9)

bds

assignToGenes(bds, anno.genes = gns)

bds = assignToTranscriptRegions(object = bds, anno.transcriptRegionList = regions)
transcriptRegionSpectrumPlot (bds)

Index

+,BSFDataSet,BSFDataSet-method
(add-BSFDataSet), 3

[,BSFDataSet,ANY,ANY, ANY-method
(subset-BSFDataSet), 69

add-BSFDataSet, 3

annotateWithScore, 4, 13, 15, 16,42, 43

assignToGenes, 6, 13, 15, 16, 18, 32, 36, 38,
72

assignToTranscriptRegions, 7, 13, 15, 16,
32,38, 72-74

bindingSiteCoveragePlot, 9
bindingSiteDefinednessPlot, 10, 22
BSFDataSet, 3, 6-10, 11, 12, 14, 16-18,
20-22,24-29, 31, 33-47,49-58, 61,
62, 64-70, 72-74
BSFDataSet, (BSFDataSet), 11
BSFDataSet-class, (BSFDataSet), 11
BSFDataSetFromBigWig (BSFDataSet), 11
BSFind, 5,7, 8, 10, 11,12, 18, 22, 24, 30-33,
38,45, 52-55, 57,61, 63

calculateBsBackground, 16, 21, 26, 35, 48,
49
calculateBsFoldChange, 19, 37, 38, 50, 51
calculateSignalToFlankScore, 11, 13, 16,
21
clipCoverage, 22
collapseReplicates, 24
combineBSF, 3, 18, 25
CompressedGRangesList, 7, 8, 15
coverageOverRanges, 27, 70

DESeq, 19-21
duplicatedSitesPlot, 28

estimateBsWidth, 13-16, 29, 30, 31
estimateBsWidthPlot, 16, 31, 31, 54
exportTargetGenes, 32
exportToBED, 33

filterBsBackground, 18, 21, 34, 48, 49
format, 32

75

geneOverlapsPlot, 7, 36, 72

geneRegulationPlot, 37

GenomicRanges, 5, 6, 15, 17, 30, 37, 54, 55

getMeta, 39,41, 61, 66

getMeta,BSFDataSet-method (getMeta), 39

getName, 39

getName,BSFDataSet-method (getName), 39

getRanges, 40

getRanges,BSFDataSet-method
(getRanges), 40

getSignal, 41

getSignal,BSFDataSet-method
(getSignal), 41

getSummary, 42

getSummary,BSFDataSet-method
(getSummary), 42

ggplot, 11, 28, 31, 36, 43, 46, 47, 49-52, 56,
62, 63,72-74

ggsave, 57

globalScorePlot, 5, 42

imputeBsDifferencesForTestdata, 43
1fcShrink, 20, 21

makeBindingSites, 13, 15, 30, 42, 44, 4648,
58, 67

makeBsSummaryPlot, 45, 46

mergeCrosslinkDiagnosticsPlot, 45, 47

mergeSummaryPlot, 47

option, 53
overlaps, 6, 8, 54

plotBsBackgroundFilter, 21, 35, 48
plotBsMA, 50

plotBsVolcano, 51
processingStepsFlowChart, 16, 26, 52
processingStepsTable, 52
pureClipGeneWiseFilter, 13-16, 28, 30, 53
pureClipGlobalFilter, 13, 14, 16, 55, 56
pureClipGlobalFilterPlot, 55, 56

quickFigure, 56

76

rangeCoveragePlot, 58
reproducibilityCutoffPlot, 59
reproducibilityFilter, 13,15, 16, 59, 60,

61-63
reproducibilityFilterPlot, 61, 61, 63
reproducibilitySamplesPlot, 61, 62
reproducibilityScatterPlot, 61, 63
results, 20, 21

setMeta, 64

setMeta,BSFDataSet-method (setMeta), 64

setName, 65

setName,BSFDataSet-method (setName), 65

setRanges, 65

setRanges,BSFDataSet-method
(setRanges), 65

setSignal, 66

setSignal,BSFDataSet-method
(setSignal), 66

setSummary, 67

setSummary,BSFDataSet-method
(setSummary), 67

show, 68

show,BSFDataSet-method (show), 68

subset-BSFDataSet, 69

summary, 69

summary ,BSFDataSet-method (summary), 69

supportRatio, 70, 71

supportRatioPlot, 71

targetGeneSpectrumPlot, 7, 36, 72
transcriptRegionOverlapsPlot, 8, 72, 74
transcriptRegionSpectrumPlot, 8, 73, 73

INDEX

	add-BSFDataSet
	annotateWithScore
	assignToGenes
	assignToTranscriptRegions
	bindingSiteCoveragePlot
	bindingSiteDefinednessPlot
	BSFDataSet
	BSFind
	calculateBsBackground
	calculateBsFoldChange
	calculateSignalToFlankScore
	clipCoverage
	collapseReplicates
	combineBSF
	coverageOverRanges
	duplicatedSitesPlot
	estimateBsWidth
	estimateBsWidthPlot
	exportTargetGenes
	exportToBED
	filterBsBackground
	geneOverlapsPlot
	geneRegulationPlot
	getMeta
	getName
	getRanges
	getSignal
	getSummary
	globalScorePlot
	imputeBsDifferencesForTestdata
	makeBindingSites
	makeBsSummaryPlot
	mergeCrosslinkDiagnosticsPlot
	mergeSummaryPlot
	plotBsBackgroundFilter
	plotBsMA
	plotBsVolcano
	processingStepsFlowChart
	processingStepsTable
	pureClipGeneWiseFilter
	pureClipGlobalFilter
	pureClipGlobalFilterPlot
	quickFigure
	rangeCoveragePlot
	reproducibilityCutoffPlot
	reproducibilityFilter
	reproducibilityFilterPlot
	reproducibilitySamplesPlot
	reproducibilityScatterPlot
	setMeta
	setName
	setRanges
	setSignal
	setSummary
	show
	subset-BSFDataSet
	summary
	supportRatio
	supportRatioPlot
	targetGeneSpectrumPlot
	transcriptRegionOverlapsPlot
	transcriptRegionSpectrumPlot
	Index

