
Package ‘sevenbridges’
March 13, 2025

Type Package

Title Seven Bridges Platform API Client and Common Workflow Language
Tool Builder in R

Version 1.37.0

Maintainer Phil Webster <phil.webster@velsera.com>

Description R client and utilities for Seven Bridges platform API, from Cancer
Genomics Cloud to other Seven Bridges supported platforms.

License Apache License 2.0 | file LICENSE

VignetteBuilder knitr

URL https://www.sevenbridges.com,

https://sbg.github.io/sevenbridges-r/,

https://github.com/sbg/sevenbridges-r

BugReports https://github.com/sbg/sevenbridges-r/issues

biocViews Software, DataImport, ThirdPartyClient

Depends methods, utils, stats

Imports httr, jsonlite, yaml, objectProperties, stringr, S4Vectors,
docopt, curl, uuid, data.table

Suggests knitr, rmarkdown, testthat, readr

NeedsCompilation no

Encoding UTF-8

RoxygenNote 7.2.0

Collate sevenbridges-package.R class-all.R api-http.R api-utils.R
api-misc.R class-filesystem.R class-cwl.R class-auth-utils.R
class-auth.R class-item.R class-meta.R class-ratelimit.R
class-user.R class-billing.R class-member.R class-project.R
class-files.R class-upload.R class-app.R class-tool.R
class-flow.R class-task.R class-volume.R class-division.R
class-team.R class-teammember.R class-marker.R misc-uploader.R
misc-handler.R misc-lift.R zzz.R

git_url https://git.bioconductor.org/packages/sevenbridges

1

https://www.sevenbridges.com
https://sbg.github.io/sevenbridges-r/
https://github.com/sbg/sevenbridges-r
https://github.com/sbg/sevenbridges-r/issues

2 Contents

git_branch devel

git_last_commit 265369e

git_last_commit_date 2024-10-29

Repository Bioconductor 3.21

Date/Publication 2025-03-12

Author Phil Webster [aut, cre],
Soner Koc [aut] (ORCID: <https://orcid.org/0000-0002-0772-6600>),
Nan Xiao [aut],
Tengfei Yin [aut],
Dusan Randjelovic [ctb],
Emile Young [ctb],
Velsera [cph, fnd]

Contents
sevenbridges-package . 3
addIdNum . 4
api . 5
App-class . 6
asList . 7
Auth-class . 8
batch . 11
Binding-class . 11
CCBList . 12
CLB . 13
cli_list_projects . 15
cli_list_tags . 16
cli_upload . 17
CommandInputParameter-class . 18
CommandInputSchema-class . 19
CommandLineBinding-class . 19
CommandLineTool-class . 20
CommandOutputBinding-class . 23
CommandOutputParameter-class . 24
CommandOutputSchema-class . 24
convert_app . 25
CPURequirement-class . 26
CWL-class . 27
delete . 28
download . 29
DSCList . 29
Expression-class . 30
ExpressionTool-class . 30
FileList . 31
Files-class . 32
FS-class . 34

https://orcid.org/0000-0002-0772-6600

sevenbridges-package 3

get_cwl_class . 34
get_token . 35
get_uploader . 36
Handler-class . 37
input_matrix . 37
Item-class . 38
link . 39
link_what . 41
misc_make_metadata . 42
Parameter-class . 43
PrimitiveSingleEnum-class . 44
Process-class . 44
ProcessRequirement-class . 46
project_details . 48
project_members . 49
response . 50
SBGWorkflow-class . 51
sbg_get_env . 55
sbg_set_env . 56
SchemaList . 56
setListClass . 57
setTaskHook . 58
set_tag . 58
set_test_env . 59
status_check . 60
test_tool_bunny . 61
test_tool_cwlrun . 61
test_tool_rabix . 62
Tool-class . 63
upload_complete_all . 65
upload_complete_part . 66
upload_delete . 67
upload_info . 67
upload_info_part . 68
upload_init . 69
WorkflowOutputParameter-class . 70
WorkflowStepInput-class . 71

Index 75

sevenbridges-package Seven Bridges Platform API Client and CWL Tool Builder in R

Description

R client and utilities for Seven Bridges platform API, from Cancer Genomics Cloud to other Seven
Bridges supported platforms.

4 addIdNum

Details

Package: sevenbridges
Type: Package
License: Apache License 2.0

Author(s)

Soner Koc <<soner.koc@sevenbridges.com>> Nan Xiao Tengfei Yin Dusan Randjelovic Emile
Young

addIdNum add # prefix to id

Description

add # prefix to id

Usage

addIdNum(x)

Arguments

x (character) with # or not.

Value

a character with # prefix.

Examples

addIdNum(c("bam", "#fastq"))

api 5

api Core HTTP logic for Seven Bridges API

Description

Core HTTP logic for Seven Bridges API

Usage

api(
token = NULL,
version = "v2",
path = NULL,
method = c("GET", "POST", "PUT", "DELETE", "PATCH"),
query = NULL,
body = list(),
encode = c("json", "form", "multipart"),
limit = getOption("sevenbridges")$limit,
offset = getOption("sevenbridges")$offset,
advance_access = getOption("sevenbridges")$advance_access,
authorization = FALSE,
fields = NULL,
base_url = paste0("https://api.sbgenomics.com/", version, "/"),
...

)

Arguments

token API auth token or access_token for Seven Bridges single sign-on.

version API version number, default is v2.

path path connected with base_url.

method one of "GET", "POST", "PUT", or "Delete".

query Passed to httr package GET/POST call.

body Passed to httr package GET/POST/PUT/DELETE call.

encode If the body is a named list, how should it be encoded? Can be one of "json" (ap-
plication/json), "form" (application/x-www-form-urlencoded), or "multipart"
(multipart/form-data). Default is "json". For "multipart", list elements can
be strings or objects created by upload_file. For "form", elements are coerced
to strings and escaped, use I() to prevent double-escaping. For "json", param-
eters are automatically "unboxed" (i.e. length 1 vectors are converted to scalars).
To preserve a length 1 vector as a vector, wrap in I().

limit How many results to return

offset The point at which to start displaying them

advance_access Enable advance access features? Default is FALSE.

6 App-class

authorization Logical. Is the token an API auth token (FALSE) or an access token from the
Seven Bridges single sign-on (TRUE)?

fields All API calls take the optional query parameter fields. This parameter en-
ables you to specify the fields you want to be returned when listing resources
(e.g. all your projects) or getting details of a specific resource (e.g. a given
project). For example, fields="id,name,size" to return the fields id, name and
size for files. More details please check https://docs.sevenbridges.com/
docs/the-api#section-general-api-information

base_url defeault is "https://api.sbgenomics.com/v2"

... passed to GET/POST/PUT/DELETE/PATCH call.

Details

Used for advanced users and the core method for higher level API in this package, please refer to
the easy api vignette and additional vignettes pages for more convenient usage.

Value

returned request list of httr

References

https://docs.sevenbridges.com/v1.0/page/api

Examples

token <- "your_token"
list projects
Not run:
api(token = token, path = "projects", method = "GET")
End(Not run)

App-class Class App

Description

Class App

Value

App object.

https://docs.sevenbridges.com/docs/the-api#section-general-api-information
https://docs.sevenbridges.com/docs/the-api#section-general-api-information
https://docs.sevenbridges.com/v1.0/page/api

asList 7

Fields

id app id

project project id

name app name

revision app revision

raw raw cwl list, if doesn’t have any, call cwl() method

Examples

Not run:
a <- Auth(url = "https://api.sbgenomics.com/v2/", token = "your_token")
get a public app
app <- a$public_app(id = "admin/sbg-public-data/rna-seq-alignment-star")
app$input_matrix()
app$output_matrix()
get a public app
app <- a$public_app(id = "admin/sbg-public-data/star")
app$input_matrix()
app$output_matrix()
End(Not run)

asList Convert a object slots/fields to a list, json, or yaml file

Description

Doesn’t like as.list, only fields and slots are converted, prepare a object to be conveted to
YAML/JSON.

Usage

asList(object, ...)

S4 method for signature 'ANY'
asList(object, ...)

S4 method for signature 'CWL'
asList(object, ...)

S4 method for signature 'SingleEnum'
asList(object, ...)

S4 method for signature 'SimpleList'
asList(object, ...)

S4 method for signature 'DSCList'
asList(object, ...)

8 Auth-class

Arguments

object object, could be S4/R5 object. For example, class CWL, SimpleList.

... other parameters passed to as.yaml or toJSON.

Value

a list object or json or yaml file.

Examples

define a S4 object
A <- setClass("A", slots = list(a = "character", b = "numeric"))
define a reference object which extends 'CWL' class
B <- setRefClass("B", fields = list(x = "character", y = "A"), contains = "CWL")
new instances
a <- A(a = "hello", b = 123)
b <- B(x = "world", y = a)

show
b
b$show("JSON")
b$show("YAML")

You can convert slots/fields into a list
asList(a)
asList(b)
b$toList()
b$toYAML()
b$toJSON()

Auth-class Class Auth

Description

Auth object

Details

Every object could be requested from this Auth object and any action could start from this object
using cascading style. Please check vignette("api") for more information.

Fields

from [character] Authentication method. Could be "direct" (pass the credential information to
the arguments directly), "env" (read from pre-set system environment variables), or "file"
(read configurations from a credentials file). Default is "direct".

Auth-class 9

platform [character] The platform to use. If platform and url are both not specified, the default
is "cgc" (Cancer Genomics Cloud). Other possible values include "aws-us" (Seven Bridges
Platform - US), "aws-eu" (Seven Bridges Platform - EU), "ali-cn" (Seven Bridges Platform
- China), "cavatica" (Cavatica), and "f4c" (BioData Catalyst Powered by Seven Bridges).

url [character] Base URL for API. Please only use this when you want to specify a platform that
is not in the platform list above, and also leaving platform unspecified.

token [character] Your authentication token.

sysenv_url Name of the system environment variable storing the API base URL. By default:
"SB_API_ENDPOINT".

sysenv_token Name of the system environment variable storing the auth token. By default:
"SB_AUTH_TOKEN".

config_file [character] Location of the user configuration file. By default: "~/.sevenbridges/credentials".

profile_name [character] Profile name in the user configuration file. The default value is "default".

fs FS object, for mount and unmount file system.

authorization Logical. Is the token an API auth token (FALSE) or an access token from the
Seven Bridges single sign-on (TRUE)?

Methods

api(..., limit = getOption("sevenbridges")$limit, offset = getOption("sevenbridges")$offset, fields = NULL, complete = FALSE)
This call returns all API paths, and pass arguments to api() function with input token and url
automatically

billing(id = NULL, breakdown = FALSE, ...) If no id provided, This call returns a list of paths
used to access billing information via the API. else, This call lists all your billing groups,
including groups that are pending or have been disabled. If breakdown = TRUE, This call
returns a breakdown of spending per-project for the billing group specified by billing_group.
For each project that the billing group is associated with, information is shown on the tasks
run, including their initiating user (the runner), start and end times, and cost.

bulk_file_copy(file_ids, project, ...) Copy files between projects in a batch.

bulk_file_delete(file_ids, ...) Delete multiple files.

bulk_file_edit(...) Edit details of multiple files (preserving the omitted fields).

bulk_file_get(file_ids, ...) Get details of multiple files.

bulk_file_update(...) Update details of multiple files (removing the omitted fields).

bulk_task_get(task_ids, ...) Get details of multiple tasks.

bulk_volume_export(...) Bulk export to volumes.

bulk_volume_get_export(...) Get details of a bulk export job.

bulk_volume_get_import(...) Get details of a bulk import job.

bulk_volume_import(...) Bulk import from volumes.

division(id = NULL, ...) List all divisions or get details of a division.

file(name = NULL, id = NULL, project = NULL, exact = FALSE, detail = FALSE, metadata = list(), origin.task = NULL, tag = NULL, complete = FALSE, search.engine = c("server", "brute"), ...)
This call returns a list of all files in a specified project that you can access. For each file, the
call returns: 1) Its ID 2) Its filename The project is specified as a query parameter in the call.

10 Auth-class

invoice(id = NULL, ...) If no id provided, This call returns a list of invoices, with information
about each, including whether or not the invoice is pending and the billing period it covers.
The call returns information about all your available invoices, unless you use the query pa-
rameter bg_id to specify the ID of a particular billing group, in which case it will return the
invoice incurred by that billing group only. If id was provided, This call retrieves information
about a selected invoice, including the costs for analysis and storage, and the invoice period.

project(name = NULL, id = NULL, index = NULL, ignore.case = TRUE, exact = FALSE, owner = NULL, detail = FALSE, ...)
If no id or name provided, this call returns a list of all projects you are a member of. Each
project’s project_id and URL on the platform will be returned. If name or id provided, we do
a match search the list.

project_new(name = NULL, billing_group_id = NULL, description = name, tags = list(), type = "v2", locked = FALSE, use_interruptible_instances = FALSE, ...)
Create new projects, required parameters: name, billing_group_id, optional parameteres: tags,
description, type, and settings.

project_owner(owner = NULL, ...) List the projects owned by and accessible to a particular
user. Each project’s ID and URL will be returned.

rate_limit(...) This call returns information about your current rate limit. This is the number
of API calls you can make in one hour.

send_feedback(text, type = c("idea", "thought", "problem"), referrer = NULL, ...) Send
feedback to Seven Bridges.

user(username = NULL, ...) This call returns information about the authenticated user.

volume(name = NULL, id = NULL, index = NULL, ignore.case = TRUE, exact = FALSE, detail = FALSE, ...)
If no id or name provided, this call returns a list of all volumes you are a member of. If name
or id provided, we did a match search the list.

Examples

Direct authentication (default)
replace with your auth token
token <- "your_token"
a <- Auth(platform = "cgc", token = token)
Not run:
Authentication with environment variables
This will read system environments variables
`SB_API_ENDPOINT` and `SB_AUTH_TOKEN` by default
a <- Auth(from = "env")

Authentication with user configuration file
This will load profile `default` from config
file `~/.sevenbridges/credentials` by default
a <- Auth(from = "file")

End(Not run)

batch 11

batch batch function for task batch execution

Description

batch function for task batch execution

Usage

batch(input = NULL, criteria = NULL, type = c("ITEM", "CRITERIA"))

Arguments

input character, ID of the input on which you wish to batch on. You would usually
batch on the input containing a list of files. If left out, default batching criteria
defined in the app is used.

criteria a character vector, for example. c("metadata.sample_id", "metadata.library_id").
The meaning of the above batch_by dictionary is - group inputs (usually files)
first on sample ID and then on library ID. If NULL, using type "ITEM" by de-
fault.

type Criteria on which to batch on - can be in two formats."ITEM" and "CRITERIA".
If you wish to batch per item in the input (usually a file) using "ITEM". If you
wish a more complex criteria, specify the "CRITERIA" on which you wish to
group inputs on. Please check examples.

Value

a list of ’batch_input’ and ’batch_by’ used for task batch

Examples

batch(input = "fastq") # by ITEM
batch(input = "fastq", c("metadata.sample_id", "metadata.library_id"))
shorthand for this
batch(input = "fastq", c("metadata.sample_id", "metadata.library_id"), type = "CRITERIA")

Binding-class Binding

Description

Binding

12 CCBList

Fields

loadContents [logical] Only applies when type is File. Read up to the first 64 KiB of text from
the file and place it in the "contents" field of the file object for manipulation by expressions.

secondaryFiles [] Only applies when type is File. Describes files that must be included alongside
the primary file. If the value is Expression, the context of the expression is the input or output
File parameter to which this binding applies. Where the value is a string, it specifies that the
following pattern should be applied to the primary file: If string begins with one or more caret
characters, for each caret, remove the last file extension from the path (the last period . and
all following characters). If there are no file extensions, the path is unchanged. Append the
remainder of the string to the end of the file path.

Examples

Binding(loadContents = TRUE, secondaryFiles = "./test.txt")

CCBList characterORCommandLineBindingList Class

Description

characterORCommandLineBindingList Class

Usage

CCBList(...)

Arguments

... element or list of the element.

Value

CCBList

Examples

CCBList("-o output.bam")

CLB 13

CLB Shorthand functions for cwl packages constructors

Description

Shorthand functions for cwl packages constructors

Arguments

type [ANY] Specify valid types of data that may be assigned to this parameter.

label [character] A short, human-readable label of this parameter object.

description [character] A long, human-readable description of this parameter object.

streamable [logical] Currently only applies if type is File. A value of true indicates that the
file is read or written sequentially without seeking. An implementation may use
this flag to indicate whether it is valid to stream file contents using a named pipe.
Default: false.

default [ANY] The default value for this parameter if not provided in the input object.

... For InputParameter, it will be passed to [CommandLineBinding], which could
be created by command CLB. For parameters that accepted please check CommandLineBiding
in cwl package. For your convenience, this manual also contain a section for
CommandLineBinding. For OutPar or OutputParameter, it will be passed to
CommandOutputParameter. Please check the following section as well.

Shorthand

CLB <- CommandLineBinding argslist <- CLBList <- CommandLineBindingList COB <- Com-
mandOutputBinding IPList <- InputParameterList OPList <- OutputParameterList InPar <- Input-
Parameter OutPar <- OutputParameter

CommandLineBinding

position [integer] The sorting key. Default position is 0.

prefix [character] Command line prefix to add before the value.

separate [logical] If true (default) then the prefix and value must be added as separate command
line arguments; if false, prefix and value must be concatenated into a single command line
argument.

itemSeparator [character] Join the array elements into a single string with the elements separated
by by itemSeparator.

valueFrom [characterOrExpression] If valueFrom is a constant string value, use this as the value
and apply the binding rules above. If valueFrom is an expression, evaluate the expression to
yield the actual value to use to build the command line and apply the binding rules above. If
the inputBinding is associated with an input parameter, the "context" of the expression will be
the value of the input parameter. When a binding is part of the CommandLineTool.arguments
field, the valueFrom field is required.

14 CLB

CommandOutputParameter

glob [characterORExpression] Find files relative to the output directory, using POSIX glob(3) path-
name matching. If provided an array, match all patterns in the array. If provided an expression,
the expression must return a string or an array of strings, which will then be evaluated as a
glob pattern. Only files which actually exist will be matched and returned.

outputEval [Expression] Evaluate an expression to generate the output value. If glob was speci-
fied, the script context will be an array containing any files that were matched. Additionally,
if loadContents is true, the file objects will include up to the first 64 KiB of file contents in the
contents field. Following fields inherited from Binding

loadContents [logical] Only applies when type is File. Read up to the first 64 KiB of text from the
file and place it in the "contents" field of the file object for manipulation by expressions.

secondaryFiles Only applies when type is File. Describes files that must be included alongside the
primary file. If the value is Expression, the context of the expression is the input or output
File parameter to which this binding applies. Where the value is a string, it specifies that the
following pattern should be applied to the primary file: If string begins with one or more caret
characters, for each caret, remove the last file extension from the path (the last period . and
all following characters). If there are no file extensions, the path is unchanged. Append the
remainder of the string to the end of the file path.

Examples

ipl <- IPList(
input(
id = "bam",
type = "File",
label = "Bam file",
description = "Input bam file",
position = 1L,
separate = TRUE

),
input(

id = "level",
type = "Integer",
label = "Compression Level",
description = "Set compression level, from 0 (uncompressed) to 9 (best)",
position = 2L

),
input(

id = "prefix",
type = "String",
label = "Prefix",
description = "Write temporary files to PREFIX.nnnn.bam",
position = 3L

)
)

cli_list_projects 15

cli_list_projects List projects using Seven Bridges command line uploader

Description

List projects available as upload targets using Seven Bridges command line uploader.

Usage

cli_list_projects(token = NULL, uploader = NULL, proxy = NULL)

Arguments

token Authentication token.

uploader The directory where Seven Bridges command line uploader is located (the di-
rectory that contains the bin/ directory).

proxy A proxy server through which the uploader should connect. For details the proxy
parameter format, see the part on parameter --proxy in the reference below.

Value

Character vector of the available project names.

References

https://docs.sevenbridges.com/docs/upload-via-the-command-line

See Also

See cli_upload for uploading files with the command line uploader, cli_list_tags for listing all
tags in a project.

Examples

token <- "your_token"
Not run:
cli_list_projects(

token = token,
uploader = "~/Downloads/sbg-uploader/"

)
End(Not run)

https://docs.sevenbridges.com/docs/upload-via-the-command-line

16 cli_list_tags

cli_list_tags List all the tags in project using Seven Bridges command line uploader

Description

List all the tags in a destination project using Seven Bridges command line uploader.

Usage

cli_list_tags(token = NULL, uploader = NULL, project = NULL, proxy = NULL)

Arguments

token Authentication token.

uploader The directory where Seven Bridges command line uploader is located (the di-
rectory that contains the bin/ directory).

project Unique identifier of the project, for example, "username/project-name".

proxy A proxy server through which the uploader should connect. For details the proxy
parameter format, see the part on parameter --proxy in the reference below.

Value

Chracter vector of file tags in the project.

References

https://docs.sevenbridges.com/docs/upload-via-the-command-line

See Also

See cli_upload for uploading files with the command line uploader, cli_list_projects for
listing available projects.

Examples

token <- "your_token"
Not run:
cli_list_tags(

token = token,
uploader = "~/Downloads/sbg-uploader/",
project = "username/project-name"

)
End(Not run)

https://docs.sevenbridges.com/docs/upload-via-the-command-line

cli_upload 17

cli_upload Upload files using Seven Bridges command line uploader

Description

Upload files using Seven Bridges command line uploader.

Usage

cli_upload(
token = NULL,
uploader = NULL,
file = NULL,
project = NULL,
proxy = NULL,
tag = NULL,
manifest_file = NULL,
manifest_metadata = c("all", "none", "partial"),
metadata_fields = NULL,
dry_run = FALSE,
dry_run_fields = NULL

)

misc_upload_cli()

Arguments

token Authentication token.

uploader The directory where the command line uploader is located (the directory that
contains the bin/ directory).

file The location of the (single) file to upload. To upload multiple files, please use
manifest_file to specify.

project The project identifier (e.g. username/project-name) to upload files to. This
option is mandatory. To upload files to a project, you must be a member of that
project and must have the write permission granted by the project administrator.

proxy A proxy server through which the uploader should connect. For details the proxy
parameter format, see the part on parameter --proxy in the reference below.

tag Tags for your the files (optional). Use a vector of character strings, for instance,
c("tag one", "the second tag").

manifest_file Location of the manifest file (for uploading multiple files with metadata). See
the reference URL below for the format of a manifest file.

manifest_metadata

Should we use all, none, or only a part of the the metadata fields included in the
manifest file? Default is "all".

18 CommandInputParameter-class

metadata_fields

Character vector, the metadata fields to use in the manifest file. This should be
specified if and only if manifest_metadata = "partial".

dry_run Should we just output the data and check the settings without uploading any-
thing? Default is FALSE.

dry_run_fields Character vector, specific metadata fields to output information about when
dry_run = TRUE.

Value

The uploaded file’s ID number.

Note

To use the command line uploader, Java 1.7 or newer should be installed. See the reference link
below for details.

References

Seven Bridges Command Line Uploader: https://docs.sevenbridges.com/docs/upload-via-the-command-line
Manifest file format: https://docs.sevenbridges.com/docs/format-of-a-manifest-file

See Also

See get_uploader for downloading the command line uploader for Seven Bridges platforms. See
cli_list_projects and cli_list_tags for listing available projects or tags with the command
line uploader.

Examples

token <- "your_token"
Not run:
cli_upload(

token = token,
uploader = "~/Downloads/cgc-uploader/",
file = "~/example.fastq", project = "username/project-name"

)
End(Not run)

CommandInputParameter-class

CommandInputParameter Class

Description

An input parameter for a CommandLineTool.

https://docs.sevenbridges.com/docs/upload-via-the-command-line
https://docs.sevenbridges.com/docs/format-of-a-manifest-file

CommandInputSchema-class 19

Examples

ipl <- InputParameterList(
CommandInputParameter(
id = "BAM", type = "File",
label = "input bam",
description = "input bam",
inputBinding = CommandLineBinding(

position = 1L
)

),
CommandInputParameter(

id = "level", type = "Integer",
label = "Compression level",
description = "Compression level",
inputBinding = CommandLineBinding(

position = 2L,
prefix = "-l"

)
)

)

CommandInputSchema-class

CommandInputSchema Class

Description

CommandInputSchema Class

Examples

CommandInputSchema()

CommandLineBinding-class

CommandLineBinding Class

Description

When listed under inputBinding in the input schema, the term "value" refers to the the corresponding
value in the input object. For binding objects listed in CommandLineTool.arguments, the term
"value" refers to the effective value after evaluating valueFrom.

20 CommandLineTool-class

Details

The binding behavior when building the command line depends on the data type of the value. If
there is a mismatch between the type described by the input schema and the effective value, such as
resulting from an expression evaluation, an implementation must use the data type of the effective
value.

• characterAdd prefix and the string to the command line.
• numericAdd prefix and decimal representation to command line.
• logicalIf true, add prefix to the command line. If false, add nothing.
• FileAdd prefix and the value of File.path to the command line.
• *ArrayIf itemSeparator is specified, add prefix and the join the array into a single string with

itemSeparator separating the items. Otherwise add prefix and recursively add individual ele-
ments.

• *objectAdd prefix only, and recursively add object fields for which inputBinding is specified.
• nullAdd nothing.

Fields

position [integer] The sorting key. Default position is 0.
prefix [character] Command line prefix to add before the value.
separate [logical] If true (default) then the prefix and value must be added as separate command

line arguments; if false, prefix and value must be concatenated into a single command line
argument.

itemSeparator [character] Join the array elements into a single string with the elements separated
by by itemSeparator.

valueFrom [characterOrExpression] If valueFrom is a constant string value, use this as the value
and apply the binding rules above. If valueFrom is an expression, evaluate the expression to
yield the actual value to use to build the command line and apply the binding rules above. If
the inputBinding is associated with an input parameter, the "context" of the expression will be
the value of the input parameter. When a binding is part of the CommandLineTool.arguments
field, the valueFrom field is required.

Examples

CommandLineBinding(position = 1L, prefix = "-l")

CommandLineTool-class CommandLineTool Class

Description

A CommandLineTool process is a process implementation for executing a non-interactive applica-
tion in a POSIX environment. To help accomodate of the enormous variety in syntax and semantics
for input, runtime environment, invocation, and output of arbitrary programs, CommandLineTool
provides the concept of "input binding" to describe how to translate input parameters to an actual
program invocation, and "output binding" to describe how generate output parameters from program
output.

CommandLineTool-class 21

Fields

baseCommand (character) Specifies the program to execute. If the value is an array, the first ele-
ment is the program to execute, and subsequent elements are placed at the beginning of the
command line in prior to any command line bindings. If the program includes a path separator
character it must be an absolute path, otherwise it is an error. If the program does not include
a path separator, search the $PATH variable in the runtime environment find the absolute path
of the executable.

arguments [characterORCommandLineBinding] Command line bindings which are not directly
associated with input parameters.

stdin [characterORExpression] A path to a file whose contents must be piped into the command’s
standard input stream.

stdout [characterORExpression] Capture the command’s standard output stream to a file written
to the designated output directory. If stdout is a string, it specifies the file name to use.If
stdout is an expression, the expression is evaluated and must return a string with the file name
to use to capture stdout. If the return value is not a string, or the resulting path contains illegal
characters (such as the path separator /) it is an error.

successCodes [integer] Exit codes that indicate the process completed successfully.

temporaryFailCodes [integer] Exit codes that indicate the process failed due to a possibly tem-
porary condition, where excuting the process with the same runtime environment and inputs
may produce different results.

permanentFailCodes [integer] Exit codes that indicate the process failed due to a permanent logic
error, where excuting the process with the same runtime environment and same inputs is ex-
pected to always fail.

Input binding

The tool command line is built by applying command line bindings to the input object. Bindings
are listed either as part of an input parameter using the inputBinding field, or separately using the
arguments field of the CommandLineTool.

The algorithm to build the command line is as follows. In this algorithm, the sort key is a list
consisting of one or more numeric and string elements. Strings are sorted lexicographically based
on UTF-8 encoding.

• Collect CommandLineBinding objects from arguments. Assign a sorting key [position, i]
where position is CommandLineBinding.position and the i is the index in the arguments list.

• Collect CommandLineBinding objects from the inputs schema and associate them with values
from the input object. Where the input type is a record, array, or map, recursively walk
the schema and input object, collecting nested CommandLineBinding objects and associating
them with values from the input object.

• Assign a sorting key for each leaf binding object by appending nested position fields together
with the array index, or map key of the data at each nesting level. If two bindings have the
same position, the tie must be broken using the lexographic ordering of the field or parameter
name immediately containing the binding.

• Sort elements using the assigned sorting keys. Numeric entries sort before strings.

22 CommandLineTool-class

• In the sorted order, apply the rules defined in CommandLineBinding to convert bindings to
actual command line elements.

• Insert elements from baseCommand at the beginning of the command line.

Runtime environment

All files listed in the input object must be made available in the runtime environment. The im-
plementation may use a shared or distributed file system or transfer files via explicit download.
Implementations may choose not to provide access to files not explicitly specified by the input
object or process requirements.

Output files produced by tool execution must be written to the designated output directory.

The initial current working directory when executing the tool must be the designated output direc-
tory.

The TMPDIR environment variable must be set in the runtime environment to the designated tem-
porary directory. Any files written to the designated temporary directory may be deleted by the
workflow platform when the tool invocation is complete.

An implementation may forbid the tool from writing to any location in the runtime environment file
system other than the designated temporary directory and designated output directory. An imple-
mentation may provide read-only input files, and disallow in-place update of input files.

The standard input stream and standard output stream may be redirected as described in the stdin
and stdout fields.

Extensions

DockerRequirement, CreateFileRequirement, and EnvVarRequirement, are available as standard
extensions to core command line tool semantics for defining the runtime environment.

Execution

Once the command line is built and the runtime environment is created, the actual tool is executed.

The standard error stream and standard output stream (unless redirected by setting stdout) may be
captured by platform logging facilities for storage and reporting.

Tools may be multithreaded or spawn child processes; however, when the parent process exits, the
tool is considered finished regardless of whether any detached child processes are still running.
Tools must not require any kind of console, GUI, or web based user interaction in order to start and
run to completion.

The exit code of the process indicates if the process completed successfully. By convention, an exit
code of zero is treated as success and non-zero exit codes are treated as failure. This may be cus-
tomized by providing the fields successCodes, temporaryFailCodes, and permanentFailCodes. An
implementation may choose to default unspecified non-zero exit codes to either temporaryFailure
or permanentFailure.

Output binding

If the output directory contains a file called "cwl.output.json", that file must be loaded and used as
the output object. Otherwise, the output object must be generated by walking the parameters listed

CommandOutputBinding-class 23

in outputs and applying output bindings to the tool output. Output bindings are associated with
output parameters using the outputBinding field. See CommandOutputBinding for details.

Examples

ipl <- InputParameterList(
InputParameter(
id = "BAM", type = "File",
label = "input bam",
description = "input bam",
inputBinding = CommandLineBinding(

position = 1L
)

),
InputParameter(

id = "level", type = "Integer",
label = "Compression level",
description = "Compression level",
inputBinding = CommandLineBinding(

position = 2L,
prefix = "-l"

)
)

)

clt <- CommandLineTool(inputs = ipl, baseCommand = "samtools sort")

CommandOutputBinding-class

CommandOutputBinding Class

Description

Describes how to generate an output parameter based on the files produced by a CommandLine-
Tool. The output parameter is generated by applying these operations in the following order: glob,
loadContents, outputEval.

Fields

glob [characterORExpression] Find files relative to the output directory, using POSIX glob(3)
pathname matching. If provided an array, match all patterns in the array. If provided an
expression, the expression must return a string or an array of strings, which will then be eval-
uated as a glob pattern. Only files which actually exist will be matched and returned.

outputEval [Expression] Evaluate an expression to generate the output value. If glob was speci-
fied, the script context will be an array containing any files that were matched. Additionally,
if loadContents is true, the file objects will include up to the first 64 KiB of file contents in the
contents field.

24 CommandOutputSchema-class

Examples

CommandOutputBinding(glob = "*.bam")

CommandOutputParameter-class

CommandOutputParameter Class

Description

CommandOutputParameter Class

Fields

outputBinding [CommandOutputBinding] Describes how to handle the concrete outputs of a pro-
cess step (such as files created by a program) and describe them in the process output param-
eter.

Examples

CommandOutputParameter(outputBinding = CommandOutputBinding(glob = "*.bam"))

CommandOutputSchema-class

CommandOutputSchema

Description

CommandOutputSchema

Fields

outputBinding [CommandOutputBinding] Describes how to handle the concrete outputs of a pro-
cess step (such as files created by a program) and describe them in the process output param-
eter.

Examples

CommandOutputSchema()

convert_app 25

convert_app Convert App or a CWL JSON file to Tool or Flow object

Description

Convert App or a CWL JSON file to Tool or Flow object

Usage

convert_app(from)

appType(x)

Arguments

from an App object or a CWL JSON

x a App object

Details

This function import CWL JSON file, based on its class: CommandLineTool or Worklfow to rele-
vant object in R, Tool object or Flow object.

Value

Tool or Flow object depends on CWL type.

appType

this function return class of a App object.

Examples

tool.in <- system.file("extdata/app", "tool_star.json", package = "sevenbridges")
flow.in <- system.file("extdata/app", "flow_star.json", package = "sevenbridges")
convert to Tool object
convert_app(tool.in)
convert to Flow object
convert_app(flow.in)

26 CPURequirement-class

CPURequirement-class Rabix specifc Requirements

Description

Extends ProcessRequirements. CPURequirement and MemRequirement to setup CPU and Memory
requiremnts.

requirements and hints

Usage

docker(
pull = NULL,
imageId = NULL,
load = NULL,
file = NULL,
output = NULL,
dockerPull = pull,
dockerImageId = imageId,
dockerLoad = load,
dockerFile = file,
dockerOutputDirectory = output,
...

)

requirements(...)

fileDef(name = NULL, content = NULL)

Arguments

pull [short form argument] Docker Repository[:Tag] like rocker/r-base

imageId [short form argument] The image id that will be used for docker run, imageId
Optionally set the id of image you get from SDK.

load [short form argument] Specify a HTTP URL from which to download a Docker
image using docker load.

file [short form argument] Supply the contents of a Dockerfile which will be built
using docker build.

output [short form argument] Set the designated output directory to a specific location
inside the Docker container.

dockerPull Docker Repository[:Tag] like rocker/r-base

dockerImageId The image id that will be used for docker run, imageId Optionally set the id of
image you get from SDK.

dockerLoad Specify a HTTP URL from which to download a Docker image using docker
load.

CWL-class 27

dockerFile Supply the contents of a Dockerfile which will be built using docker build.
dockerOutputDirectory

Set the designated output directory to a specific location inside the Docker con-
tainer.

... extra aguments passed

name file name

content file content, could be script

Details

It constructs ProesssRequirementList object, or from a returned raw list contains or requirements.

Value

A Requirement subclass.

Fields

value [Integer] for CPU default is 1L, if 0L, use all CPU. For mem, default is 1000L. Note: for
CPU, 0L means multi-tread, and non-zero value will be converted to 1L, which means single
thread.

Examples

cpu(1)
CPURequirement(value = 1L)
docker("rocker/r-base")
requirements(docker("rocker/r-base"), cpu(1), mem(1024))
mem(2000)
MemRequirement(value = 2000L)
aws("c3.8xlarge")
anyReq("any")

CWL-class Class CWL

Description

Define CWL class and generic methods, no fields defeind.

Methods

getFields(values) Return fields as a list, used for following conversion, does not assume the
value is a primitive type.

toJSON(...) Covert object to JSON

toList(...) Convert object to a list of simple data types

toYAML(...) Covert object to YAML

28 delete

Examples

no fields, only to provide methods to be extended
x <- CWL()

delete Delete files or folders

Description

Delete files or folders

Usage

delete(obj)

S4 method for signature 'SimpleList'
delete(obj)

S4 method for signature 'Files'
delete(obj)

S4 method for signature 'Task'
delete(obj)

Arguments

obj single File or FileList

Value

system message

Examples

Not run:
a$project("demo")$file("omni")$delete()
or
delete(a$project("demo")$file("omni"))
End(Not run)

download 29

download Download files

Description

Download files

Usage

download(obj, ...)

S4 method for signature 'FilesList'
download(obj, ...)

S4 method for signature 'Files'
download(obj, ...)

Arguments

obj single File or FileList

... passed to download()

Value

system message

Examples

Not run:
a$project("demo")$file("omni")$download()
or
download(a$project("demo")$file("omni"))
End(Not run)

DSCList DSC list

Description

Contains DataypeSingleEnum, Schema, character

Usage

DSCList(...)

30 ExpressionTool-class

Arguments

... element or list of the element.

Value

a DSCList

Examples

DSCList("test", DatatypeEnum(), Schema())

Expression-class Expression Class

Description

Define an expression that will be evaluated and used to modify the behavior of a tool or workflow.
See Expressions for more information about expressions and ExpressionEngineRequirement for
information on how to define a expression engine.

Fields

engine (JsonPointerORcharacter) Either cwl:JsonPointer or a reference to an ExpressionEngineRequire-
ment defining which engine to use.

script (character) The code to be executed by the expression engine.

Examples

Expression(engine = "#cwl-js-engine", script = "$job.inputs['threads']")

ExpressionTool-class ExpressionTool Class

Description

Execute an expression as a process step.

Fields

expression (Expression) The expression to execute. The expression must return a JSON object
which matches the output parameters of the ExpressionTool.

FileList 31

Examples

ExpressionTool(
expression =
Expression(

engine = "cwl:JsonPointer",
script = "$job.inputs['threads']"

)
)

FileList FileList Class

Description

FileList Class

File Class

Usage

FileList(...)

Arguments

... element or list of the element.

Value

File class generator

Fields

class (character) Must be File to indicate this object describes a file.

path (character) The path to the file.

checksum [character] Optional hash code for validating file integrity. Currently must be in the form
"sha1$ + hexidecimal string" using the SHA-1 algorithm.

size [numeric] Optional file size.

secondaryFile [FileList] A list of additional files that are associated with the primary file and
must be transferred alongside the primary file. Examples include indexes of the primary file,
or external references which must be included when loading primary document. A file object
listed in secondaryFiles may itself include secondaryFiles for which the same rules apply.

32 Files-class

Examples

library(jsonlite)
library(yaml)
f1 <- File()
f2 <- File(path = "./out.bam", checksum = "test",

size = 3L, secondaryFile = FileList(File(path = "./out.bai")))
fl <- FileList(f1, f2)
asList(fl)
f1
f2
fl

Files-class Class Files

Description

Class Files

Usage

FilesList(...)

Arguments

... one or more Files objects

Details

Files (with "s") class is usally returned by the API call which returns Files. A group of Files is
defined as FilesList. Users do not usually need to construct Files or FilesList manually, they
are generated from a API call most of the time.

Value

Files object

Fields

id character used as file id

name string used as file name

size file size

project project id if any, when returned by a API call, it usually return the project id and stored
with the object.

created_on date created on

modified_on date modified on

Files-class 33

storage list as storage type
origin list as origin
tags list as tags
metadata a list for metadata associated with the file
url file download url
parent parent folder ID
type "FILE" or "FOLDER"
description file description

Methods

add_tag(x, ...) add new tags while keeping old tags
copy_to(project = NULL, name = NULL) copy a file to a project (id) with new name
copy_to_folder(folder_id, name_new = NULL, ...) Copy a file to a folder.
create_folder(name, ...) Create a new folder under the parent folder.
create_marker(name = NULL, start = NULL, end = NULL, chromosome = NULL, private = TRUE, ...)

Create a marker.
download(destfile, ..., method = "curl") see ‘help(download.file)‘ for more options
get_parent_folder() Get the parent folder object of the current file/folder.
get_parent_folder_id() Get the parent folder ID of the current file/folder.
list_folder_contents(type = c("file", "folder"), ...) List folder contents (return files,

folders, or both).
marker(id = NULL, ...) List markers available on a file or get details for a marker.
meta() get metadata from a file
move_to_folder(folder_id, name_new = NULL, ...) Move a file to a folder.
setMeta(..., overwrite = FALSE) Set metadata with provided list, when overwrite is set to TRUE,

it overwrites the metadata.
set_meta(..., overwrite = FALSE) Set metadata with provided list, when overwrite is set to

TRUE, it overwrites the metadata.
set_tag(x = NULL, overwrite = TRUE, ...) set a tag for a file, your tag need to be a list or vector
tag() get tag from a file
typeof() Get object type ("file" or "folder").
update(name = NULL, metadata = NULL, tags = NULL) This call updates the name, the full set

metadata, and tags for a specified file.

Note

In the sevenbridges package version <= 1.5.4, the Files class inherited from the File class defined
in CWL. To avoid confusion, in the current implementation, they are defined separately and not
coupled anymore.

Examples

Files(id = "test_id", name = "test.bam")

34 get_cwl_class

FS-class FS class

Description

FS class

Arguments

server_address placehoder

api_address placehoder

vsfs_jar placehoder

cache_dir placehoder

cache_size placeholder

project_id placeholder

Methods

file(id = NULL) given project id, show all files in it

mount(mount_point = NULL, project_id = NULL, ignore.stdout = TRUE, sudo = TRUE, ...)
mount a specific project if project_id is provided, otherwise mount all projects

path(id = NULL) List path for all mounted projects, for easy copy/paste of file path. If project id
is provoded, show project path and files path.

unmount(mount_cmd = NULL, project_id = NULL, ...) unmount a project if project_id is pro-
vided, otherwise unmount all

get_cwl_class Get class from CWL JSON file

Description

Get class from CWL JSON file

Usage

get_cwl_class(input)

Arguments

input cwl json file path

Value

character for cwl class "Workflow" or "CommandLineTool"

get_token 35

Examples

tool.in <- system.file("extdata/app", "tool_unpack_fastq.json", package = "sevenbridges")
flow.in <- system.file("extdata/app", "flow_star.json", package = "sevenbridges")
get_cwl_class(tool.in)
is_commandlinetool(tool.in)
is_workflow(tool.in)
get_cwl_class(flow.in)
is_commandlinetool(flow.in)
is_workflow(flow.in)

get_token Opens web browser to copy the auth token

Description

Click the "Generate Token" or "Regenerate" button, copy and paste the authentication token string
to the R console. The function will return the token string.

Usage

get_token(platform = c("cgc", "aws-us", "aws-eu", "gcp", "cavatica"))

misc_get_token()

Arguments

platform The Seven Bridges platform to use.

Value

auth token

Examples

token <- NULL
Will be prompted to enter the auth token
Not run: token = get_token(platform = "cgc")

36 get_uploader

get_uploader Download Seven Bridges command line uploader and extract to a
specified directory

Description

This function downloads Seven Bridges command line uploader and extract the .tgz archive to a
specified directory.

Usage

get_uploader(
platform = c("cgc", "aws-us", "aws-eu", "gcp"),
destdir = NULL,
quiet = FALSE

)

misc_get_uploader()

Arguments

platform Seven Bridges platform for which the uploader is designed. Possible choices
are: "cgc" (Cancer Genomics Cloud), "aws-us" (Amazon Web Services US),
"aws-eu" (Amazon Web Services EU), and "gcp" (Google Cloud Platform).
Default is "cgc".

destdir The directory to extract the downloaded Seven Bridges command line uploader
to. If the specified directory is not present, it will be created.

quiet Should the download progress be printed?

Value

0 if the command line uploader is successfully downloaded and unarchived.

References

https://docs.sevenbridges.com/docs/upload-via-the-command-line

Examples

Download CGC CLI uploader to `~/Downloads`
dir <- "~/Downloads/"
Not run:
get_uploader("cgc", dir)
End(Not run)

https://docs.sevenbridges.com/docs/upload-via-the-command-line

Handler-class 37

Handler-class Handler instance

Description

Create Handler instance

Details

Used for parse R Markdown and lift into command line interface, Dockerfile, Docker container, and
cwl json.

Value

a Handler object

Fields

dockerfileHandler a function or NULL, how you handle Dockefile, for example, push it to
GitHub.

dockerHandler a function or NULL, how you handle local docker container, for example, push it
to DockerHub.

cwlHandler a function or NULL, how you handle cwl json file or yaml file, for example, push it
to SevenBridges platform as an app.

input_matrix Get input/output matrix out of JSON CWL file directly

Description

An efficient way to access JSON file, no need to convert a JSON into a Tool or Flow object before
access, directly operate on a list parsed from JSON file. Compare to convert_app, it is much faster.

Usage

input_matrix(
from,
new.order = c("id", "label", "type", "required", "prefix", "fileTypes"),
required = NULL

)

output_matrix(from, new.order = c("id", "label", "type", "fileTypes"))

38 Item-class

Arguments

from JSON file path

new.order a vector of column orders by default for input it’s "id", "label", "type",
"required", "prefix", "fileTypes"; For output it’s "id", "label", "type",
"fileTypes"

required logical value, show requried input node only or not.

Value

A data frame of input/output information.

Examples

tool.in <- system.file("extdata/app", "tool_unpack_fastq.json", package = "sevenbridges")
flow.in <- system.file("extdata/app", "flow_star.json", package = "sevenbridges")
input_matrix(tool.in)
input_matrix(tool.in, required = TRUE)
input_matrix(flow.in)
input_matrix(flow.in, c("id", "type"))
input_matrix(flow.in, required = TRUE)
tool.in <- system.file("extdata/app", "tool_unpack_fastq.json", package = "sevenbridges")
flow.in <- system.file("extdata/app", "flow_star.json", package = "sevenbridges")
output_matrix(tool.in)
output_matrix(flow.in)

Item-class Class Item

Description

Class Item

Details

Base class for describing a set of objects: Project, Task, Pipeline, Files, etc.

Fields

response save the raw response from a request.

auth_token propagate the auth_token from parent.

href API href

link 39

link link two nodes to form a new Workflow

Description

link two nodes to form a new Workflow

Usage

link(from, to, ...)

S4 method for signature 'Tool,Tool'
link(
from,
to,
id1,
id2,
flow_id = NULL,
flow_label = NULL,
flow_input = NULL,
flow_output = NULL

)

S4 method for signature 'Tool,Workflow'
link(
from,
to,
id1,
id2,
flow_id = NULL,
flow_label = NULL,
flow_input = NULL,
flow_output = NULL

)

S4 method for signature 'Workflow,Tool'
link(
from,
to,
id1,
id2,
flow_id = NULL,
flow_label = NULL,
flow_input = NULL,
flow_output = NULL

)

40 link

S4 method for signature 'Workflow,Workflow'
link(from, to, id1, id2)

S4 method for signature 'App,ToolORWorkflow'
link(from, to, id1, id2)

S4 method for signature 'ToolORWorkflow,App'
link(from, to, id1, id2)

Arguments

from either Tool App or Workflow object

to either Tool App or Workflow object

... more auguments

id1 id to be connected from the ouput of the first node

id2 id id to be connected from the input of the second first node

flow_id workflow id, if ignored, going to create one by joning tool id.

flow_label workflow label, if ignored, going to create one by joning tool labels.

flow_input full flow input id, e.g. "#SBG_Unpack_FASTQs.input_archive_file"

flow_output full flow output id, e.g. "#STAR.log_files"

Details

Flexible enought to allow users to connect two objects by ids

Value

A Workflow object

Examples

t1 <- system.file("extdata/app", "tool_unpack_fastq.json", package = "sevenbridges")
t2 <- system.file("extdata/app", "tool_star.json", package = "sevenbridges")
t1 <- convert_app(t1)
t2 <- convert_app(t2)
check possible link
link_what(t1, t2)
link
f1 <- link(t1, t2, "output_fastq_files", "reads")
link
f2 <- link(

t1, t2, "output_fastq_files", "reads",
flow_input = "#SBG_Unpack_FASTQs.input_archive_file",
flow_output = "#STAR.log_files"

)

link_what 41

link_what List possible linking methods

Description

List possible linking methods

Usage

link_what(from, to, ...)

S4 method for signature 'Tool,Tool'
link_what(from, to)

S4 method for signature 'Tool,SBGWorkflow'
link_what(from, to)

S4 method for signature 'SBGWorkflow,Tool'
link_what(from, to)

S4 method for signature 'SBGWorkflow,SBGWorkflow'
link_what(from, to)

Arguments

from either Tool App or SBGWorkflow object

to either Tool App or Workflow object

... more auguments

Details

Given two object of Tool, Flow or App, list all possible input/output match.

Value

A Workflow object

Examples

t1 <- system.file("extdata/app", "tool_unpack_fastq.json", package = "sevenbridges")
t2 <- system.file("extdata/app", "tool_star.json", package = "sevenbridges")
t1 <- convert_app(t1)
t2 <- convert_app(t2)
check possible link
link_what(t1, t2)
tool.in <- system.file("extdata/app", "tool_unpack_fastq.json", package = "sevenbridges")
flow.in <- system.file("extdata/app", "flow_star.json", package = "sevenbridges")
t1 <- convert_app(tool.in)

42 misc_make_metadata

f2 <- convert_app(flow.in)
link_what(t1, f2)
tool.in <- system.file("extdata/app", "tool_unpack_fastq.json", package = "sevenbridges")
flow.in <- system.file("extdata/app", "flow_star.json", package = "sevenbridges")
t1 <- convert_app(tool.in)
f2 <- convert_app(flow.in)
link_what(f2, t1)

misc_make_metadata Meta schema

Description

Meta schema

Usage

misc_make_metadata()

Details

V2 version for meta data schema

Value

a Metadata object

Examples

show schema (you can still provide customized one)
empty beause they are all NULL
Metadata()
show schema
Metadata()$show(TRUE)
or
names(Metadata()$asList(TRUE))
returned meta field is actually define as function too, direclty
call them will give you details
platform()
paired_end()
quality_scale()
check their suggested value and construct your metadata
Metadata(platform = "Affymetrix SNP Array 6.0", paired_end = 1, quality_scale = "sanger")

Parameter-class 43

Parameter-class Paramter class (reference class)

Description

Define an input or output parameter to a process.

Usage

InputParameterList(...)

OutputParameterList(...)

Arguments

... element or list of the element.

Value

Parameter object

Fields

type [ANY] Specify valid types of data that may be assigned to this parameter.

label [character] A short, human-readable label of this parameter object.

description [character] A long, human-readable description of this parameter object.

streamable [logical] Currently only applies if type is File. A value of true indicates that the file is
read or written sequentially without seeking. An implementation may use this flag to indicate
whether it is valid to stream file contents using a named pipe. Default: false.

default [ANY] The default value for this parameter if not provided in the input object.

id (character) The unique identifier for this parameter object.

inputBinding [Binding] Describes how to handle the inputs of a process and convert them into a
concrete form for execution, such as command line parameters.

id (character) The unique identifier for this parameter object.

Examples

Parameter(
type = "integer", label = "thread",
description = "Specify the thread #",
default = 0

)

ipl <- InputParameterList(
InputParameter(
id = "BAM", type = "File",

44 Process-class

label = "input bam",
description = "input bam",
inputBinding = CommandLineBinding(

position = 1L
)

),
InputParameter(

id = "level", type = "Integer",
label = "Compression level",
description = "Compression level",
inputBinding = CommandLineBinding(

position = 2L,
prefix = "-l"

)
)

)
ipl

PrimitiveSingleEnum-class

Pre-defiend enums

Description

Please check cwl:::.CWL.Pritimive, cwl:::.CWL.Complex.

Examples

PrimitiveEnum()
PrimitiveEnum("boolean")
ComplexEnum("record")
DatatypeEnum("map")

Process-class Process Class

Description

The base executable type in CWL is the Process object defined by the document. Note that the
Process object is abstract and cannot be directly executed.

Process-class 45

Fields

id [character] The unique identifier for this process object.

inputs (InputParameterList) Defines the input parameters of the process. The process is ready to
run when all required input parameters are associated with concrete values. Input parameters
include a schema for each parameter and is used to validate the input object, it may also be
used build a user interface for constructing the input object.

outputs (OutputParameterList) Defines the parameters representing the output of the process.
May be used to generate and/or validate the output object.

requirements [ProcessRequirementList] Declares requirements that apply to either the runtime
environment or the workflow engine that must be met in order to execute this process. If
an implementation cannot satisfy all requirements, or a requirement is listed which is not
recognized by the implementation, it is a fatal error and the implementation must not attempt
to run the process, unless overridden at user option.

hints [ANY] Declares hints applying to either the runtime environment or the workflow engine
that may be helpful in executing this process. It is not an error if an implementation cannot
satisfy all hints, however the implementation may report a warning.

label [character] A short, human-readable label of this process object.

description [character] A long, human-readable description of this process object.

Examples

ipl <- InputParameterList(
InputParameter(
id = "BAM", type = "File",
label = "input bam",
description = "input bam",
inputBinding = CommandLineBinding(

position = 1L
)

),
InputParameter(

id = "level", type = "Integer",
label = "Compression level",
description = "Compression level",
inputBinding = CommandLineBinding(

position = 2L,
prefix = "-l"

)
)

)
ipl
p <- Process(id = "process", inputs = ipl)
p

46 ProcessRequirement-class

ProcessRequirement-class

ProcessRequirement Class

Description

ProcessRequirement Class

DockerRequirement Class

ProcessRequirementList

Usage

FileDefList(...)

EnvironmentDefList(...)

ProcessRequirementList(...)

Arguments

... element or list of the element.

Value

a ProcessRequirement object or subclass object.

ProcessRequirement

A process requirement modifies the semantics or runtime environment of a process. If an
implementation cannot satisfy all requirements, or a requirement is listed which is not recog-
nized by the implementation, it is a fatal error and the implementation must not attempt to run
the process, unless overridden at user option.

(character) The specific requirement type.

DockerRequirement Class

class Indicates that a workflow component should be run in a Docker container, and specifies
how to fetch or build the image. If a CommandLineTool lists DockerRequirement under hints
or requirements, it may (or must) be run in the specified Docker container. The platform
must first acquire or install the correct Docker image, as described by DockerRequirement.
The platform must execute the tool in the container using docker run with the appropriate
Docker image and the tool command line. The workflow platform may provide input files
and the designated output directory through the use of volume bind mounts. The platform
may rewrite file paths in the input object to correspond to the Docker bind mounted locations.
When running a tool contained in Docker, the workflow platform must not assume anything
about the contents of the Docker container,such as the presence or absence of specific software,

ProcessRequirement-class 47

except to assume that the generated command line represents a valid command within the
runtime environment of the container.

(character) Get a Docker image using docker pull

dockerPulldockerLoad (character) Specify a HTTP URL from which to download a Docker image
using docker load.

dockerFile (character) Supply the contents of a Dockerfile which will be build using docker build.

dockerImageId (character) The image id that will be used for docker run. May be a human-
readable image name or the image identifier hash. May be skipped if dockerPull is specified,
in which case the dockerPull image id will be used.

dockerOutputDirectory (character) Set the designated output directory to a specific location in-
side the Docker container.

SubworkflowFeatureRequirement Class

Indicates that the workflow platform must support nested workflows in the run field of (Workflow-
Step)(#workflowstep).

FileDef Class

Define a file that must be placed by in the designated output directory prior to executing
the command line tool. May be the result of executing an expression, such as building a
configuration file from a template.

(characterORExpression) The name of the file to create in the output directory.

filenamefileContent (characterORExpression) If the value is a string literal or an expression which
evalutes to a string, a new file must be created with the string as the file contents. If the value is
an expression that evaluates to a File object, this indicates the referenced file should be added
to the designated output directory prior to executing the tool. Files added in this way may be
read-only, and may be implemented through bind mounts or file system links in such a way as
to avoid unecessary copying of the input file.

CreateFileRequirement Class

Define a list of files that must be created and placed by the workflow platform in the designated
output directory prior to executing the command line tool. See FileDef for details.

(FileDefList) The list of files.

EnvironmentDef Class

fileDef Define an environment variable that will be set in the runtime environment by the work-
flow platform when executing the command line tool. May be the result of executing an
expression, such as getting a parameter from input.

(character) The environment variable name.

envNameenvValue (characterORExpression) The environment variable value.

48 project_details

EnvVarRequirement Class

Define a list of environment variables which will be set in the execution environment of the
tool. See EnvironmentDef for details.

(EnvironmentDefList) The list of environment variables.

ScatterFeatureRequirement Class

envDef Indicates that the workflow platform must support the scatter and scatterMethod fields of (Work-
flowStep)(#workflowstep).

ExpressionEngineRequirement Class

Define an expression engine, as described in Expressions.

(character) Used to identify the expression engine in the engine field of Expressions.

idrequirements [ProcessRequirement]Requirements to run this expression engine, such as Docker-
Requirement for specifying a container with the engine.

engineCommand [character] The command line to invoke the expression engine.

engineConfig [character] Additional configuration or code fragments that will also be passed to
the expression engine. The semantics of this field are defined by the underlying expression
engine. Intended for uses such as providing function definitions that will be called from CWL
expressions.

Examples

dkr <- DockerRequirement(dockerImageId = "testid")
cfr <- CreateFileRequirement(fileDef = FileDefList(FileDef(filename = "hello.txt")))
sfr <- SubworkflowFeatureRequirement()
evr <- EnvVarRequirement(envDef = EnvironmentDefList(

EnvironmentDef(envName = "path", envValue = "testpath")
))
safr <- ScatterFeatureRequirement()
eer <- ExpressionEngineRequirement(id = "hello")
ProcessRequirementList(dkr, cfr, sfr, evr, safr, eer)

project_details Returns the details of the project

Description

Returns the details of the project.

Usage

project_details(token = NULL, project_id = NULL, ...)

project_members 49

Arguments

token auth token

project_id ID of a project you want to access.

... parameters passed to api function

Value

parsed list of the returned json

Examples

token <- "your_token"
Not run:
req <- project_details(token, project_id = "your_project_id")
End(Not run)

project_members Returns a list of all users invited to the project and their privileges

Description

Returns a list of all users invited to the project and their privileges. Project ID is specified as path
parameter. Call returns ID and username of the user with privileges.

Usage

project_members(token = NULL, project_id = NULL, ...)

Arguments

token auth token

project_id ID of a project you want to access.

... parameters passed to api function

Value

parsed list of the returned json

Examples

token <- "your_token"
Not run:
req <- project_members(token, project_id = "your_project_id")
End(Not run)

50 response

response Get raw response from an Item object

Description

Get raw response from an Item object

Usage

response(x)

response(x) <- value

S4 method for signature 'ANY'
response(x)

S4 replacement method for signature 'ANY'
response(x) <- value

S4 method for signature 'Item'
response(x)

S4 replacement method for signature 'Item'
response(x) <- value

S4 method for signature 'SimpleList'
response(x)

S4 replacement method for signature 'SimpleList'
response(x) <- value

Arguments

x object that may have response.

value value to be replaced.

Value

a raw response from httr

Examples

Not run:
response(x)
End(Not run)

SBGWorkflow-class 51

SBGWorkflow-class Build workflow

Description

Build workflow

Usage

Flow(
...,
graph = TRUE,
x.width = 1000,
y.width = 400,
x.start = 100,
y.start = 200,
canvas_zoom = 1,
canvas_x = 40,
canvas_y = 130

)

S4 method for signature 'Tool,Tool'
e1 + e2

S4 method for signature 'WorkflowStepList,Tool'
e1 + e2

S4 method for signature 'WorkflowStepList,WorkflowStepList'
e1 + e2

S4 method for signature 'App,App'
e1 + e2

S4 method for signature 'WorkflowStepList,App'
e1 + e2

e1 %>>% e2

S4 method for signature 'Tool,Tool'
e1 %>>% e2

S4 method for signature 'Workflow,Tool'
e1 %>>% e2

S4 method for signature 'Workflow,Workflow'
e1 %>>% e2

52 SBGWorkflow-class

S4 method for signature 'App,App'
e1 %>>% e2

S4 method for signature 'Workflow,App'
e1 %>>% e2

Arguments

... extra arguments passed to SBGWorkflow

graph if add graph coordinates or not, used for flow visualization on Seven Bridges
platforms.

x.width x scale width

y.width y scale width

x.start node x start point for a flow

y.start node y start point for a flow

canvas_zoom zoom factor

canvas_x canvas x

canvas_y canvas y

e1 either Tool App or Workflow object

e2 either Tool App or Workflow object

Value

a SBGWorkflow object.

Methods

copy_obj() this is a hack to make copy of reference cwl object

get_input(ids, force = FALSE) get input by pure input id from all steps

get_input_exposed() exposed input id other than file

get_input_node() get input file nodes id

get_input_port() show included port of all inputs

get_output(ids, force = FALSE) get output by pure output id from all steps

get_output_node() get output file nodes id

get_required() show flow required input id and types

get_step(name = NULL, id = NULL) get step object by name or id, name support pattern match

get_tool(name = NULL, id = NULL) get a tool object by name or id, name support pattern match

input_id() show input id

input_matrix(new.order = c("id", "label", "type", "required", "prefix", "fileTypes"), required = NULL)
This return a matrix of input parameters, by default, following the order id, label, type, re-
quired, prefix, fileTypes. new.order accept names of column you want to print, but it has to be
a field of inputs. When its set to NULL, it prints all fields. When required = TRUE, only print
required field.

SBGWorkflow-class 53

input_type() Show a vector of flow input type, names of them are input id.

link_map() show a table of all linked nodes

linked_input_id() input id that linked to an output

linked_output_id() output id that linked to an input

list_tool() list all tools included in this flow

output_id() show output id

output_matrix(new.order = c("id", "label", "type", "fileTypes")) This return a matrix
of output parameters, by default, following the order id, label, type, fileTypes. new.order
accept names of column you want to print, but it has to be a field of outputs. When its set to
NULL, it prints all fields. When required = TRUE, only print required field.

output_type() Show a vector of flow output type, names of them are output id.

run(run_inputs = list(), engine = c("bunny", "rabix", "cwlrun")) Run this tool with in-
puts locally. Engines supported: bunny, rabix, cwlrun. Inputs accept list or JSON.

set_batch(input = NULL, criteria = NULL, type = c("ITEM", "CRITERIA")) Set a flow input
node into a batch mode, this is now required before you execute a batch task on a batch-not-
enabled flow.

set_flow_input(iid = NULL, add = TRUE) Expose tool input node as flow input, default is addi-
tative, if add = FALSE, this will overwrite and only made provided id inputs of flow.

set_flow_output(oid = NULL, add = TRUE) Expose tool output node as flow output, default is
additative, if add = FALSE, this will overwrite and only made provided id outputs of flow.

set_input_port(ids, include = TRUE) set included port for provided input id(s)

set_required(ids, required = TRUE) Set a input node required (TRUE) or not required (FALSE)
this require full input id (with tool id prefix) such as #STAR.alignIntronMax

step_input_id(full = FALSE) Show step input id, default names of them is tool id. When full =
TRUE, show full name then names of vector is type.

step_output_id(full = FALSE) Show step output id, default names of them is tool id. when full
= TRUE, show full name then names of vector is type.

Examples

f1 <- system.file("extdata/app", "flow_star.json", package = "sevenbridges")
f1 <- convert_app(f1)
input matrix
f1$input_matrix()
by name
f1$input_matrix(c("id", "type", "required", "link_to"))
return only required
f1$input_matrix(required = TRUE)
return everything
f1$input_matrix(NULL)
return a output matrix with more informtion
f1$output_matrix()
return only a few fields
f1$output_matrix(c("id", "type"))
return everything

54 SBGWorkflow-class

f1$output_matrix(NULL)
flow inputs
f1$input_type()
flow outouts
f1$output_type()
flow input id
f1$input_id()
linked input id
f1$linked_input_id()
flow output id
f1$output_id()
linked output id
f1$linked_output_id()
link_map
f1$link_map()
all step input id
f1$step_input_id()
all step input full id with type
f1$step_input_id(TRUE)
all step output id
f1$step_output_id()
all step output full id with type
f1$step_output_id(TRUE)
get inputs objects
f1$get_input("#clip3pNbases")
f1$get_input(c("#clip3pNbases", "#chimScoreMin"))
f1$get_input(c("#clip3pNbases", "#chimScoreMin", "#STAR.outFilterMismatchNoverLmax"))
get outputs objects
f1$get_output("#log_files")
f1$get_output(c("#log_files", "intermediate_genome"))
f1$get_output(c("#log_files", "intermediate_genome", "#STAR.unmapped_reads"))
f1$get_output("#log_files")
set flow input
f1$set_flow_input("#SBG_FASTQ_Quality_Detector.fastq")
f1$set_flow_output(c("#log_files", "intermediate_genome"))
get required node
f1$get_required()
set required node
f1$steps[[1]]$run$set_required("genomeChrBinNbits")
f1$get_required()
f1$steps[[1]]$run$set_required("genomeChrBinNbits", FALSE)
f1$get_required()
get Tool object from Flow by id and name
f1$list_tool()
return two
f1$get_tool("STAR")
return one
f1$get_tool("^STAR$")
get included input ports
f1$get_input_port()
set included input ports
f1$set_input_port(c("#STAR.alignSJDBoverhangMin", "chimScoreSeparation"))
f1$get_input_port()

sbg_get_env 55

f1$set_input_port(c("#STAR.alignSJDBoverhangMin", "chimScoreSeparation"), FALSE)
f1$get_input_port()
f1$get_input_node()
f1$get_output_node()
f1$get_input_exposed()
f1$step_input_id(TRUE)
f1$input_id()
f1$set_flow_input("#STAR.reads")
f1$input_id()
batch
f1$set_batch("sjdbGTFfile", c("metadata.sample_id", "metadata.library_id"))
f1$set_batch("sjdbGTFfile", type = "ITEM")
add source to id
f1$link_map()
f1$add_source_to_id(c("test1", "test2"), c("#STAR.genome", "#STAR.reads"))
f1$link_map()

sbg_get_env Set authentication environment variables for Seven Bridges API

Description

Set authentication environment variables for Seven Bridges API

Usage

sbg_get_env(x)

Arguments

x Name of the system environment variable

Value

value of the environment variable

Examples

set and get two environment variables for CGC
token <- "your_token"
Not run:
sbg_set_env("https://cgc-api.sbgenomics.com/v2", token)
sbg_get_env("SB_API_ENDPOINT")
sbg_get_env("SB_AUTH_TOKEN")
End(Not run)

56 SchemaList

sbg_set_env Set authentication environment variables for Seven Bridges API

Description

Set authentication environment variables for Seven Bridges API

Usage

sbg_set_env(url = NULL, token = NULL)

Arguments

url Base URL for API.

token Your authentication token.

Value

set two environment variables for authentication

Examples

set and get environment variables for CGC
token <- "your_token"
Not run:
sbg_set_env("https://cgc-api.sbgenomics.com/v2", token)
sbg_get_env("SB_API_ENDPOINT")
sbg_get_env("SB_AUTH_TOKEN")
End(Not run)

SchemaList SchemaList

Description

A schema defines a parameter type.

Usage

SchemaList(...)

SchemaDefList(...)

Arguments

... element or list of the element.

setListClass 57

Value

a Schema object or sbuclass object.

Fields

type (ANY) The data type of this parameter.

fields [SchemaList] When type is record, defines the fields of the record.

symbols [character] When type is enum, defines the set of valid symbols.

items [ANY] When type is array, defines the type of the array elements.

values [ANY] When type is map, defines the value type for the key/value pairs.

inputBinding [Binding] Describes how to handle a value in the input object convert it into a
concrete form for execution, such as command line parameters.

Examples

Schema(fields = SchemaList(SchemaDef(name = "schema")))

setListClass List Class generator.

Description

Extends IRanges SimpleList class and return constructor.

Usage

setListClass(
elementType = NULL,
suffix = "List",
contains = NULL,
where = topenv(parent.frame())

)

Arguments

elementType [character]

suffix [character] default is "List"

contains [character] class name.

where environment.

Value

S4 class constructor

58 set_tag

setTaskHook set task function hook

Description

set task function hook according to

Usage

setTaskHook(
status = c("queued", "draft", "running", "completed", "aborted", "failed"),
fun

)

getTaskHook(
status = c("queued", "draft", "running", "completed", "aborted", "failed")

)

Arguments

status one of "queued", "draft", "running", "completed", "aborted", or "failed".

fun function it must return a TRUE or FALSE in the end of function body, when
it’s TRUE this function will also terminate monitor process, if FALSE, function
called, but not going to terminate task monitoring process.

Value

object from setHook and getHook.

Examples

getTaskHook("completed")
setTaskHook("completed", function() {

message("completed")
return(TRUE)

})

set_tag Set file tags

Description

Set file tags

Add new file tags and keep the old tags

set_test_env 59

Usage

set_tag(obj, ...)

S4 method for signature 'FilesList'
set_tag(obj, ...)

S4 method for signature 'Files'
set_tag(obj, ...)

add_tag(obj, ...)

S4 method for signature 'FilesList'
add_tag(obj, ...)

S4 method for signature 'Files'
add_tag(obj, ...)

Arguments

obj single File or FileList

... passed to obj$set_tag() or obj$add_tag()

Value

tag list

tag list

Examples

Not run:
fl <- a$project("demo")$file("omni")
set_tag(fl, "new tag")
set_tag(fl, list("new tag", "new tag 2"))
End(Not run)
Not run:
fl <- a$project("demo")$file("omni")
add_tag(fl, "new tag")
add_tag(fl, list("new tag", "new tag 2"))
End(Not run)

set_test_env Set testing env

Description

Checks if docker is installed, is running and has required images downloaded and if do creates
container

60 status_check

Usage

set_test_env(
type = "host",
docker_image = "tengfei/testenv",
data_dir = getwd()

)

Arguments

type "dind" or "host"

docker_image required docker image with pre-installed bunny, default: tengfei/testenv

data_dir directory with data to mount (also will be execution directory)

Value

docker stdout

Examples

Not run:
set_test_env("dind", "tengfei/testenv", "/Users/<user>/tools")
End(Not run)

status_check Check request status

Description

Check request status

Usage

status_check(req, as = "parsed", ...)

Value

request content or the message

test_tool_bunny 61

test_tool_bunny Test tools in rabix/bunny

Description

Test tools locally in rabix/bunny inside docker container

Usage

test_tool_bunny(rabix_tool, inputs)

Arguments

rabix_tool rabix tool from Tool class

inputs input parameters declared as json (or yaml) string

Value

bunny stdout

Examples

Not run:
inputs <- '{"counts_file": {"class": "File", "path": "./FPKM.txt"}, "gene_names": "BRCA1"}'
rbx <- <define rabix tool>
set_test_env("tengfei/testenv", "<mount_dir>")
test_tool_bunny(rbx, inputs)
End(Not run)

test_tool_cwlrun Test tools with cwl-runner

Description

Test tools locally cwl-runner (https://github.com/common-workflow-language/cwltool)

Usage

test_tool_cwlrun(rabix_tool, inputs = list())

Arguments

rabix_tool rabix tool from Tool class

inputs input parameters declared as json (or yaml) string

62 test_tool_rabix

Value

cwl-runner stdout

Examples

Not run:
inputs <- '{"counts_file": {"class": "File", "path": "./FPKM.txt"}, "gene_names": "BRCA1"}'
rbx <- <define rabix tool>
set_test_env("tengfei/testenv", "<mount_dir>")
test_tool_cwlrun(rbx, inputs)

End(Not run)

test_tool_rabix Test tools in rabix/rabix-devel (DEPRECATED)

Description

Test tools locally in rabix/rabix-devel python executor (DEPRECATED)

Usage

test_tool_rabix(rabix_tool, inputs = list())

Arguments

rabix_tool rabix tool from Tool class

inputs input parameters declared as json (or yaml) string

Value

rabix stdout

Examples

Not run:
inputs <- '{"counts_file": {"class": "File", "path": "./FPKM.txt"}, "gene_names": "BRCA1"}'
rbx <- <define rabix tool>
set_test_env("tengfei/testenv", "<mount_dir>")
test_tool_rabix(rbx, inputs)
End(Not run)

Tool-class 63

Tool-class Class Tool

Description

codeTool class extends CommandLineTool with more seven bridges flabored fields the SBG class.
obj$toJSON(), obj$toJSON(pretty = TRUE) or obj$toYAML() will convert a Tool object into a
text JSON/YAML file.

Value

a Tool object.

Fields

context [character] by default: http://www.commonwl.org/draft-2/

owner [list] a list of owner names.

contributor [list] a list of contributor names.

Methods

copy_obj() this is a hack to make copy of reference cwl object

get_input(name = NULL, id = NULL) get input objects by names or id

get_input_port() the inputs node with sbg:includeInPorts equals TRUE

get_output(name = NULL, id = NULL) get output objects by names or id

get_required() return required input fields types, names of them are input id

input_id(full = FALSE, requiredOnly = FALSE) Get input id from a Tool, when full = TRUE,
connect tool id with input id. e.g. If requiredOnly = TRUE, return required field only.

input_matrix(new.order = c("id", "label", "type", "required", "prefix", "fileTypes"), required = NULL)
This return a matrix of input parameters, by default, following the order id, label, type, re-
quired, prefix, fileTypes. new.order accept names of column you want to print, but it has to be
a field of inputs. When its set to NULL, it prints all fields. When required = TRUE, only print
required field.

input_type() this return a vector of types, names of them are input id

output_id(full = FALSE) Get output id from a Tool, when full = TRUE, connect tool id with
input id.

output_matrix(new.order = c("id", "label", "type", "fileTypes")) This return a matrix
of output parameters, by default, following the order id, label, type, fileTypes. new.order
accept names of column you want to print, but it has to be a field of outputs. When its set to
NULL, it prints all fields. when required = TRUE, only print required field.

output_type() this return a vector of types, names of them are output id

run(run_inputs = list(), engine = c("bunny", "rabix", "cwlrun")) Run this tool with in-
puts locally. Engines supported: bunny, rabix, cwlrun. Inputs accept list or JSON.

http://www.commonwl.org/draft-2/

64 Tool-class

set_input_port(ids, include = TRUE) Set inputs ports field sbg:includeInPorts to the value of
include, default is TRUE.

set_required(ids, required = TRUE) Set an input node required or not required. The first pa-
rameter takes single input id or more than one ids. The second parameters required is the value
you want to set to inputs. TRUE means set to required.

Examples

t1 <- system.file("extdata/app", "tool_star.json", package = "sevenbridges")
convert json file into a Tool object
t1 <- convert_app(t1)
get input type information
t1$input_type()
get output type information
t1$output_type()
return a input matrix with more informtion
t1$input_matrix()
return only a few fields
t1$input_matrix(c("id", "type", "required"))
return only required
t1$input_matrix(required = TRUE)
return everything
t1$input_matrix(NULL)
return a output matrix with more informtion
t1$output_matrix()
return only a few fields
t1$output_matrix(c("id", "type"))
return everything
t1$output_matrix(NULL)
get input id
t1$input_id()
get full input id with Tool name
t1$input_id(TRUE)
get output id
t1$output_id()
get full output id
t1$output_id(TRUE)
get required input id
t1$get_required()
set input required
t1$set_required(c("#reads", "winFlankNbins"))
t1$get_required()
t1$set_required("reads", FALSE)
t1$get_required()
t1$get_input(name = "ins")
t1$get_input(id = "#winFlankNbins")
t1$get_output(name = "gene")
t1$get_output(id = "#aligned_reads")
get a tool from a flow
f1 <- system.file("extdata/app", "flow_star.json", package = "sevenbridges")
convert json file into a Tool object
f1 <- convert_app(f1)

upload_complete_all 65

t2 <- f1$get_tool("STAR$")
oid <- t2$get_input_port()
oid
set new ports
t2$input_id()
t2$set_input_port("#chimScoreSeparation")
t2$get_input_port()
t2$set_input_port("#chimScoreSeparation", FALSE)
t2$get_input_port()
run the tool locally with example data
Not run:
t3 <- system.file("extdata/app/dna2protein", "translate.cwl.json", package = "sevenbridges")
t3 <- convert_app(t3)
fl <- system.file("extdata/app/dna2protein/data", "input.txt", package = "sevenbridges")
set_test_env("dind", "tengfei/testenv", "~/mounts")
t3$input_type()
t3$run(list(input_file = Files(fl))) # Not File
End(Not run)

upload_complete_all Reports the complete file upload

Description

If the whole parts are uploaded, and the provided ETags are correct, then the file is assembled and
made available on the SBG platform.

Usage

upload_complete_all(token = NULL, upload_id = NULL, ...)

Arguments

token auth token

upload_id ID of the upload

... parameters passed to api function

Value

parsed list of the returned json

Examples

token <- "your_token"
Not run:
req <- upload_complete_all(token, upload_id = "your_upload_id")
End(Not run)

66 upload_complete_part

upload_complete_part Reports the completion of the part upload

Description

The ETag is provided for the correctness check upon completion of the whole upload. Value for the
ETag is provided by AWS S3 service when uploading the file in the ETag header.

Usage

upload_complete_part(
token = NULL,
upload_id = NULL,
part_number = NULL,
e_tag = NULL,
...

)

Arguments

token auth token

upload_id ID of the upload

part_number ID of the part you wish to report as completed

e_tag Value of the ETag header returned by AWS S3 when uploading part of the file.

... parameters passed to api function

Value

parsed list of the returned json

Examples

token <- "your_token"
Not run:
req <- upload_complete_part(

token, upload_id = "your_upload_id",
part_number = "1", e_tag = "your_e_tag"

)
End(Not run)

upload_delete 67

upload_delete Abort the upload

Description

Abort the upload; all upload records and the file are deleted.

Usage

upload_delete(token = NULL, upload_id = NULL, ...)

Arguments

token auth token

upload_id ID of the upload

... parameters passed to api function

Value

parsed list of the returned json

Examples

token <- "your_token"
Not run:
req <- upload_delete(token, upload_id = "your_upload_id")
End(Not run)

upload_info Returns upload information for the ongoing upload

Description

Returns the upload information for the ongoing upload.

Usage

upload_info(token = NULL, upload_id = NULL, ...)

Arguments

token auth token

upload_id ID of the upload

... parameters passed to api function

68 upload_info_part

Value

parsed list of the returned json

Examples

token <- "your_token"
Not run: req <- upload_info(token, upload_id = "your_upload_id")

upload_info_part Returns AWS S3 signed URL for a part of the file upload

Description

Gets the signed URL for the upload of the specified part. Note that URLs are valid for 60 seconds
only and that you should initiate upload to the signed URL in this time frame.

Usage

upload_info_part(token = NULL, upload_id = NULL, part_number = NULL, ...)

Arguments

token auth token

upload_id ID of the upload

part_number Number of the upload file part that you wish to access

... parameters passed to api function

Value

parsed list of the returned json

Examples

token <- "your_token"
Not run:
req <- upload_info_part(token, upload_id = "your_upload_id", part_number = 1)
End(Not run)

upload_init 69

upload_init Initializes the upload of the specified file

Description

This is the first operation performed when you wish to upload a file. Operation is initialized by
providing file name, project id where you wish the file to be uploaded to (if not specified, defaults
to user’s stash) and optionally by providing wanted part size. You may wish to set your part size
to a low value if you experience problems with uploading large file parts, although default value of
5MB should be good enough for most users.

Usage

upload_init(
token = NULL,
project_id = NULL,
name = NULL,
size = NULL,
part_size = NULL,
...

)

Arguments

token auth token

project_id ID of the project you wish to upload to

name Name of the file you wish to upload

size Size of the file you wish to upload

part_size Requested part size. Note that API may reject your requested part size and return
proper one in response.

... parameters passed to api function

Details

Limits:

• Maximum number of parts is 10000

• Maximum file size is 5TB

• Maximum part size is 5GB

• Default part size is 5MB

Value

parsed list of the returned json

70 WorkflowOutputParameter-class

Examples

token <- "your_token"
Not run:
req <- upload_init(

token,
project_id = "your_project_id",
name = "Sample1_RNASeq_chr20.pe_1.fastq", size = 5242880

)
End(Not run)

WorkflowOutputParameter-class

Workflow

Description

A workflow is a process consisting of one or more steps. Each step has input and output parameters
defined by the inputs and outputs fields. A workflow executes as described in execution model.

Usage

WorkflowOutputParameterList(...)

Arguments

... element or list of the element.

Value

a Workflow object.

Fields

outputs (WorkflowOutputParameterList) Defines the parameters representing the output of the
process. May be used to generate and/or validate the output object. Inherited from Process

steps (WorkflowStepList) The individual steps that make up the workflow. Steps are executed
when all input data links are fufilled. An implementation may choose to execute the steps
in a different order than listed and/or execute steps concurrently, provided that dependencies
between steps are met.

WorkflowOutputParameter Class

Describe an output parameter of a workflow. The parameter must be connected to one or more
parameters defined in the workflow that will provide the value of the output parameter.

[character] Specifies one or more workflow parameters that will provide this output value.

sourcelinkMerge [LinkMergeMethod] The method to use to merge multiple inbound links into a sin-
gle array. If not specified, the default method is merge_nested:

WorkflowStepInput-class 71

Dependencies

Dependencies between parameters are expressed using the source field on workflow step input
parameters and workflow output parameters.

The source field expresses the dependency of one parameter on another such that when a value
is associated with the parameter specified by source, that value is propagated to the destination
parameter. When all data links inbound to a given step are fufilled, the step is ready to execute.

Extensions

ScatterFeatureRequirement and SubworkflowFeatureRequirement are available as standard exten-
sions to core workflow semantics.

Examples

need better examples here
ws <- WorkflowStepList(

WorkflowStep(
id = "step1", label = "align-and-sort",
description = "align and sort",
inputs = WorkflowStepInputList(

WorkflowStepInput(id = "id1"),
WorkflowStepInput(id = "id2")

)
)

)
Workflow(steps = ws)

WorkflowStepInput-class

WorkflowStepInputList

Description

A workflow step is an executable element of a workflow. It specifies the underlying process imple-
mentation (such as CommandLineTool) in the run field and connects the input and output parameters
of the underlying process to workflow parameters.

Usage

WorkflowStepInputList(...)

WorkflowStepOutputList(...)

WorkflowStepList(...)

Arguments

... element or list of the element.

72 WorkflowStepInput-class

Value

a WorkflowStep object or subclass object.

Fields

id [character] The unique identifier for this workflow step.

inputs (WorkflowStepInputList) Defines the input parameters of the workflow step. The process
is ready to run when all required input parameters are associated with concrete values. Input
parameters include a schema for each parameter and is used to validate the input object, it may
also be used build a user interface for constructing the input object.

outputs (WorkflowStepOutputList) Defines the parameters representing the output of the process.
May be used to generate and/or validate the output object.

requirements [ProcessRequirement] Declares requirements that apply to either the runtime en-
vironment or the workflow engine that must be met in order to execute this workflow step.
If an implementation cannot satisfy all requirements, or a requirement is listed which is not
recognized by the implementation, it is a fatal error and the implementation must not attempt
to run the process, unless overridden at user option.

hints [ANY] Declares hints applying to either the runtime environment or the workflow engine
that may be helpful in executing this workflow step. It is not an error if an implementation
cannot satisfy all hints, however the implementation may report a warning.

label [character] A short, human-readable label of this process object.

description [character] A long, human-readable description of this process object.

run (CommandLineToolORExpressionToolORWorkflow) Specifies the process to run.

scatter [character]

scatterMethod [ScatterMethod] Required if scatter is an array of more than one element.

WorkflowStepInput Class

The input of a workflow step connects an upstream parameter (from the workflow inputs, or
the outputs of other workflows steps) with the input parameters of the underlying process.
If the sink parameter is an array, or named in a workflow scatter operation, there may be
multiple inbound data links listed in the connect field. The values from the input links are
merged depending on the method specified in the linkMerge field. If not specified, the default
method is merge_nested:

The input shall be an array consisting of exactly one entry for each input link. If merge_nested
is specified with a single link, the value from the link is wrapped in a single-item list.

merge_nestedmerge_flattened 1) The source and sink parameters must be compatible types, or the
source type must be compatible with single element from the "items" type of the destination
array parameter. 2) Source parameters which are arrays are concatenated; source parameters
which are single element types are appended as single elements.
Fields:

id (character) A unique identifier for this workflow input parameter.

source [character] Specifies one or more workflow parameters that will provide input to the un-
derlying process parameter.

WorkflowStepInput-class 73

linkMerge [LineMergeMethod] The method to use to merge multiple inbound links into a single
array. If not specified, the default method is merge_nested:

default [ANY] The default value for this parameter if there is no source field.

WorkflowStepOutput Class

Associate an output parameter of the underlying process with a workflow parameter. The
workflow parameter (given in the id field) be may be used as a source to connect with input
parameters of other workflow steps, or with an output parameter of the process.

(character) A unique identifier for this workflow output parameter. This is the identifier to use
in the source field of WorkflowStepInput to connect the output value to downstream parame-
ters.

Scatter/gather

id To use scatter/gather, ScatterFeatureRequirement must be specified in the workflow or workflow step
requirements.

A "scatter" operation specifies that the associated workflow step or subworkflow should execute
separately over a list of input elements. Each job making up a scatter operaution is independent and
may be executed concurrently.

The scatter field specifies one or more input parameters which will be scattered. An input parameter
may be listed more than once. The declared type of each input parameter is implicitly wrapped in
an array for each time it appears in the scatter field. As a result, upstream parameters which are
connected to scattered parameters may be arrays.

All output parameters types are also implicitly wrapped in arrays; each job in the scatter results in
an entry in the output array.

If scatter declares more than one input parameter, scatterMethod describes how to decompose the
input into a discrete set of jobs.

• dotproduct specifies that each the input arrays are aligned and one element taken from each
array to construct each job. It is an error if all input arrays are not the same length.

• nested_crossproductspecifies the cartesian product of the inputs, producing a job for every
combination of the scattered inputs. The output must be nested arrays for each level of scat-
tering, in the order that the input arrays are listed in the scatter field.

• flat_crossproductspecifies the cartesian product of the inputs, producing a job for every com-
bination of the scattered inputs. The output arrays must be flattened to a single level, but
otherwise listed in the order that the input arrays are listed in the scatter field.

Subworkflows

To specify a nested workflow as part of a workflow step, SubworkflowFeatureRequirement must be
specified in the workflow or workflow step requirements.

Examples

ws <- WorkflowStepList(WorkflowStep(
id = "step1", label = "align-and-sort",

74 WorkflowStepInput-class

description = "align and sort",
inputs = WorkflowStepInputList(

WorkflowStepInput(id = "id1"),
WorkflowStepInput(id = "id2")

)
))

Index

∗ internal
status_check, 60

+,App,App-method (SBGWorkflow-class), 51
+,Tool,Tool-method (SBGWorkflow-class),

51
+,WorkflowStepList,App-method

(SBGWorkflow-class), 51
+,WorkflowStepList,Tool-method

(SBGWorkflow-class), 51
+,WorkflowStepList,WorkflowStepList-method

(SBGWorkflow-class), 51
%»% (SBGWorkflow-class), 51
%»%,App,App-method (SBGWorkflow-class),

51
%»%,Tool,Tool-method

(SBGWorkflow-class), 51
%»%,Workflow,App-method

(SBGWorkflow-class), 51
%»%,Workflow,Tool-method

(SBGWorkflow-class), 51
%»%,Workflow,Workflow-method

(SBGWorkflow-class), 51

access_level (misc_make_metadata), 42
add_tag (set_tag), 58
add_tag,Files-method (set_tag), 58
add_tag,FilesList-method (set_tag), 58
addIdNum, 4
age_at_diagnosis (misc_make_metadata),

42
aliquot_id (misc_make_metadata), 42
aliquot_uuid (misc_make_metadata), 42
analysis_uuid (misc_make_metadata), 42
anyReq (CPURequirement-class), 26
AnyRequirement (CPURequirement-class),

26
AnyRequirement-class

(CPURequirement-class), 26
api, 5
App (App-class), 6

App-class, 6
appType (convert_app), 25
argslist (CLB), 13
asList, 7
asList,ANY-method (asList), 7
asList,CWL-method (asList), 7
asList,DSCList-method (asList), 7
asList,SimpleList-method (asList), 7
asList,SingleEnum-method (asList), 7
Auth (Auth-class), 8
Auth-class, 8
aws (CPURequirement-class), 26
AWSInstanceTypeRequirement

(CPURequirement-class), 26
AWSInstanceTypeRequirement-class

(CPURequirement-class), 26

batch, 11
Binding (Binding-class), 11
Binding-class, 11

case_id (misc_make_metadata), 42
case_uuid (misc_make_metadata), 42
CCBList, 12
characterORCommandLineBindingList-class

(CCBList), 12
CLB, 13
cli_list_projects, 15, 16, 18
cli_list_tags, 15, 16, 18
cli_upload, 15, 16, 17
COB (CLB), 13
CommandInputParameter

(CommandInputParameter-class),
18

CommandInputParameter-class, 18
CommandInputSchema

(CommandInputSchema-class), 19
CommandInputSchema-class, 19
CommandLineBinding

(CommandLineBinding-class), 19

75

76 INDEX

CommandLineBinding-class, 19
CommandLineTool

(CommandLineTool-class), 20
CommandLineTool-class, 20
CommandOutputBinding

(CommandOutputBinding-class),
23

CommandOutputBinding-class, 23
CommandOutputParameter

(CommandOutputParameter-class),
24

CommandOutputParameter-class, 24
CommandOutputSchema

(CommandOutputSchema-class), 24
CommandOutputSchema-class, 24
ComplexEnum

(PrimitiveSingleEnum-class), 44
ComplexSingleEnum-class

(PrimitiveSingleEnum-class), 44
convert_app, 25
cpu (CPURequirement-class), 26
CPURequirement (CPURequirement-class),

26
CPURequirement-class, 26
CreateFileRequirement

(ProcessRequirement-class), 46
CreateFileRequirement-class

(ProcessRequirement-class), 46
CWL (CWL-class), 27
CWL-class, 27

data_format (misc_make_metadata), 42
data_subtype (misc_make_metadata), 42
data_type (misc_make_metadata), 42
DatatypeEnum

(PrimitiveSingleEnum-class), 44
DatatypeSingleEnum-class

(PrimitiveSingleEnum-class), 44
days_to_death (misc_make_metadata), 42
delete, 28
delete,Files-method (delete), 28
delete,SimpleList-method (delete), 28
delete,Task-method (delete), 28
disease_type (misc_make_metadata), 42
docker (CPURequirement-class), 26
DockerRequirement

(ProcessRequirement-class), 46
DockerRequirement-class

(ProcessRequirement-class), 46

download, 29
download,Files-method (download), 29
download,FilesList-method (download), 29
DSCList, 29
DSCList-class (DSCList), 29

enum (PrimitiveSingleEnum-class), 44
enum-class (PrimitiveSingleEnum-class),

44
EnvironmentDef

(ProcessRequirement-class), 46
EnvironmentDef-class

(ProcessRequirement-class), 46
EnvironmentDefList

(ProcessRequirement-class), 46
EnvironmentDefList-class

(ProcessRequirement-class), 46
EnvVarRequirement

(ProcessRequirement-class), 46
EnvVarRequirement-class

(ProcessRequirement-class), 46
ethnicity (misc_make_metadata), 42
experimental_strategy

(misc_make_metadata), 42
Expression (Expression-class), 30
Expression-class, 30
ExpressionEngineRequirement

(ProcessRequirement-class), 46
ExpressionEngineRequirement-class

(ProcessRequirement-class), 46
ExpressionTool (ExpressionTool-class),

30
ExpressionTool-class, 30

File (FileList), 31
File-class (FileList), 31
file_extension (misc_make_metadata), 42
file_segment_number

(misc_make_metadata), 42
FileDef (ProcessRequirement-class), 46
fileDef (CPURequirement-class), 26
FileDef-class

(ProcessRequirement-class), 46
FileDefList (ProcessRequirement-class),

46
FileDefList-class

(ProcessRequirement-class), 46
FileList, 31
FileList-class (FileList), 31

INDEX 77

Files (Files-class), 32
Files-class, 32
FilesList (Files-class), 32
FilesList-class (Files-class), 32
Flow (SBGWorkflow-class), 51
FS (FS-class), 34
FS-class, 34

gdc_file_uuid (misc_make_metadata), 42
gender (misc_make_metadata), 42
get_cwl_class, 34
get_token, 35
get_uploader, 18, 36
getTaskHook (setTaskHook), 58

Handler (Handler-class), 37
Handler-class, 37

InPar (CLB), 13
input (CLB), 13
input_matrix, 37
InputParameter (Parameter-class), 43
InputParameter-class (Parameter-class),

43
InputParameterList (Parameter-class), 43
InputParameterList-class

(Parameter-class), 43
InputSchema (SchemaList), 56
InputSchema-class (SchemaList), 56
investigation (misc_make_metadata), 42
IPList (CLB), 13
is_commandlinetool (get_cwl_class), 34
is_workflow (get_cwl_class), 34
Item (Item-class), 38
Item-class, 38
ItemArray (PrimitiveSingleEnum-class),

44
ItemArray-class

(PrimitiveSingleEnum-class), 44

library_id (misc_make_metadata), 42
link, 39
link,App,ToolORWorkflow-method (link),

39
link,Tool,Tool-method (link), 39
link,Tool,Workflow-method (link), 39
link,ToolORWorkflow,App-method (link),

39
link,Workflow,Tool-method (link), 39

link,Workflow,Workflow-method (link), 39
link_what, 41
link_what,SBGWorkflow,SBGWorkflow-method

(link_what), 41
link_what,SBGWorkflow,Tool-method

(link_what), 41
link_what,Tool,SBGWorkflow-method

(link_what), 41
link_what,Tool,Tool-method (link_what),

41

mem (CPURequirement-class), 26
MemRequirement (CPURequirement-class),

26
MemRequirement-class

(CPURequirement-class), 26
Metadata (misc_make_metadata), 42
Metadata-class (misc_make_metadata), 42
misc_get_token (get_token), 35
misc_get_uploader (get_uploader), 36
misc_make_metadata, 42
misc_upload_cli (cli_upload), 17

OPList (CLB), 13
OutPar (CLB), 13
output (CLB), 13
output_matrix (input_matrix), 37
OutputParameter (Parameter-class), 43
OutputParameter-class

(Parameter-class), 43
OutputParameterList (Parameter-class),

43
OutputParameterList-class

(Parameter-class), 43
OutputSchema (SchemaList), 56
OutputSchema-class (SchemaList), 56

paired_end (misc_make_metadata), 42
Parameter (Parameter-class), 43
Parameter-class, 43
platform (misc_make_metadata), 42
platform_unit_id (misc_make_metadata),

42
primary_site (misc_make_metadata), 42
PrimitiveEnum

(PrimitiveSingleEnum-class), 44
PrimitiveSingleEnum-class, 44
Process (Process-class), 44
Process-class, 44

78 INDEX

ProcessRequirement
(ProcessRequirement-class), 46

ProcessRequirement-class, 46
ProcessRequirementList

(ProcessRequirement-class), 46
ProcessRequirementList-class

(ProcessRequirement-class), 46
project_details, 48
project_members, 49

quality_scale (misc_make_metadata), 42

race (misc_make_metadata), 42
reference_genome (misc_make_metadata),

42
requirements (CPURequirement-class), 26
response, 50
response,ANY-method (response), 50
response,Item-method (response), 50
response,SimpleList-method (response),

50
response<- (response), 50
response<-,ANY-method (response), 50
response<-,Item-method (response), 50
response<-,SimpleList-method

(response), 50

sample_id (misc_make_metadata), 42
sample_type (misc_make_metadata), 42
sample_uuid (misc_make_metadata), 42
sbg_get_env, 55
sbg_set_env, 56
SBGWorkflow (SBGWorkflow-class), 51
SBGWorkflow-class, 51
ScatterFeatureRequirement

(ProcessRequirement-class), 46
ScatterFeatureRequirement-class

(ProcessRequirement-class), 46
ScehmaList (SchemaList), 56
Schema (SchemaList), 56
Schema-class (SchemaList), 56
SchemaDef (SchemaList), 56
SchemaDef-class (SchemaList), 56
SchemaDefList (SchemaList), 56
SchemaDefList-class (SchemaList), 56
SchemaList, 56
SchemaList-class (SchemaList), 56
set_tag, 58
set_tag,Files-method (set_tag), 58

set_tag,FilesList-method (set_tag), 58
set_test_env, 59
setListClass, 57
setTaskHook, 58
sevenbridges-package, 3
status_check, 60
SubworkflowFeatureRequirement

(ProcessRequirement-class), 46
SubworkflowFeatureRequirement-class

(ProcessRequirement-class), 46

test_tool_bunny, 61
test_tool_cwlrun, 61
test_tool_rabix, 62
Tool (Tool-class), 63
Tool-class, 63

upload_complete_all, 65
upload_complete_part, 66
upload_delete, 67
upload_file, 5
upload_info, 67
upload_info_part, 68
upload_init, 69

vital_status (misc_make_metadata), 42

Workflow
(WorkflowOutputParameter-class),
70

Workflow-class
(WorkflowOutputParameter-class),
70

WorkflowOutputParameter
(WorkflowOutputParameter-class),
70

WorkflowOutputParameter-class, 70
WorkflowOutputParameterList

(WorkflowOutputParameter-class),
70

WorkflowOutputParameterList-class
(WorkflowOutputParameter-class),
70

WorkflowStep (WorkflowStepInput-class),
71

WorkflowStep-class
(WorkflowStepInput-class), 71

WorkflowStepInput
(WorkflowStepInput-class), 71

INDEX 79

WorkflowStepInput-class, 71
WorkflowStepInputList

(WorkflowStepInput-class), 71
WorkflowStepInputList-class

(WorkflowStepInput-class), 71
WorkflowStepList

(WorkflowStepInput-class), 71
WorkflowStepList-class

(WorkflowStepInput-class), 71
WorkflowStepOutput

(WorkflowStepInput-class), 71
WorkflowStepOutput-class

(WorkflowStepInput-class), 71
WorkflowStepOutputList

(WorkflowStepInput-class), 71
WorkflowStepOutputList-class

(WorkflowStepInput-class), 71

	sevenbridges-package
	addIdNum
	api
	App-class
	asList
	Auth-class
	batch
	Binding-class
	CCBList
	CLB
	cli_list_projects
	cli_list_tags
	cli_upload
	CommandInputParameter-class
	CommandInputSchema-class
	CommandLineBinding-class
	CommandLineTool-class
	CommandOutputBinding-class
	CommandOutputParameter-class
	CommandOutputSchema-class
	convert_app
	CPURequirement-class
	CWL-class
	delete
	download
	DSCList
	Expression-class
	ExpressionTool-class
	FileList
	Files-class
	FS-class
	get_cwl_class
	get_token
	get_uploader
	Handler-class
	input_matrix
	Item-class
	link
	link_what
	misc_make_metadata
	Parameter-class
	PrimitiveSingleEnum-class
	Process-class
	ProcessRequirement-class
	project_details
	project_members
	response
	SBGWorkflow-class
	sbg_get_env
	sbg_set_env
	SchemaList
	setListClass
	setTaskHook
	set_tag
	set_test_env
	status_check
	test_tool_bunny
	test_tool_cwlrun
	test_tool_rabix
	Tool-class
	upload_complete_all
	upload_complete_part
	upload_delete
	upload_info
	upload_info_part
	upload_init
	WorkflowOutputParameter-class
	WorkflowStepInput-class
	Index

