Package 'kmcut'

March 12, 2025

Type Package

Title Optimized Kaplan Meier analysis and identification and validation of prognostic biomarkers

Version 1.1.0

Description The purpose of the package is to identify prognostic biomarkers and an optimal numeric cutoff for each biomarker that can be used to stratify a group of test subjects (samples) into two sub-groups with significantly different survival (better vs. worse). The package was developed for the analysis of gene expression data, such as RNA-seq. However, it can be used with any quantitative variable that has a sufficiently large proportion of unique values.

License Artistic-2.0

Encoding UTF-8

LazyData false

Imports survival, tools, methods, pracma, doParallel, foreach, parallel, SummarizedExperiment, S4Vectors

RoxygenNote 7.2.3

Suggests BiocStyle, knitr, rmarkdown,

VignetteBuilder knitr

biocViews Software, StatisticalMethod, GeneExpression, Survival

git url https://git.bioconductor.org/packages/kmcut

git_branch devel

git_last_commit da83cfd

git_last_commit_date 2024-10-29

Repository Bioconductor 3.21

Date/Publication 2025-03-12

Author Igor Kuznetsov [aut, cre], Javed Khan [aut]

Maintainer Igor Kuznetsov <ibkalb@gmail.com>

create_se_object

Contents

crea	te_se_object		Cre	eate	e Si	um	ma	riz	;ed	Eχ	хре	eri	im	eni	t o	bje	ect												
Index																													17
	ucox_pred	• •			٠		٠		•	•	•	•		٠	•			٠	•	 •	•	•	•	 •	•	•	•	•	14
	ucox_batch																												
	transpose_table																												
	km_val_cut																												11
	km_ucut																												9
	km_qcut																												8
	km_opt_scut																												6
	km_opt_pcut .																												5
	extract_rows																												4
	extract_columns																												3
	create_se_object																												2

Description

Reads a file with expression data and a file with survival data. Then, uses the data to create a SummarizedExperiment object.

Usage

```
create_se_object(efile, sfile, wdir = getwd())
```

Arguments

efile	a character string (character vector of length 1) that specifies the name of the file with expression data for each sample. The file must be tab-delimited, where genes are in rows and samples are in columns. First column must contain gene names. Column names must contain sample ids.
sfile	a character string (character vector of length 1) that specifies the name of the file with right-censored survival time data. The file must be tab-delimited, where samples are in rows. First column must contain sample ids that match those in 'efile'. The file must contain columns called 'stime' and 'scens', with survival time and censoring variable (0 or 1), respectively.
wdir	a character string (character vector of length 1) that specifies the name of the working directory for the input files (defaults to the current R directory).

Value

a SummarizedExperiment object that contains expression matrix along with survival data as column data.

extract_columns 3

Examples

```
# Example with data files included in the package:
# Load example gene expression data and survival data for 2 genes
# and 93 samples:
fdat <- system.file("extdata", "example_genes.txt", package = "kmcut")
sdat <- system.file("extdata", "survival_data.txt", package = "kmcut")
# Create SummarizedExperiment object
se <- create_se_object(efile = fdat, sfile = sdat)</pre>
```

extract_columns

Extract a sub-set of columns

Description

Extract a sub-set of columns (such as a sub-set of samples) from a data table. All rows will be preserved.

Usage

```
extract_columns(fnamein, fids, fnameout, wdir = getwd())
```

Arguments

fnamein	a character string (character vector of length 1) that specifies the name of tab- delimited text file with the input data table.
fids	a character string (character vector of length 1) that specifies the name of text file with column ids (such as sample ids). The file must contain one column id per line, without any trailing spaces or any other additional symbols.
fnameout	a character string (character vector of length 1) that specifies the name of output file where the new data table will be saved.
	1

wdir a character string (character vector of length 1) that specifies the name of the working directory for the input/output files (defaults to the current R directory).

Value

no return value

```
# Example with built-in data files:
# Load example gene expression data table for 2 genes
fdat <- system.file("extdata", "example_genes.txt", package = "kmcut")
# Load a list that contains column (sample) ids
idlist <- system.file("extdata", "columnids.txt", package = "kmcut")</pre>
```

4 extract_rows

extract_rows

Extract a sub-set of rows

Description

Extract a sub-set of rows (such as a group of gene ids) from a data table. All columns will be preserved.

Usage

```
extract_rows(fnamein, fids, fnameout, wdir = getwd())
```

Arguments

fnamein	a character string (character vector of length 1) that specifies the name of tab- delimited text file with the input data table.
fids	a character string (character vector of length 1) that specifies the name of text file with row ids (such as gene ids). The file must contain one row id per line, without any trailing spaces or any other additional symbols.
fnameout	a character string (character vector of length 1) that specifies the name of output

file where the new data table will be saved.

wdir a character string (character vector of length 1) that specifies the name of the

working directory for the input/output files (defaults to the current R directory).

Value

no return value

km_opt_pcut 5

km_opt_pcut	Find and evaluate optimal stratification cutoffs

Description

For each feature, finds a cutoff that optimally stratifies samples into 2 groups, plots Kaplan-Meier survival curves and observed vs. expected optimization plot. Then, performs the permutation test to estimate the statistical significance of the cutoff.

Usage

```
km_opt_pcut(
  obj,
  bfname,
  wdir = getwd(),
  min_fraction = 0.1,
  min_up_down = 1,
  n_iter = 100,
  peak_tolerance = 0.1,
  psort = FALSE,
  min_uval = 50,
  wlabels = TRUE,
  wpdf = TRUE,
  verbose = TRUE,
  nproc = 1
)
```

Arguments

obj	SummarizedExperiment object with expression-like data
bfname	a character string (character vector of length 1) that specifies the base name used to construct output files, which are created by adding 'KMoptp_minf2f_iter_d' and corresponding extension to 'bfname'.
wdir	a character string (character vector of length 1) that specifies the name of the working directory for the output files (defaults to the current R directory).
min_fraction	numeric value that specifies the minimal fraction of samples in the smaller group (default is 0.1).
min_up_down	numeric value that specifies the minimal number of up/down points on either side of the peak for pracma::findpeaks function (default is 1).
n_iter	numeric value that specifies the number of iterations for the permutation test. The default is n_iter=100 for fast calculations. Recommended is n_iter=10000 (slow, especially for a large number of samples/features).
peak_tolerance	numeric value that specifies the maximal difference in height between top peaks. The peak within 'peak_tolerance' closest to the median value is selected.

6 km_opt_scut

psort	logical value whether to sort the output table by p-values in increasing order (default is FALSE).
min_uval	numeric value that specifies the minimal percentage of unique values per feature (default is 50). Features that have less than 'min_uval' percent unique values are excluded from the analysis.
wlabels	logical value whether to write a CSV file with low/high (below/above the cutoff) group sample labels (default is TRUE).
wpdf	logical value whether to write a PDF file with plots (default is TRUE).
verbose	logical value whether to print progress (default is TRUE).
nproc	integer value that specifies the number of logical processors (default is 1, meaning execute sequentially).

Value

no return value

Examples

```
# Example with data files included in the package:
# Load example gene expression data and survival data for 2 genes
# and 93 samples:
fdat <- system.file("extdata", "example_genes.txt", package = "kmcut")
sdat <- system.file("extdata", "survival_data.txt", package = "kmcut")
#' # Create SummarizedExperiment object
se <- create_se_object(efile = fdat, sfile = sdat)

# Search for optimal cutoffs and run the permutation tests on 1 CPU
km_opt_pcut(obj = se, bfname = "test", wpdf = FALSE, n_iter = 10)
# This will create two output files in the current R working directory:
# 1) Tab-delimited text file with the results:
# "test_KMoptp_minf_0.10_iter_10.txt"
# 2) CSV file with low/high sample labels:
# "test_KMoptp_minf_0.10_iter_10_labels.csv"</pre>
```

km_opt_scut

Find optimal stratification cutoffs

Description

For each feature, finds a cutoff that optimally stratifies samples into 2 groups, plots Kaplan-Meier survival curves and observed vs. expected optimization plot. Does not perform the permutation test to estimate the statistical significance of the cutoff.

km_opt_scut 7

Usage

```
km_opt_scut(
  obj,
  bfname,
  wdir = getwd(),
  min_fraction = 0.1,
  min_up_down = 1,
  peak_tolerance = 0.1,
  min_uval = 50,
  psort = FALSE,
  wlabels = TRUE,
  wpdf = TRUE,
  verbose = TRUE
)
```

Arguments

obj	SummarizedExperiment object with expression-like data
bfname	a character string (character vector of length 1) that specifies the base name used to create output file names, which are created by adding "_KMopt_minf2f" and corresponding extension to 'bfname'.
wdir	a character string (character vector of length 1) that specifies the name of the working directory for the input/output files (defaults to the current R directory).
min_fraction	numeric value that specifies the minimal fraction of samples in the smaller group (default is 0.1).
min_up_down	numeric value that specifies the minimal number of up/down points on either side of the peak for 'pracma::findpeaks' function (default is 1).
peak_tolerance	numeric value that specifies the maximal difference between in height between top peaks. The peak within 'peak_tolerance' closest to the median value is selected.
min_uval	numeric value that specifies the minimal percentage of unique values per feature (default is 50). Features that have less than 'min_uval' percent unique values are excluded from the analysis.
psort	logical value whether to sort the output table by p-values in increasing order (default is FALSE).
wlabels	logical value whether to write a CSV file with low/high (below/above the cutoff) group sample labels (default is TRUE).

logical value whether to write a PDF file with plots (default is TRUE).

logical value whether to print progress (default is TRUE).

Value

wpdf verbose

no return value

8 km_qcut

Examples

```
# Example with data files included in the package:
# Load example gene expression data and survival data for 2 genes
# and 93 samples
fdat <- system.file("extdata", "example_genes.txt", package = "kmcut")
sdat <- system.file("extdata", "survival_data.txt", package = "kmcut")
# Create SummarizedExperiment object
se <- create_se_object(efile = fdat, sfile = sdat)
# Search for optimal cutoffs
km_opt_scut(obj = se, bfname = "test", wpdf = FALSE)
# This will create two output files in the current working directory:
# 1) Tab-delimited text file with the results:
# "test_KMopt_minf_0.10.txt"
# 2) CSV file with low/high sample labels:
# "test_KMopt_minf_0.10_labels.csv"</pre>
```

km_qcut

Apply quantile-based stratification cutoffs

Description

For each feature uses the cutoff supplied as quantile (in 0 to 100 range) to stratify samples into 2 groups, plots Kaplan-Meier survival curves, and performs the log-rank test.

Usage

```
km_qcut(
  obj,
  bfname,
  wdir = getwd(),
  quant = 50,
  min_uval = 50,
  psort = FALSE,
  wlabels = TRUE,
  wpdf = TRUE
```

Arguments

obj

SummarizedExperiment object with expression-like data

bfname

a character string (character vector of length 1) that specifies the base name used to create output file names, which are created by adding "_KM_quant_d" and corresponding extension to 'bfname'.

km_ucut 9

wdir	a character string (character vector of length 1) that specifies the name of the working directory for the output files (defaults to the current R directory).
quant	numeric value that specifies the cutoff quantile for stratification. The default is 50th quantile (the median).
min_uval	numeric value that specifies the minimal percentage of unique values per feature (default is 50). Features that have less than 'min_uval' percent unique values are excluded from the analysis.
psort	logical value whether to sort the output table by p-values in increasing order (default is FALSE).
wlabels	logical value whether to write a CSV file with low/high (below/above the cutoff) group sample labels (default is TRUE).
wpdf	logical value whether to write a PDF file with plots (default is TRUE).

Value

no return value

Examples

```
# Example with data files included in the package:
# Load example gene expression data and survival data for 2 genes and
# 93 samples
fdat <- system.file("extdata", "example_genes.txt", package = "kmcut")
sdat <- system.file("extdata", "survival_data.txt", package = "kmcut")
# Create SummarizedExperiment object
se <- create_se_object(efile = fdat, sfile = sdat)
# Apply quantile-based stratification cutoffs
km_qcut(obj = se, bfname = "test", quant = 50, wpdf = FALSE)
# This will create two output files in the current working directory:
# 1) Tab-delimited text file with the results:
# "test_KM_quant_50.txt"
# 2) CSV file with low/high sample labels:
# "test_KM_quant_50_labels.csv"</pre>
```

km_ucut

Apply user-supplied stratification cutoff

Description

For each feature uses the user-supplied cutoff to stratify samples into 2 groups, plots Kaplan-Meier survival curves, and performs the log-rank test.

10 km_ucut

Usage

```
km_ucut(
  obj,
  bfname,
  wdir = getwd(),
  cutoff,
  min_uval = 50,
  psort = FALSE,
  wlabels = TRUE,
  wpdf = TRUE
)
```

Arguments

obj	SummarizedExperiment object with expression-like data
bfname	a character string (character vector of length 1) that specifies the base name used to create output file names, which are created by adding "_KM_ucut2f" and corresponding extension to 'bfname'.
wdir	a character string (character vector of length 1) that specifies the name of the working directory for the output files (defaults to the current R directory).
cutoff	numeric value that specifies the cutoff value for stratification. The same cutoff is applied to every feature in the dataset.
min_uval	numeric value that specifies the minimal percentage of unique values per feature (default is 50). Features that have less than 'min_uval' percent unique values are excluded from the analysis.
psort	logical value whether to sort the output table by p-values in increasing order (default is FALSE).
wlabels	logical value whether to write a CSV file with low/high (below/above the cutoff) group sample labels (default is TRUE).
wpdf	logical value whether to write a PDF file with plots (default is TRUE).

Value

no return value

```
# Example with data files included in the package:
# Load example gene expression data and survival data for 2 genes
# and 93 samples
fdat <- system.file("extdata", "example_genes.txt", package = "kmcut")
sdat <- system.file("extdata", "survival_data.txt", package = "kmcut")
# Create SummarizedExperiment object
se <- create_se_object(efile = fdat, sfile = sdat)</pre>
```

km_val_cut

```
# Apply the cutoff of 5
km_ucut(obj = se, bfname = "test", cutoff = 5, min_uval = 90, wpdf = FALSE)
# This will create two output files in the current working directory:
# 1) Tab-delimited text file with the results:
# "test_KM_ucut_5.txt"
# 2) CSV file with low/high sample labels:
# "test_KM_ucut_5_labels.csv"
```

km_val_cut

Validate stratification cutoffs on test data

Description

Creates Kaplan-Meier survival curves for a validation data set by using a file with previously determined stratification cutoffs and performs the log-rank tests.

Usage

```
km_val_cut(
  infile,
  obj,
  bfname,
  wdir = getwd(),
  min_uval = 50,
  psort = FALSE,
  wlabels = TRUE,
  wpdf = TRUE
)
```

Arguments

infile

a character string (character vector of length 1) that specifies the name of tabdelimited file with the table that contains features and a stratification threshold for each feature (this table is produced by 'km_opt_scut', 'km_opt_pcut', 'km_qcut' or 'km_ucut'). The file with previously determined stratification thresholds must have first two columns named as 'tracking_id' and 'CUTOFF'. The 'tracking_id' column contains feature names, the 'CUTOFF' column contains stratification threshold for each feature.

obj

SummarizedExperiment object with test expression

bfname

a character string (character vector of length 1) that specifies the base name used to construct output files, which are created by adding

'_KM_val' and corresponding extension to 'bfname'.

wdir

a character string (character vector of length 1) that specifies the name of the working directory for the input/output files (defaults to the current R directory).

12 transpose_table

numeric value that specifies the minimal percentage of unique values per feature.

Features that have less than 'min_uval' percent unique values are excluded from the analysis.

psort logical value whether to sort the output table by p-values in increasing order (default is FALSE).

wlabels logical value whether to write a CSV file with low/high (below/above the cutoff) group sample labels (default is TRUE).

wpdf logical value whether to write a PDF file with plots (default is TRUE).

Value

no return value

```
# Example with data files included in the package:
# Load training (fdat1) and validation (fdat2) gene expression data
# files and survival data file (sdat).
fdat1 <- system.file("extdata", "expression_data_1.txt", package = "kmcut")</pre>
fdat2 <- system.file("extdata", "expression_data_2.txt", package = "kmcut")</pre>
sdat <- system.file("extdata", "survival_data.txt", package = "kmcut")</pre>
# Create SummarizedExperiment object with training data
se1 <- create_se_object(efile = fdat1, sfile = sdat)</pre>
# Run 'km_qcut' on the training data to create a file
# with thresholds "training_data_KM_quant_50.txt".
km_qcut(obj = se1, bfname = "training_data", quant = 50, min_uval = 40)
# Create SummarizedExperiment object with test data
se2 <- create_se_object(efile = fdat2, sfile = sdat)</pre>
# Validate the thresholds from "training_data_KM_quant_50.txt" on
# test data in 'se2'.
km_val_cut(infile = "training_data_KM_quant_50.txt", obj = se2,
           bfname = "test", wpdf = FALSE, min_uval = 40)
# This will create two output files in the current working directory:
# 1) Tab-delimited text file with the results:
# "test_KM_val.txt"
# 2) CSV file with low/high sample labels:
# "test_KM_val_labels.csv"
```

ucox_batch 13

Description

Converts table rows to columns and columns to rows.

Usage

```
transpose_table(fnamein, fnameout, wdir = getwd())
```

Arguments

fnamein character vector that specifies the name of tab-delimited text file with the input

data table.

fnameout character vector that specifies the name of output file where the transposed data

table will be saved.

wdir character vector that specifies the name of the working directory for the in-

put/output files (defaults to the current R directory).

Value

no return value

Examples

ucox_batch

Fit Cox regression models in batch mode

Description

For each feature, fits a univariate Cox regression and performs the likelihood ratio test.

Usage

```
ucox_batch(
  obj,
  bfname,
  wdir = getwd(),
  min_uval = 50,
```

14 ucox_pred

```
psort = FALSE,
  verbose = TRUE
)
```

Arguments

obj SummarizedExperiment object with expression-like data

bfname a character string (character vector of length 1) that specifies the base name

used to create the output file name, which is created by adding '_ucoxbatch.txt'

to 'bfname'.

wdir a character string (character vector of length 1) that specifies the name of the

working directory for the output file (defaults to the current R directory).

min_uval numeric value that specifies the minimal percentage of unique values per feature

(default is 50) Features that have less than 'min_uval' percent unique values are

excluded from the analysis.

psort logical value whether to sort the output table by p-values in increasing order

(default is FALSE).

verbose logical value whether to print progress (default is TRUE).

Value

no return value

Examples

```
# Example with data files included in the package:
# Load example gene expression data and survival data for 2 genes
# and 93 samples
fdat <- system.file("extdata", "example_genes.txt", package = "kmcut")
sdat <- system.file("extdata", "survival_data.txt", package = "kmcut")
# Create SummarizedExperiment object
se <- create_se_object(efile = fdat, sfile = sdat)

ucox_batch(obj = se, bfname = "test")
# This will create in the current working directory a tab-delimited text
# file with the results: "test_ucoxbatch.txt"</pre>
```

ucox_pred

Fit and validate Cox regression models

Description

For each feature, fits a univariate Cox regression model on training data and then uses the model to predict the risk score for test data.

ucox_pred 15

Usage

```
ucox_pred(
  obj1,
  obj2,
  bfname,
  wdir = getwd(),
  min_uval = 50,
  psort = FALSE,
  verbose = TRUE
)
```

Arguments

obj1	SummarizedExperiment object with training expression
obj2	SummarizedExperiment object with test expression
bfname	a character string (character vector of length 1) that specifies the base name used to create the output file names, which are created by adding '_cox_train_sum.txt', '_train_scores.txt', and '_test_scores.txt' to 'bfname'.
wdir	a character string (character vector of length 1) that specifies the name of the working directory for the output files (defaults to the current R directory).
min_uval	numeric value that specifies the minimal percentage of unique values per feature (default is 50). Features that have less than 'min_uval' percent unique values are excluded from the analysis.
psort	logical value whether to sort the output table by p-values in increasing order (default is FALSE).
verbose	logical value whether to print progress (default is TRUE).

Value

no return value

```
# Example with data files included in the package:
# Load training (fdat1) and test (fdat2) gene expression data
# files and survival data file (sdat).
fdat1 <- system.file("extdata", "expression_data_1.txt", package = "kmcut")
fdat2 <- system.file("extdata", "expression_data_2.txt", package = "kmcut")
sdat <- system.file("extdata", "survival_data.txt", package = "kmcut")
# Create SummarizedExperiment object with training data
se1 <- create_se_object(efile = fdat1, sfile = sdat)
# Create SummarizedExperiment object with test data
se2 <- create_se_object(efile = fdat2, sfile = sdat)
# Fit Cox model on the training data and use it to calculate the risk</pre>
```

16 ucox_pred

```
# scores for the test data.
ucox_pred(obj1 = se1, obj2 = se2, bfname = "demo", min_uval = 90)
# This will create three output files in the current working directory:
# 1) Tab-delimited text file with Cox summary for the training data:
# "demo_cox_train_sum.txt"
# 2) Tab-delimited text file with the risk scores for training data:
# "demo_train_scores.txt"
# 3) Tab-delimited text file with the risk scores for test data:
# "demo_test_scores.txt"
```

Index

```
create_se_object, 2
extract_columns, 3
extract_rows, 4

km_opt_pcut, 5
km_opt_scut, 6
km_qcut, 8
km_ucut, 9
km_ucut, 11

transpose_table, 12

ucox_batch, 13
ucox_pred, 14
```