decoupleR 2.12.0
scRNA-seq yield many molecular readouts that are hard to interpret by themselves. One way of summarizing this information is by inferring pathway activities from prior knowledge.
In this notebook we showcase how to use decoupleR for pathway activity
inference with a down-sampled PBMCs 10X data-set. The data consists of 160
PBMCs from a Healthy Donor. The original data is freely available from 10x Genomics
here
from this webpage.
First, we need to load the relevant packages, Seurat to handle scRNA-seq data
and decoupleR to use statistical methods.
## We load the required packages
library(Seurat)
library(decoupleR)
# Only needed for data handling and plotting
library(dplyr)
library(tibble)
library(tidyr)
library(patchwork)
library(ggplot2)
library(pheatmap)Here we used a down-sampled version of the data used in the Seurat
vignette.
We can open the data like this:
inputs_dir <- system.file("extdata", package = "decoupleR")
data <- readRDS(file.path(inputs_dir, "sc_data.rds"))We can observe that we have different cell types:
DimPlot(data, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend()PROGENy is a comprehensive resource containing a curated collection of pathways and their target genes, with weights for each interaction. For this example we will use the human weights (other organisms are available) and we will use the top 500 responsive genes ranked by p-value. Here is a brief description of each pathway:
To access it we can use decoupleR:
net <- get_progeny(organism = 'human', top = 500)
#> Warning in OmnipathR::get_annotation_resources(): 'OmnipathR::get_annotation_resources' is deprecated.
#> Use 'annotation_resources' instead.
#> See help("Deprecated")
#> Warning in OmnipathR::import_omnipath_annotations(resources = name, ..., : 'OmnipathR::import_omnipath_annotations' is deprecated.
#> Use 'annotations' instead.
#> See help("Deprecated")
net
#> # A tibble: 7,000 × 4
#>    source   target  weight  p_value
#>    <chr>    <chr>    <dbl>    <dbl>
#>  1 Androgen TMPRSS2  11.5  2.38e-47
#>  2 Androgen NKX3-1   10.6  2.21e-44
#>  3 Androgen MBOAT2   10.5  4.63e-44
#>  4 Androgen KLK2     10.2  1.94e-40
#>  5 Androgen SARG     11.4  2.79e-40
#>  6 Androgen SLC38A4   7.36 1.25e-39
#>  7 Androgen MTMR9     6.13 2.53e-38
#>  8 Androgen ZBTB16   10.6  1.57e-36
#>  9 Androgen KCNN2     9.47 7.71e-36
#> 10 Androgen OPRK1    -5.63 1.11e-35
#> # ℹ 6,990 more rowsTo infer pathway enrichment scores we will run the Multivariate Linear Model (mlm) method. For each sample in our dataset (mat), it fits a linear model that predicts the observed gene expression based on all pathways’ Pathway-Gene interactions weights.
Once fitted, the obtained t-values of the slopes are the scores. If it is positive, we interpret that the pathway is active and if it is negative we interpret that it is inactive.
mlm
To run decoupleR methods, we need an input matrix (mat), an input prior
knowledge network/resource (net), and the name of the columns of net that we
want to use.
# Extract the normalized log-transformed counts
mat <- as.matrix(data@assays$RNA@data)
# Run mlm
acts <- run_mlm(mat=mat, net=net, .source='source', .target='target',
                .mor='weight', minsize = 5)
acts
#> # A tibble: 2,240 × 5
#>    statistic source   condition         score  p_value
#>    <chr>     <chr>    <chr>             <dbl>    <dbl>
#>  1 mlm       Androgen AAACATACAACCAC-1  0.559 0.576   
#>  2 mlm       EGFR     AAACATACAACCAC-1  3.63  0.000290
#>  3 mlm       Estrogen AAACATACAACCAC-1 -0.886 0.375   
#>  4 mlm       Hypoxia  AAACATACAACCAC-1  1.22  0.224   
#>  5 mlm       JAK-STAT AAACATACAACCAC-1 -1.02  0.308   
#>  6 mlm       MAPK     AAACATACAACCAC-1 -2.74  0.00619 
#>  7 mlm       NFkB     AAACATACAACCAC-1 -0.230 0.818   
#>  8 mlm       PI3K     AAACATACAACCAC-1 -1.09  0.276   
#>  9 mlm       TGFb     AAACATACAACCAC-1  0.248 0.804   
#> 10 mlm       TNFa     AAACATACAACCAC-1  2.22  0.0264  
#> # ℹ 2,230 more rowsFrom the obtained results, we will select the ulm activities and store
them in our object as a new assay called pathwaysmlm:
# Extract mlm and store it in pathwaysmlm in data
data[['pathwaysmlm']] <- acts %>%
  pivot_wider(id_cols = 'source', names_from = 'condition',
              values_from = 'score') %>%
  column_to_rownames('source') %>%
  Seurat::CreateAssayObject(.)
# Change assay
DefaultAssay(object = data) <- "pathwaysmlm"
# Scale the data
data <- ScaleData(data)
data@assays$pathwaysmlm@data <- data@assays$pathwaysmlm@scale.dataThis new assay can be used to plot activities. Here we visualize the Trail pathway, associated with apoptosis, which seems that in B and NK cells is more active.
p1 <- DimPlot(data, reduction = "umap", label = TRUE, pt.size = 0.5) + 
  NoLegend() + ggtitle('Cell types')
p2 <- (FeaturePlot(data, features = c("Trail")) & 
  scale_colour_gradient2(low = 'blue', mid = 'white', high = 'red')) +
  ggtitle('Trail activity')
p1 | p2We can also see what is the mean activity per group across pathways:
# Extract activities from object as a long dataframe
df <- t(as.matrix(data@assays$pathwaysmlm@data)) %>%
  as.data.frame() %>%
  mutate(cluster = Idents(data)) %>%
  pivot_longer(cols = -cluster, names_to = "source", values_to = "score") %>%
  group_by(cluster, source) %>%
  summarise(mean = mean(score))
# Transform to wide matrix
top_acts_mat <- df %>%
  pivot_wider(id_cols = 'cluster', names_from = 'source',
              values_from = 'mean') %>%
  column_to_rownames('cluster') %>%
  as.matrix()
# Choose color palette
palette_length = 100
my_color = colorRampPalette(c("Darkblue", "white","red"))(palette_length)
my_breaks <- c(seq(-2, 0, length.out=ceiling(palette_length/2) + 1),
               seq(0.05, 2, length.out=floor(palette_length/2)))
# Plot
pheatmap(top_acts_mat, border_color = NA, color=my_color, breaks = my_breaks) In this specific example, we can observe that Trail is more active in B and NK cells.
#> ─ Session info ───────────────────────────────────────────────────────────────────────────────────────────────────────
#>  setting  value
#>  version  R version 4.4.1 (2024-06-14)
#>  os       Ubuntu 24.04.1 LTS
#>  system   x86_64, linux-gnu
#>  ui       X11
#>  language (EN)
#>  collate  C
#>  ctype    en_US.UTF-8
#>  tz       America/New_York
#>  date     2024-10-29
#>  pandoc   2.7.3 @ /usr/bin/ (via rmarkdown)
#> 
#> ─ Packages ───────────────────────────────────────────────────────────────────────────────────────────────────────────
#>  package          * version   date (UTC) lib source
#>  abind              1.4-8     2024-09-12 [2] CRAN (R 4.4.1)
#>  backports          1.5.0     2024-05-23 [2] CRAN (R 4.4.1)
#>  bibtex             0.5.1     2023-01-26 [2] CRAN (R 4.4.1)
#>  BiocManager        1.30.25   2024-08-28 [2] CRAN (R 4.4.1)
#>  BiocParallel       1.40.0    2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
#>  BiocStyle        * 2.34.0    2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
#>  bit                4.5.0     2024-09-20 [2] CRAN (R 4.4.1)
#>  bit64              4.5.2     2024-09-22 [2] CRAN (R 4.4.1)
#>  blob               1.2.4     2023-03-17 [2] CRAN (R 4.4.1)
#>  bookdown           0.41      2024-10-16 [2] CRAN (R 4.4.1)
#>  bslib              0.8.0     2024-07-29 [2] CRAN (R 4.4.1)
#>  cachem             1.1.0     2024-05-16 [2] CRAN (R 4.4.1)
#>  cellranger         1.1.0     2016-07-27 [2] CRAN (R 4.4.1)
#>  checkmate          2.3.2     2024-07-29 [2] CRAN (R 4.4.1)
#>  chromote           0.3.1     2024-08-30 [2] CRAN (R 4.4.1)
#>  cli                3.6.3     2024-06-21 [2] CRAN (R 4.4.1)
#>  cluster            2.1.6     2023-12-01 [3] CRAN (R 4.4.1)
#>  codetools          0.2-20    2024-03-31 [3] CRAN (R 4.4.1)
#>  colorspace         2.1-1     2024-07-26 [2] CRAN (R 4.4.1)
#>  cowplot            1.1.3     2024-01-22 [2] CRAN (R 4.4.1)
#>  crayon             1.5.3     2024-06-20 [2] CRAN (R 4.4.1)
#>  curl               5.2.3     2024-09-20 [2] CRAN (R 4.4.1)
#>  data.table         1.16.2    2024-10-10 [2] CRAN (R 4.4.1)
#>  DBI                1.2.3     2024-06-02 [2] CRAN (R 4.4.1)
#>  decoupleR        * 2.12.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.1)
#>  deldir             2.0-4     2024-02-28 [2] CRAN (R 4.4.1)
#>  digest             0.6.37    2024-08-19 [2] CRAN (R 4.4.1)
#>  dotCall64          1.2       2024-10-04 [2] CRAN (R 4.4.1)
#>  dplyr            * 1.1.4     2023-11-17 [2] CRAN (R 4.4.1)
#>  evaluate           1.0.1     2024-10-10 [2] CRAN (R 4.4.1)
#>  fansi              1.0.6     2023-12-08 [2] CRAN (R 4.4.1)
#>  farver             2.1.2     2024-05-13 [2] CRAN (R 4.4.1)
#>  fastDummies        1.7.4     2024-08-16 [2] CRAN (R 4.4.1)
#>  fastmap            1.2.0     2024-05-15 [2] CRAN (R 4.4.1)
#>  fastmatch          1.1-4     2023-08-18 [2] CRAN (R 4.4.1)
#>  fgsea              1.32.0    2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
#>  fitdistrplus       1.2-1     2024-07-12 [2] CRAN (R 4.4.1)
#>  future             1.34.0    2024-07-29 [2] CRAN (R 4.4.1)
#>  future.apply       1.11.3    2024-10-27 [2] CRAN (R 4.4.1)
#>  generics           0.1.3     2022-07-05 [2] CRAN (R 4.4.1)
#>  ggplot2          * 3.5.1     2024-04-23 [2] CRAN (R 4.4.1)
#>  ggrepel          * 0.9.6     2024-09-07 [2] CRAN (R 4.4.1)
#>  ggridges           0.5.6     2024-01-23 [2] CRAN (R 4.4.1)
#>  globals            0.16.3    2024-03-08 [2] CRAN (R 4.4.1)
#>  glue               1.8.0     2024-09-30 [2] CRAN (R 4.4.1)
#>  goftest            1.2-3     2021-10-07 [2] CRAN (R 4.4.1)
#>  gridExtra          2.3       2017-09-09 [2] CRAN (R 4.4.1)
#>  gtable             0.3.6     2024-10-25 [2] CRAN (R 4.4.1)
#>  highr              0.11      2024-05-26 [2] CRAN (R 4.4.1)
#>  hms                1.1.3     2023-03-21 [2] CRAN (R 4.4.1)
#>  htmltools          0.5.8.1   2024-04-04 [2] CRAN (R 4.4.1)
#>  htmlwidgets        1.6.4     2023-12-06 [2] CRAN (R 4.4.1)
#>  httpuv             1.6.15    2024-03-26 [2] CRAN (R 4.4.1)
#>  httr               1.4.7     2023-08-15 [2] CRAN (R 4.4.1)
#>  ica                1.0-3     2022-07-08 [2] CRAN (R 4.4.1)
#>  igraph             2.1.1     2024-10-19 [2] CRAN (R 4.4.1)
#>  irlba              2.3.5.1   2022-10-03 [2] CRAN (R 4.4.1)
#>  jquerylib          0.1.4     2021-04-26 [2] CRAN (R 4.4.1)
#>  jsonlite           1.8.9     2024-09-20 [2] CRAN (R 4.4.1)
#>  KernSmooth         2.23-24   2024-05-17 [3] CRAN (R 4.4.1)
#>  knitr              1.48      2024-07-07 [2] CRAN (R 4.4.1)
#>  labeling           0.4.3     2023-08-29 [2] CRAN (R 4.4.1)
#>  later              1.3.2     2023-12-06 [2] CRAN (R 4.4.1)
#>  lattice            0.22-6    2024-03-20 [3] CRAN (R 4.4.1)
#>  lazyeval           0.2.2     2019-03-15 [2] CRAN (R 4.4.1)
#>  leiden             0.4.3.1   2023-11-17 [2] CRAN (R 4.4.1)
#>  lifecycle          1.0.4     2023-11-07 [2] CRAN (R 4.4.1)
#>  listenv            0.9.1     2024-01-29 [2] CRAN (R 4.4.1)
#>  lmtest             0.9-40    2022-03-21 [2] CRAN (R 4.4.1)
#>  logger             0.4.0     2024-10-22 [2] CRAN (R 4.4.1)
#>  lubridate          1.9.3     2023-09-27 [2] CRAN (R 4.4.1)
#>  magick             2.8.5     2024-09-20 [2] CRAN (R 4.4.1)
#>  magrittr           2.0.3     2022-03-30 [2] CRAN (R 4.4.1)
#>  MASS               7.3-61    2024-06-13 [3] CRAN (R 4.4.1)
#>  Matrix             1.7-1     2024-10-18 [3] CRAN (R 4.4.1)
#>  matrixStats        1.4.1     2024-09-08 [2] CRAN (R 4.4.1)
#>  memoise            2.0.1     2021-11-26 [2] CRAN (R 4.4.1)
#>  mime               0.12      2021-09-28 [2] CRAN (R 4.4.1)
#>  miniUI             0.1.1.1   2018-05-18 [2] CRAN (R 4.4.1)
#>  munsell            0.5.1     2024-04-01 [2] CRAN (R 4.4.1)
#>  nlme               3.1-166   2024-08-14 [3] CRAN (R 4.4.1)
#>  OmnipathR          3.14.0    2024-10-29 [2] Bioconductor 3.20 (R 4.4.1)
#>  parallelly         1.38.0    2024-07-27 [2] CRAN (R 4.4.1)
#>  patchwork        * 1.3.0     2024-09-16 [2] CRAN (R 4.4.1)
#>  pbapply            1.7-2     2023-06-27 [2] CRAN (R 4.4.1)
#>  pheatmap         * 1.0.12    2019-01-04 [2] CRAN (R 4.4.1)
#>  pillar             1.9.0     2023-03-22 [2] CRAN (R 4.4.1)
#>  pkgconfig          2.0.3     2019-09-22 [2] CRAN (R 4.4.1)
#>  plotly             4.10.4    2024-01-13 [2] CRAN (R 4.4.1)
#>  plyr               1.8.9     2023-10-02 [2] CRAN (R 4.4.1)
#>  png                0.1-8     2022-11-29 [2] CRAN (R 4.4.1)
#>  polyclip           1.10-7    2024-07-23 [2] CRAN (R 4.4.1)
#>  prettyunits        1.2.0     2023-09-24 [2] CRAN (R 4.4.1)
#>  processx           3.8.4     2024-03-16 [2] CRAN (R 4.4.1)
#>  progress           1.2.3     2023-12-06 [2] CRAN (R 4.4.1)
#>  progressr          0.15.0    2024-10-29 [2] CRAN (R 4.4.1)
#>  promises           1.3.0     2024-04-05 [2] CRAN (R 4.4.1)
#>  ps                 1.8.1     2024-10-28 [2] CRAN (R 4.4.1)
#>  purrr              1.0.2     2023-08-10 [2] CRAN (R 4.4.1)
#>  R.methodsS3        1.8.2     2022-06-13 [2] CRAN (R 4.4.1)
#>  R.oo               1.26.0    2024-01-24 [2] CRAN (R 4.4.1)
#>  R.utils            2.12.3    2023-11-18 [2] CRAN (R 4.4.1)
#>  R6                 2.5.1     2021-08-19 [2] CRAN (R 4.4.1)
#>  RANN               2.6.2     2024-08-25 [2] CRAN (R 4.4.1)
#>  rappdirs           0.3.3     2021-01-31 [2] CRAN (R 4.4.1)
#>  RColorBrewer       1.1-3     2022-04-03 [2] CRAN (R 4.4.1)
#>  Rcpp               1.0.13    2024-07-17 [2] CRAN (R 4.4.1)
#>  RcppAnnoy          0.0.22    2024-01-23 [2] CRAN (R 4.4.1)
#>  RcppHNSW           0.6.0     2024-02-04 [2] CRAN (R 4.4.1)
#>  readr              2.1.5     2024-01-10 [2] CRAN (R 4.4.1)
#>  readxl             1.4.3     2023-07-06 [2] CRAN (R 4.4.1)
#>  RefManageR       * 1.4.0     2022-09-30 [2] CRAN (R 4.4.1)
#>  reshape2           1.4.4     2020-04-09 [2] CRAN (R 4.4.1)
#>  reticulate         1.39.0    2024-09-05 [2] CRAN (R 4.4.1)
#>  rlang              1.1.4     2024-06-04 [2] CRAN (R 4.4.1)
#>  rmarkdown          2.28      2024-08-17 [2] CRAN (R 4.4.1)
#>  ROCR               1.0-11    2020-05-02 [2] CRAN (R 4.4.1)
#>  RSpectra           0.16-2    2024-07-18 [2] CRAN (R 4.4.1)
#>  RSQLite            2.3.7     2024-05-27 [2] CRAN (R 4.4.1)
#>  Rtsne              0.17      2023-12-07 [2] CRAN (R 4.4.1)
#>  rvest              1.0.4     2024-02-12 [2] CRAN (R 4.4.1)
#>  sass               0.4.9     2024-03-15 [2] CRAN (R 4.4.1)
#>  scales             1.3.0     2023-11-28 [2] CRAN (R 4.4.1)
#>  scattermore        1.2       2023-06-12 [2] CRAN (R 4.4.1)
#>  sctransform        0.4.1     2023-10-19 [2] CRAN (R 4.4.1)
#>  selectr            0.4-2     2019-11-20 [2] CRAN (R 4.4.1)
#>  sessioninfo        1.2.2     2021-12-06 [2] CRAN (R 4.4.1)
#>  Seurat           * 5.1.0     2024-05-10 [2] CRAN (R 4.4.1)
#>  SeuratObject     * 5.0.2     2024-05-08 [2] CRAN (R 4.4.1)
#>  shiny              1.9.1     2024-08-01 [2] CRAN (R 4.4.1)
#>  sp               * 2.1-4     2024-04-30 [2] CRAN (R 4.4.1)
#>  spam               2.11-0    2024-10-03 [2] CRAN (R 4.4.1)
#>  spatstat.data      3.1-2     2024-06-21 [2] CRAN (R 4.4.1)
#>  spatstat.explore   3.3-3     2024-10-22 [2] CRAN (R 4.4.1)
#>  spatstat.geom      3.3-3     2024-09-18 [2] CRAN (R 4.4.1)
#>  spatstat.random    3.3-2     2024-09-18 [2] CRAN (R 4.4.1)
#>  spatstat.sparse    3.1-0     2024-06-21 [2] CRAN (R 4.4.1)
#>  spatstat.univar    3.0-1     2024-09-05 [2] CRAN (R 4.4.1)
#>  spatstat.utils     3.1-0     2024-08-17 [2] CRAN (R 4.4.1)
#>  stringi            1.8.4     2024-05-06 [2] CRAN (R 4.4.1)
#>  stringr            1.5.1     2023-11-14 [2] CRAN (R 4.4.1)
#>  survival           3.7-0     2024-06-05 [3] CRAN (R 4.4.1)
#>  tensor             1.5       2012-05-05 [2] CRAN (R 4.4.1)
#>  tibble           * 3.2.1     2023-03-20 [2] CRAN (R 4.4.1)
#>  tidyr            * 1.3.1     2024-01-24 [2] CRAN (R 4.4.1)
#>  tidyselect         1.2.1     2024-03-11 [2] CRAN (R 4.4.1)
#>  timechange         0.3.0     2024-01-18 [2] CRAN (R 4.4.1)
#>  tinytex            0.53      2024-09-15 [2] CRAN (R 4.4.1)
#>  tzdb               0.4.0     2023-05-12 [2] CRAN (R 4.4.1)
#>  utf8               1.2.4     2023-10-22 [2] CRAN (R 4.4.1)
#>  uwot               0.2.2     2024-04-21 [2] CRAN (R 4.4.1)
#>  vctrs              0.6.5     2023-12-01 [2] CRAN (R 4.4.1)
#>  viridisLite        0.4.2     2023-05-02 [2] CRAN (R 4.4.1)
#>  vroom              1.6.5     2023-12-05 [2] CRAN (R 4.4.1)
#>  websocket          1.4.2     2024-07-22 [2] CRAN (R 4.4.1)
#>  withr              3.0.2     2024-10-28 [2] CRAN (R 4.4.1)
#>  xfun               0.48      2024-10-03 [2] CRAN (R 4.4.1)
#>  XML                3.99-0.17 2024-06-25 [2] CRAN (R 4.4.1)
#>  xml2               1.3.6     2023-12-04 [2] CRAN (R 4.4.1)
#>  xtable             1.8-4     2019-04-21 [2] CRAN (R 4.4.1)
#>  yaml               2.3.10    2024-07-26 [2] CRAN (R 4.4.1)
#>  zip                2.3.1     2024-01-27 [2] CRAN (R 4.4.1)
#>  zoo                1.8-12    2023-04-13 [2] CRAN (R 4.4.1)
#> 
#>  [1] /home/biocbuild/bbs-3.20-bioc/tmpdir/Rtmp5RtwrU/Rinst3c91f77024d70a
#>  [2] /home/biocbuild/bbs-3.20-bioc/R/site-library
#>  [3] /home/biocbuild/bbs-3.20-bioc/R/library
#> 
#> ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────