Case study: authors & datasets
 Challenge and solution
This case study arose from a question on the CZI Science Community
Slack. A user asked
Hi! Is it possible to search CELLxGENE and identify all datasets by
a specific author or set of authors?
Unfortunately, this is not possible from the CELLxGENE web site –
authors are only associated with collections, and collections can only
be sorted or filtered by title (or publication / tissue / disease /
organism).
A cellxgenedp solution uses authors() to discover authors and
their collections, and joins this information to datasets().
author_datasets <- left_join(
    authors(),
    datasets(),
    by = "collection_id",
    relationship = "many-to-many"
)
author_datasets
#> # A tibble: 53,348 × 36
#>    collection_id  family given consortium dataset_id dataset_version_id donor_id
#>    <chr>          <chr>  <chr> <chr>      <chr>      <chr>              <list>  
#>  1 db70986c-7d91… Traeu… K.    <NA>       72955cdb-… 999a6b92-46ca-498… <chr>   
#>  2 db70986c-7d91… Munz   M.    <NA>       72955cdb-… 999a6b92-46ca-498… <chr>   
#>  3 db70986c-7d91… Pauli  J.    <NA>       72955cdb-… 999a6b92-46ca-498… <chr>   
#>  4 db70986c-7d91… Sachs  N.    <NA>       72955cdb-… 999a6b92-46ca-498… <chr>   
#>  5 db70986c-7d91… Vafad… E.    <NA>       72955cdb-… 999a6b92-46ca-498… <chr>   
#>  6 db70986c-7d91… Carri… T.    <NA>       72955cdb-… 999a6b92-46ca-498… <chr>   
#>  7 db70986c-7d91… Maegd… L.    <NA>       72955cdb-… 999a6b92-46ca-498… <chr>   
#>  8 db70986c-7d91… Kastn… P.    <NA>       72955cdb-… 999a6b92-46ca-498… <chr>   
#>  9 db70986c-7d91… Heinig M.    <NA>       72955cdb-… 999a6b92-46ca-498… <chr>   
#> 10 2902f08c-f83c… Fan    X.    <NA>       1f1c5c14-… 2afef4bd-99af-41f… <chr>   
#> # ℹ 53,338 more rows
#> # ℹ 29 more variables: assay <list>, batch_condition <list>, cell_count <int>,
#> #   cell_type <list>, citation <chr>, default_embedding <chr>,
#> #   development_stage <list>, disease <list>, embeddings <list>,
#> #   explorer_url <chr>, feature_biotype <list>, feature_count <int>,
#> #   feature_reference <list>, is_primary_data <list>,
#> #   mean_genes_per_cell <dbl>, organism <list>, primary_cell_count <int>, …
author_datasets provides a convenient point from which to make basic
queries, e.g., finding the authors contributing the most datasets.
author_datasets |>
    count(family, given, sort = TRUE)
#> # A tibble: 4,939 × 3
#>    family      given        n
#>    <chr>       <chr>    <int>
#>  1 Teichmann   Sarah A.   276
#>  2 Casper      Tamara     256
#>  3 Dee         Nick       256
#>  4 Keene       C. Dirk    248
#>  5 Hirschstein Daniel     241
#>  6 Macosko     Evan Z.    232
#>  7 Travaglini  Kyle J.    230
#>  8 Chen        Fei        226
#>  9 Ding        Song-Lin   226
#> 10 Murray      Evan       226
#> # ℹ 4,929 more rows
Perhaps one is interested in the most prolific authors based on
‘collections’, rather than ‘datasets’. The five most prolific authors
by collection are
prolific_authors <-
    authors() |>
    count(family, given, sort = TRUE) |>
    slice(1:5)
prolific_authors
#> # A tibble: 5 × 3
#>   family    given          n
#>   <chr>     <chr>      <int>
#> 1 Teichmann Sarah A.      31
#> 2 Meyer     Kerstin B.    16
#> 3 Polanski  Krzysztof     15
#> 4 Haniffa   Muzlifah      14
#> 5 Regev     Aviv          14
The datasets associated with authors are
right_join(
    author_datasets,
    prolific_authors,
    by = c("family", "given")
)
#> # A tibble: 668 × 37
#>    collection_id  family given consortium dataset_id dataset_version_id donor_id
#>    <chr>          <chr>  <chr> <chr>      <chr>      <chr>              <list>  
#>  1 2d2e2acd-dade… Polan… Krzy… <NA>       f9846bb4-… 0ffc40ef-2489-46e… <chr>   
#>  2 2d2e2acd-dade… Polan… Krzy… <NA>       e8a11a27-… 4582aa79-a23d-411… <chr>   
#>  3 2d2e2acd-dade… Polan… Krzy… <NA>       e887bd14-… da017f05-0843-4a8… <chr>   
#>  4 2d2e2acd-dade… Polan… Krzy… <NA>       e69d2744-… 94e1aa1d-1715-488… <chr>   
#>  5 2d2e2acd-dade… Polan… Krzy… <NA>       dc522d04-… 84665531-6e07-4f5… <chr>   
#>  6 2d2e2acd-dade… Polan… Krzy… <NA>       cdefb878-… 76d0f9ff-da6b-46d… <chr>   
#>  7 2d2e2acd-dade… Polan… Krzy… <NA>       c932254f-… d026eb58-e981-438… <chr>   
#>  8 2d2e2acd-dade… Polan… Krzy… <NA>       ae4817c0-… 16998940-19d2-4da… <chr>   
#>  9 2d2e2acd-dade… Polan… Krzy… <NA>       a6529751-… 2ed31cd2-3a1f-418… <chr>   
#> 10 2d2e2acd-dade… Polan… Krzy… <NA>       810ac45f-… cb4c21bc-3149-474… <chr>   
#> # ℹ 658 more rows
#> # ℹ 30 more variables: assay <list>, batch_condition <list>, cell_count <int>,
#> #   cell_type <list>, citation <chr>, default_embedding <chr>,
#> #   development_stage <list>, disease <list>, embeddings <list>,
#> #   explorer_url <chr>, feature_biotype <list>, feature_count <int>,
#> #   feature_reference <list>, is_primary_data <list>,
#> #   mean_genes_per_cell <dbl>, organism <list>, primary_cell_count <int>, …
Alternatively, one might be interested in specific authors. This is
most easily accomplished with a simple filter on author_datasets, e.g.,
author_datasets |>
    filter(
        family %in% c("Teichmann", "Regev", "Haniffa")
    )
#> # A tibble: 443 × 36
#>    collection_id  family given consortium dataset_id dataset_version_id donor_id
#>    <chr>          <chr>  <chr> <chr>      <chr>      <chr>              <list>  
#>  1 2d2e2acd-dade… Teich… Sara… <NA>       f9846bb4-… 0ffc40ef-2489-46e… <chr>   
#>  2 2d2e2acd-dade… Teich… Sara… <NA>       e8a11a27-… 4582aa79-a23d-411… <chr>   
#>  3 2d2e2acd-dade… Teich… Sara… <NA>       e887bd14-… da017f05-0843-4a8… <chr>   
#>  4 2d2e2acd-dade… Teich… Sara… <NA>       e69d2744-… 94e1aa1d-1715-488… <chr>   
#>  5 2d2e2acd-dade… Teich… Sara… <NA>       dc522d04-… 84665531-6e07-4f5… <chr>   
#>  6 2d2e2acd-dade… Teich… Sara… <NA>       cdefb878-… 76d0f9ff-da6b-46d… <chr>   
#>  7 2d2e2acd-dade… Teich… Sara… <NA>       c932254f-… d026eb58-e981-438… <chr>   
#>  8 2d2e2acd-dade… Teich… Sara… <NA>       ae4817c0-… 16998940-19d2-4da… <chr>   
#>  9 2d2e2acd-dade… Teich… Sara… <NA>       a6529751-… 2ed31cd2-3a1f-418… <chr>   
#> 10 2d2e2acd-dade… Teich… Sara… <NA>       810ac45f-… cb4c21bc-3149-474… <chr>   
#> # ℹ 433 more rows
#> # ℹ 29 more variables: assay <list>, batch_condition <list>, cell_count <int>,
#> #   cell_type <list>, citation <chr>, default_embedding <chr>,
#> #   development_stage <list>, disease <list>, embeddings <list>,
#> #   explorer_url <chr>, feature_biotype <list>, feature_count <int>,
#> #   feature_reference <list>, is_primary_data <list>,
#> #   mean_genes_per_cell <dbl>, organism <list>, primary_cell_count <int>, …
or more carefully by constructing at data.frame of family and given
names, and performing a join with author_datasets
authors_of_interest <-
    tibble(
        family = c("Teichmann", "Regev", "Haniffa"),
        given = c("Sarah A.", "Aviv", "Muzlifah")
    )
right_join(
    author_datasets,
    authors_of_interest,
    by = c("family", "given")
)
#> # A tibble: 407 × 36
#>    collection_id  family given consortium dataset_id dataset_version_id donor_id
#>    <chr>          <chr>  <chr> <chr>      <chr>      <chr>              <list>  
#>  1 2d2e2acd-dade… Teich… Sara… <NA>       f9846bb4-… 0ffc40ef-2489-46e… <chr>   
#>  2 2d2e2acd-dade… Teich… Sara… <NA>       e8a11a27-… 4582aa79-a23d-411… <chr>   
#>  3 2d2e2acd-dade… Teich… Sara… <NA>       e887bd14-… da017f05-0843-4a8… <chr>   
#>  4 2d2e2acd-dade… Teich… Sara… <NA>       e69d2744-… 94e1aa1d-1715-488… <chr>   
#>  5 2d2e2acd-dade… Teich… Sara… <NA>       dc522d04-… 84665531-6e07-4f5… <chr>   
#>  6 2d2e2acd-dade… Teich… Sara… <NA>       cdefb878-… 76d0f9ff-da6b-46d… <chr>   
#>  7 2d2e2acd-dade… Teich… Sara… <NA>       c932254f-… d026eb58-e981-438… <chr>   
#>  8 2d2e2acd-dade… Teich… Sara… <NA>       ae4817c0-… 16998940-19d2-4da… <chr>   
#>  9 2d2e2acd-dade… Teich… Sara… <NA>       a6529751-… 2ed31cd2-3a1f-418… <chr>   
#> 10 2d2e2acd-dade… Teich… Sara… <NA>       810ac45f-… cb4c21bc-3149-474… <chr>   
#> # ℹ 397 more rows
#> # ℹ 29 more variables: assay <list>, batch_condition <list>, cell_count <int>,
#> #   cell_type <list>, citation <chr>, default_embedding <chr>,
#> #   development_stage <list>, disease <list>, embeddings <list>,
#> #   explorer_url <chr>, feature_biotype <list>, feature_count <int>,
#> #   feature_reference <list>, is_primary_data <list>,
#> #   mean_genes_per_cell <dbl>, organism <list>, primary_cell_count <int>, …
 
 Areas of interest
There are several interesting questions that suggest themselves, and
several areas where some additional work is required.
It might be interesting to identify authors working on similar
disease, or other areas of interest. The disease column in the
author_datasets table is a list.
author_datasets |>
    select(family, given, dataset_id, disease)
#> # A tibble: 53,348 × 4
#>    family       given dataset_id                           disease   
#>    <chr>        <chr> <chr>                                <list>    
#>  1 Traeuble     K.    72955cdb-bd92-4135-aa52-21f33f9640db <list [1]>
#>  2 Munz         M.    72955cdb-bd92-4135-aa52-21f33f9640db <list [1]>
#>  3 Pauli        J.    72955cdb-bd92-4135-aa52-21f33f9640db <list [1]>
#>  4 Sachs        N.    72955cdb-bd92-4135-aa52-21f33f9640db <list [1]>
#>  5 Vafadarnejad E.    72955cdb-bd92-4135-aa52-21f33f9640db <list [1]>
#>  6 Carrillo-Roa T.    72955cdb-bd92-4135-aa52-21f33f9640db <list [1]>
#>  7 Maegdefessel L.    72955cdb-bd92-4135-aa52-21f33f9640db <list [1]>
#>  8 Kastner      P.    72955cdb-bd92-4135-aa52-21f33f9640db <list [1]>
#>  9 Heinig       M.    72955cdb-bd92-4135-aa52-21f33f9640db <list [1]>
#> 10 Fan          X.    1f1c5c14-5949-4c81-b28e-b272e271b672 <list [1]>
#> # ℹ 53,338 more rows
This is because a single dataset may involve more than one
disease. Furthermore, each entry in the list contains two elements,
the label and ontology_term_id of the disease. There are two
approaches to working with this data.
One approach to working with this data uses facilities in
cellxgenedp as outlined in an accompanying article. Discover
possible diseases.
facets(db(), "disease")
#> # A tibble: 144 × 4
#>    facet   label                                        ontology_term_id     n
#>    <chr>   <chr>                                        <chr>            <int>
#>  1 disease normal                                       PATO:0000461      1344
#>  2 disease COVID-19                                     MONDO:0100096       66
#>  3 disease dementia                                     MONDO:0001627       50
#>  4 disease breast cancer                                MONDO:0007254       34
#>  5 disease myocardial infarction                        MONDO:0005068       28
#>  6 disease diabetic kidney disease                      MONDO:0005016       26
#>  7 disease autosomal dominant polycystic kidney disease MONDO:0004691       24
#>  8 disease Alzheimer disease                            MONDO:0004975       21
#>  9 disease nonpapillary renal cell carcinoma            MONDO:0007763       19
#> 10 disease colorectal cancer                            MONDO:0005575       17
#> # ℹ 134 more rows
Focus on COVID-19, and use facets_filter() to select relevant
author-dataset combinations.
author_datasets |>
    filter(facets_filter(disease, "label", "COVID-19"))
#> # A tibble: 1,912 × 36
#>    collection_id  family given consortium dataset_id dataset_version_id donor_id
#>    <chr>          <chr>  <chr> <chr>      <chr>      <chr>              <list>  
#>  1 d0e9c47b-4ce7… Wyler  Eman… <NA>       ca421096-… 2750429a-1fb0-432… <chr>   
#>  2 d0e9c47b-4ce7… Wyler  Eman… <NA>       4b9e0a15-… e98b604e-c8fa-4df… <chr>   
#>  3 d0e9c47b-4ce7… Mösba… Kirs… <NA>       ca421096-… 2750429a-1fb0-432… <chr>   
#>  4 d0e9c47b-4ce7… Mösba… Kirs… <NA>       4b9e0a15-… e98b604e-c8fa-4df… <chr>   
#>  5 d0e9c47b-4ce7… Franke Vedr… <NA>       ca421096-… 2750429a-1fb0-432… <chr>   
#>  6 d0e9c47b-4ce7… Franke Vedr… <NA>       4b9e0a15-… e98b604e-c8fa-4df… <chr>   
#>  7 d0e9c47b-4ce7… Diag   Asija <NA>       ca421096-… 2750429a-1fb0-432… <chr>   
#>  8 d0e9c47b-4ce7… Diag   Asija <NA>       4b9e0a15-… e98b604e-c8fa-4df… <chr>   
#>  9 d0e9c47b-4ce7… Gottu… Lina… <NA>       ca421096-… 2750429a-1fb0-432… <chr>   
#> 10 d0e9c47b-4ce7… Gottu… Lina… <NA>       4b9e0a15-… e98b604e-c8fa-4df… <chr>   
#> # ℹ 1,902 more rows
#> # ℹ 29 more variables: assay <list>, batch_condition <list>, cell_count <int>,
#> #   cell_type <list>, citation <chr>, default_embedding <chr>,
#> #   development_stage <list>, disease <list>, embeddings <list>,
#> #   explorer_url <chr>, feature_biotype <list>, feature_count <int>,
#> #   feature_reference <list>, is_primary_data <list>,
#> #   mean_genes_per_cell <dbl>, organism <list>, primary_cell_count <int>, …
Authors contributing to these datasets are
author_datasets |>
    filter(facets_filter(disease, "label", "COVID-19")) |>
    count(family, given, sort = TRUE)
#> # A tibble: 836 × 3
#>    family       given           n
#>    <chr>        <chr>       <int>
#>  1 Farber       Donna L.       29
#>  2 Guo          Xinzheng V.    28
#>  3 Saqi         Anjali         28
#>  4 Baldwin      Matthew R.     27
#>  5 Chait        Michael        27
#>  6 Connors      Thomas J.      27
#>  7 Davis-Porada Julia          27
#>  8 Dogra        Pranay         27
#>  9 Gray         Joshua I.      27
#> 10 Idzikowski   Emma           27
#> # ℹ 826 more rows
A second approach is to follow the practices in R for Data
Science, the disease column can be ‘unnested’ twice, the
first time to expand the author_datasets table for each disease, and
the second time to separate the two columns of each disease.
author_dataset_diseases <-
    author_datasets |>
    select(family, given, dataset_id, disease) |>
    tidyr::unnest_longer(disease) |>
    tidyr::unnest_wider(disease)
author_dataset_diseases
#> # A tibble: 69,760 × 5
#>    family       given dataset_id                          label ontology_term_id
#>    <chr>        <chr> <chr>                               <chr> <chr>           
#>  1 Traeuble     K.    72955cdb-bd92-4135-aa52-21f33f9640… athe… MONDO:0005311   
#>  2 Munz         M.    72955cdb-bd92-4135-aa52-21f33f9640… athe… MONDO:0005311   
#>  3 Pauli        J.    72955cdb-bd92-4135-aa52-21f33f9640… athe… MONDO:0005311   
#>  4 Sachs        N.    72955cdb-bd92-4135-aa52-21f33f9640… athe… MONDO:0005311   
#>  5 Vafadarnejad E.    72955cdb-bd92-4135-aa52-21f33f9640… athe… MONDO:0005311   
#>  6 Carrillo-Roa T.    72955cdb-bd92-4135-aa52-21f33f9640… athe… MONDO:0005311   
#>  7 Maegdefessel L.    72955cdb-bd92-4135-aa52-21f33f9640… athe… MONDO:0005311   
#>  8 Kastner      P.    72955cdb-bd92-4135-aa52-21f33f9640… athe… MONDO:0005311   
#>  9 Heinig       M.    72955cdb-bd92-4135-aa52-21f33f9640… athe… MONDO:0005311   
#> 10 Fan          X.    1f1c5c14-5949-4c81-b28e-b272e271b6… norm… PATO:0000461    
#> # ℹ 69,750 more rows
Author-dataset combinations associated with COVID-19, and contributors
to these datasets, are
author_dataset_diseases |>
    filter(label == "COVID-19")
author_dataset_diseases |>
    filter(label == "COVID-19") |>
    count(family, given, sort = TRUE)
These computations are the same as the earlier iteration using
functionality in cellxgenedp.
A further resource that might be of interest is the [OSLr][] package
article illustrating how the ontologies used by CELLxGENE can be
manipulated to, e.g., identify studies with terms that derive from a
common term (e.g., all disease terms related to ‘carcinoma’).
 
 Collaboration
TODO.
It might be interesting to know which authors have collaborated with
one another. This can be computed from the author_datasets table,
following approaches developed in the grantpubcite package to
identify collaborations between projects in the NIH-funded ITCR
program. See the graph visualization in the ITCR collaboration
section for inspiration.
 
 Duplicate collection-author combinations
Here are the authors
authors <- authors()
authors
#> # A tibble: 6,475 × 4
#>    collection_id                        family       given consortium
#>    <chr>                                <chr>        <chr> <chr>     
#>  1 db70986c-7d91-49fe-a399-a4730be394ac Traeuble     K.    <NA>      
#>  2 db70986c-7d91-49fe-a399-a4730be394ac Munz         M.    <NA>      
#>  3 db70986c-7d91-49fe-a399-a4730be394ac Pauli        J.    <NA>      
#>  4 db70986c-7d91-49fe-a399-a4730be394ac Sachs        N.    <NA>      
#>  5 db70986c-7d91-49fe-a399-a4730be394ac Vafadarnejad E.    <NA>      
#>  6 db70986c-7d91-49fe-a399-a4730be394ac Carrillo-Roa T.    <NA>      
#>  7 db70986c-7d91-49fe-a399-a4730be394ac Maegdefessel L.    <NA>      
#>  8 db70986c-7d91-49fe-a399-a4730be394ac Kastner      P.    <NA>      
#>  9 db70986c-7d91-49fe-a399-a4730be394ac Heinig       M.    <NA>      
#> 10 2902f08c-f83c-470e-a541-e463e25e5058 Fan          X.    <NA>      
#> # ℹ 6,465 more rows
There are 6475 collection-author combinations. We expect
these to be distinct (each row identifying a unique collection-author
combination). But this is not true
nrow(authors) == nrow(distinct(authors))
#> [1] FALSE
Duplicated data are
authors |> 
    count(collection_id, family, given, consortium, sort = TRUE) |>
    filter(n > 1)
#> # A tibble: 73 × 5
#>    collection_id                        family     given        consortium     n
#>    <chr>                                <chr>      <chr>        <chr>      <int>
#>  1 e5f58829-1a66-40b5-a624-9046778e74f5 Pisco      Angela Oliv… <NA>           4
#>  2 e5f58829-1a66-40b5-a624-9046778e74f5 Crasta     Sheela       <NA>           3
#>  3 e5f58829-1a66-40b5-a624-9046778e74f5 Swift      Michael      <NA>           3
#>  4 e5f58829-1a66-40b5-a624-9046778e74f5 Travaglini Kyle J.      <NA>           3
#>  5 e5f58829-1a66-40b5-a624-9046778e74f5 de Morree  Antoine      <NA>           3
#>  6 51544e44-293b-4c2b-8c26-560678423380 Betts      Michael R.   <NA>           2
#>  7 51544e44-293b-4c2b-8c26-560678423380 Faryabi    Robert B.    <NA>           2
#>  8 51544e44-293b-4c2b-8c26-560678423380 Fasolino   Maria        <NA>           2
#>  9 51544e44-293b-4c2b-8c26-560678423380 Feldman    Michael      <NA>           2
#> 10 51544e44-293b-4c2b-8c26-560678423380 Goldman    Naomi        <NA>           2
#> # ℹ 63 more rows
Discover details of the first duplicated collection,
e5f58829-1a66-40b5-a624-9046778e74f5
duplicate_authors <-
    collections() |>
    filter(collection_id == "e5f58829-1a66-40b5-a624-9046778e74f5")
duplicate_authors
#> # A tibble: 1 × 18
#>   collection_id     collection_version_id collection_url consortia contact_email
#>   <chr>             <chr>                 <chr>          <list>    <chr>        
#> 1 e5f58829-1a66-40… 464b3442-4323-432b-a… https://cellx… <chr [2]> angela.pisco…
#> # ℹ 13 more variables: contact_name <chr>, curator_name <chr>,
#> #   description <chr>, doi <chr>, links <list>, name <chr>,
#> #   publisher_metadata <list>, revising_in <lgl>, revision_of <lgl>,
#> #   visibility <chr>, created_at <date>, published_at <date>, revised_at <date>
The author information comes from the publisher_metadata column
publisher_metadata <-
    duplicate_authors |>
    pull(publisher_metadata)
This is a ‘list-of-lists’, with relevant information as elements in
the first list
names(publisher_metadata[[1]])
#> [1] "authors"         "is_preprint"     "journal"         "published_at"   
#> [5] "published_day"   "published_month" "published_year"
and relevant information in the authors field, of which there are 221
length(publisher_metadata[[1]][["authors"]])
#> [1] 221
Inspection shows that there are four authors with family name Pisco
and given name Angela Oliveira: it appears that the data provided by
CZI indeed includes duplicate author names.
From a pragmatic perspective, it might make sense to remove duplicate
entries from authors before down-stream analysis.
deduplicated_authors <- distinct(authors)
Tools that I have found useful when working with list-of-lists style
data rare listviewer::jsonedit() for visualization, and
rjsoncons for filtering and querying these data using JSONpointer,
JSONpath, or JMESpath expression (a more R-centric tool is the
purrr package).
 What is an ‘author’?
The combination of family and given name may refer to two (or more)
different individuals (e.g., two individuals named ‘Martin Morgan’),
or a single individual may be recorded under two different names
(e.g., given name sometimes ‘Martin’ and sometimes ‘Martin T.’). It is
not clear how this could be resolved; recording ORCID identifiers
migth help with disambiguation.