Package ‘mia’

September 25, 2024

Type Package
Version 1.13.36
Title Microbiome analysis

Description mia implements tools for microbiome analysis based on the
SummarizedExperiment, SingleCellExperiment and TreeSummarizedExperiment
infrastructure. Data wrangling and analysis in the context of taxonomic data
is the main scope. Additional functions for common task are implemented such
as community indices calculation and summarization.

biocViews Microbiome, Software, Datalmport
License Artistic-2.0 | file LICENSE
Encoding UTF-8

LazyData false

Depends R (>=4.0), SummarizedExperiment, SingleCellExperiment,
TreeSummarizedExperiment (>= 1.99.3), MultiAssayExperiment

Imports methods, stats, utils, MASS, ape, decontam, vegan,
BiocGenerics, S4Vectors, IRanges, Biostrings, DECIPHER,
BiocParallel, DelayedArray, DelayedMatrixStats, scuttle,
scater, DirichletMultinomial, rlang, dplyr, tibble, tidyr,
bluster, MatrixGenerics, mediation, rbiom

Suggests testthat, knitr, patchwork, BiocStyle, yaml, phyloseq, dada2,
stringr, biomformat, reldist, ade4, microbiomeDataSets,
rmarkdown, rhdf5, topicmodels, topicdoc, NMF

URL https://github.com/microbiome/mia

BugReports https://github.com/microbiome/mia/issues
Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/mia

git_branch devel

git_last_commit 2d52298

git_last commit_date 2024-08-28

Repository Bioconductor 3.20

Date/Publication 2024-09-24

https://github.com/microbiome/mia
https://github.com/microbiome/mia/issues

Author Felix G.M. Ernst [aut] (<https://orcid.org/0000-0001-5064-0928>),
Sudarshan A. Shetty [aut] (<https://orcid.org/0000-0001-7280-9915>),
Tuomas Borman [aut, cre] (<https://orcid.org/0000-0002-8563-8884>),
Leo Lahti [aut] (<https://orcid.org/0000-0001-5537-637X>),

Yang Cao [ctb],

Nathan D. Olson [ctb],
Levi Waldron [ctb],
Marcel Ramos [ctb],
Héctor Corrada Bravo [ctb],
Jayaram Kancherla [ctb],
Domenick Braccia [ctb],
Basil Courbayre [ctb],
Muluh Muluh [ctb],
Giulio Benedetti [ctb],
Moritz Emanuel Beber [ctb] (<https://orcid.org/0000-0003-2406-1978>),
Nitesh Turaga [ctb],
Chouaib Benchraka [ctb],
Akewak Jeba [ctb],
Himmi Lindgren [ctb],
Noah De Gunst [ctb],
Théotime Pralas [ctb],
Shadman Ishraq [ctb],
Eineje Ameh [ctb],

Artur Sannikov [ctb],
Hervé Pages [ctb],
Rajesh Shigdel [ctb],
Katariina Piarndnen [ctb],
Pande Erawijantari [ctb],
Danielle Callan [ctb]

Maintainer Tuomas Borman <tuomas.v.borman@utu.fi>

Contents

mia-package
addAlpha e
addCluster oL
addDivergence e e e
addLDA

agglomerate-methods oL oL
agglomerateByPrevalence
calculateDMN L
convertFromDADA2
convertFromPhyloseqo
deprecate e e e e
dmn_Se e
ENEEIOLYPE . « . v v v e e e e e e e e e e e
esophagus
getCrossAssociation Lo e
getDissimilarity Lo
getDominant L. L

Contents

https://orcid.org/0000-0001-5064-0928
https://orcid.org/0000-0001-7280-9915
https://orcid.org/0000-0002-8563-8884
https://orcid.org/0000-0001-5537-637X
https://orcid.org/0000-0003-2406-1978

mia-package 3

getMediation L e 49
getPrevalence L. e e e 52
GlobalPatterns L e 56
hierarchy-tree 57
HintikkaXOData e 59
importBIOM e 60
importHUMANN e e 62
importMetaPhlAn 63
importMothur 64
importQIIME2 66
importTaxpasta e 68
isContaminant e e e e 69
meltSE e 71
mergeSEso 73
mia-datasetso L. e e e e e 76
peerj13075 . . L 77
rarefyAsSsay e 78
runCCA L 79
runDPCoA e 83
runNMDS . . . e 85
SplitOn e 87
SUMMATIES . . .« v v v v v v e e et e e e e e e e e e e e e 90
taxonomy-methods 92
Tengeler2020 e e 95
Tito2024QMP e 96
transfOrmASSay e 97
Index 100
mia-package mia Package.
Description

miaimplements tools for microbiome analysis based on the SummarizedExperiment, SingleCellExperiment
and TreeSummarizedExperiment infrastructure. Data wrangling and analysis in the context of tax-

onomic data is the main scope. Additional functions for common task are implemented such as
community indices calculation and summarization.

Author(s)

Maintainer: Tuomas Borman <tuomas.v.borman@utu. fi> (ORCID)
Authors:

¢ Felix G.M. Ernst <felix.gm.ernst@outlook.com> (ORCID)
* Sudarshan A. Shetty <sudarshanshetty9@gmail.com> (ORCID)
¢ Leo Lahti <leo.lahti@iki.fi> (ORCID)

Other contributors:

* Yang Cao [contributor]

e Nathan D. Olson <nolson@nist.gov> [contributor]

https://orcid.org/0000-0002-8563-8884
https://orcid.org/0000-0001-5064-0928
https://orcid.org/0000-0001-7280-9915
https://orcid.org/0000-0001-5537-637X

4 addAlpha

e Levi Waldron [contributor]

e Marcel Ramos [contributor]

e Héctor Corrada Bravo [contributor]
* Jayaram Kancherla [contributor]

¢ Domenick Braccia <dbraccia@umd. edu> [contributor]
* Basil Courbayre [contributor]

e Muluh Muluh [contributor]

¢ Giulio Benedetti [contributor]

¢ Moritz Emanuel Beber <moritz.beber@igdore.org> (ORCID) [contributor]
* Nitesh Turaga [contributor]

¢ Chouaib Benchraka [contributor]

¢ Akewak Jeba [contributor]

* Himmi Lindgren [contributor]

¢ Noah De Gunst [contributor]

e Théotime Pralas [contributor]

* Shadman Ishraq [contributor]

* Eineje Ameh [contributor]

e Artur Sannikov [contributor]

* Hervé Pages [contributor]

* Rajesh Shigdel [contributor]

e Katariina Pirnénen [contributor]

* Pande Erawijantari [contributor]

¢ Danielle Callan [contributor]

See Also

TreeSummarizedExperiment

addAlpha Estimate alpha diversity indices

Description

The function estimates alpha diversity indices optionally using rarefaction, then stores results in
colData.

https://orcid.org/0000-0003-2406-1978

addAlpha 5

Usage

addAlpha(

X)

assay.type = "counts”,

index = c("coverage_diversity"”, "fisher_diversity"”, "faith_diversity",
"gini_simpson_diversity"”, "inverse_simpson_diversity",
"log_modulo_skewness_diversity”, "shannon_diversity”, "absolute_dominance”,

"dbp_dominance"”, "core_abundance_dominance”, "gini_dominance”, "dmn_dominance",
"relative_dominance"”, "simpson_lambda_dominance”, "camargo_evenness",
"pielou_evenness”, "simpson_evenness"”, "evar_evenness"”, "bulla_evenness",
"ace_richness"”, "chaol_richness”, "hill_richness”, "observed_richness"),

name = index,

niter = NULL,

S4 method for signature 'SummarizedExperiment'
addAlpha(
X)
assay.type = "counts”,
index = c("coverage_diversity"”, "fisher_diversity"”, "faith_diversity”,
"gini_simpson_diversity"”, "inverse_simpson_diversity",
"log_modulo_skewness_diversity”, "shannon_diversity”, "absolute_dominance”,
"dbp_dominance"”, "core_abundance_dominance”, "gini_dominance”, "dmn_dominance",
"relative_dominance"”, "simpson_lambda_dominance”, "camargo_evenness",
"pielou_evenness”, "simpson_evenness"”, "evar_evenness"”, "bulla_evenness",
"ace_richness"”, "chaol_richness”, "hill_richness”, "observed_richness"),
name = index,
niter = NULL,

Arguments

X a SummarizedExperiment object.

assay.type Character scalar. Specifies the name of assay used in calculation. (Default:
"counts")

index Character vector. Specifies the alpha diversity indices to be calculated.

name Character vector. A name for the column of the colData where results will
be stored. (Default: index)

niter Integer scalar. Specifies the number of rarefaction rounds. Rarefaction is not
applied when niter=NULL (see Details section). (Default: NULL)

optional arguments:

* sample: Integer scalar. Specifies the rarefaction depth i.e. the number
of counts drawn from each sample. (Default: min(colSums2(assay(x,
assay.type))))

* tree.name: Character scalar. Specifies which rowTree will be used. (
Faith’s index). (Default: "phylo")

* node.label: Character vector or NULL Specifies the links between rows
and node labels of phylogeny tree specified by tree.name. If a certain row

Details

addAlpha

is not linked with the tree, missing instance should be noted as NA. When
NULL, all the rownames should be found from the tree. (Faith’s index).
(Default: NULL)

* only.tips: (Faith’s index). Logical scalar. Specifies whether to remove
internal nodes when Faith’s index is calculated. When only.tips=TRUE,
those rows that are not tips of tree are removed. (Default: FALSE)

* threshold: (Coverage and all evenness indices). Numeric scalar. From
0 to 1, determines the threshold for coverage and evenness indices. When
evenness indices are calculated values under or equal to this threshold are
denoted as zeroes. For coverage index, see details. (Default: 0.5 for cover-
age, 0 for evenness indices)

e quantile: (log modulo skewness index). Numeric scalar. Arithmetic
abundance classes are evenly cut up to to this quantile of the data. The
assumption is that abundances higher than this are not common, and they
are classified in their own group. (Default: @.5)

* nclasses: (log modulo skewness index). Integer scalar. The number of
arithmetic abundance classes from zero to the quantile cutoff indicated by
quantile. (Default: 50)

* ntaxa: (absolute and relative indices). Integer scalar. The n-th position
of the dominant taxa to consider. (Default: 1)

* aggregate: (absolute, dbp, dmn, and relative indices). Logical scalar.
Aggregate the values for top members selected by ntaxa or not. If TRUE,
then the sum of relative abundances is returned. Otherwise the relative
abundance is returned for the single taxa with the indicated rank (default:
aggregate = TRUE).

e detection: (observed index). Numeric scalar Selects detection threshold
for the abundances (Default: 0)

Diversity:

Alpha diversity is a joint quantity that combines elements or community richness and evenness.
Diversity increases, in general, when species richness or evenness increase.

The following diversity indices are available:

* ’coverage’: Number of species needed to cover a given fraction of the ecosystem (50 percent

by default). Tune this with the threshold argument.

*faith’: Faith’s phylogenetic alpha diversity index measures how long the taxonomic distance
is between taxa that are present in the sample. Larger values represent higher diversity. Using
this index requires rowTree. (Faith 1992)

If the data includes features that are not in tree’s tips but in internal nodes, there are two
options. First, you can keep those features, and prune the tree to match features so that each
tip can be found from the features. Other option is to remove all features that are not tips.
(See only. tips parameter)

“fisher’: Fisher’s alpha; as implemented in vegan: : fisher.alpha. (Fisher et al. 1943)

’gini_simpson’: Gini-Simpson diversity i.e. 1 — lambda, where lambda is the Simpson
index, calculated as the sum of squared relative abundances. This corresponds to the diversity
index ’simpson’ in vegan: :diversity. This is also called Gibbs—Martin, or Blau index in
sociology, psychology and management studies. The Gini-Simpson index (1-lambda) should
not be confused with Simpson’s dominance (lambda), Gini index, or inverse Simpson index
(1/1ambda).

addAlpha

"inverse_simpson’: Inverse Simpson diversity: 1/lambda where lambda = sum(p?) and
p refers to relative abundances. This corresponds to the diversity index ’invsimpson’ in ve-
gan::diversity. Don’t confuse this with the closely related Gini-Simpson index
’log_modulo_skewness’: The rarity index characterizes the concentration of species at low
abundance. Here, we use the skewness of the frequency distribution of arithmetic abundance
classes (see Magurran & McGill 2011). These are typically right-skewed; to avoid taking
log of occasional negative skews, we follow Locey & Lennon (2016) and use the log-modulo
transformation that adds a value of one to each measure of skewness to allow logarithmiza-
tion.

’shannon’: Shannon diversity (entropy).

Dominance:

A dominance index quantifies the dominance of one or few species in a community. Greater
values indicate higher dominance.

Dominance indices are in general negatively correlated with alpha diversity indices (species rich-
ness, evenness, diversity, rarity). More dominant communities are less diverse.

The following community dominance indices are available:

“absolute’: Absolute index equals to the absolute abundance of the most dominant n species
of the sample (specify the number with the argument ntaxa). Index gives positive integer
values.

"dbp’: Berger-Parker index (See Berger & Parker 1970) calculation is a special case of the
‘relative’ index. dbp is the relative abundance of the most abundant species of the sample.
Index gives values in interval O to 1, where bigger value represent greater dominance.

Ny

N, tot
where N; is the absolute abundance of the most dominant species and Ny, is the sum of
absolute abundances of all species.
’core_abundance’: Core abundance index is related to core species. Core species are species
that are most abundant in all samples, i.e., in whole data set. Core species are defined as
those species that have prevalence over 50\ species must be prevalent in 50\ calculate the
core abundance index. Core abundance index is sum of relative abundances of core species
in the sample. Index gives values in interval O to 1, where bigger value represent greater
dominance.

dbp

core
coregbundance = ——

tot
where N,,,. is the sum of absolute abundance of the core species and Ny, is the sum of
absolute abundances of all species.
’gini’: Gini index is probably best-known from socio-economic contexts (Gini 1921). In
economics, it is used to measure, for example, how unevenly income is distributed among
population. Here, Gini index is used similarly, but income is replaced with abundance.
If there is small group of species that represent large portion of total abundance of microbes,
the inequality is large and Gini index closer to 1. If all species has equally large abundances,
the equality is perfect and Gini index equals 0. This index should not be confused with
Gini-Simpson index, which quantifies diversity.
’”dmn’: McNaughton’s index is the sum of relative abundances of the two most abundant
species of the sample (McNaughton & Wolf, 1970). Index gives values in the unit interval:

dmn = (N1 + Ng)/NtOt

where Ny and N, are the absolute abundances of the two most dominant species and Ny is
the sum of absolute abundances of all species.

addAlpha

* ’relative’: Relative index equals to the relative abundance of the most dominant n species of
the sample (specify the number with the argument ntaxa). This index gives values in interval
Oto 1.

relative = Ny /N;ot

where IV; is the absolute abundance of the most dominant species and Ny, is the sum of
absolute abundances of all species.

* ’simpson_lambda’: Simpson’s (dominance) index or Simpson’s lambda is the sum of squared
relative abundances. This index gives values in the unit interval. This value equals the prob-
ability that two randomly chosen individuals belongs to the same species. The higher the
probability, the greater the dominance (See e.g. Simpson 1949).

lambda = Z(p2)

where p refers to relative abundances.

There is also a more advanced Simpson dominance index (Simpson 1949). However, this
is not provided and the simpler squared sum of relative abundances is used instead as the
alternative index is not in the unit interval and it is highly correlated with the simpler variant
implemented here.

Evenness:

Evenness is a standard index in community ecology, and it quantifies how evenly the abundances
of different species are distributed. The following evenness indices are provided:

By default, this function returns all indices.

The available evenness indices include the following (all in lowercase):

* ’camargo’: Camargo’s evenness (Camargo 1992)

* ’simpson_evenness’: Simpson’s evenness is calculated as inverse Simpson diversity (1/lambda)
divided by observed species richness S: (1/lambda)/S.

* ’pielou’: Pielou’s evenness (Pielou, 1966), also known as Shannon or Shannon-Weaver/Wiener/Weiner
evenness; H/In(S). The Shannon-Weaver is the preferred term; see Spellerberg and Fedor
(2003).

e ’evar’: Smith and Wilson’s Evar index (Smith & Wilson 1996).

 ’bulla’: Bulla’s index (O) (Bulla 1994).

Desirable statistical evenness metrics avoid strong bias towards very large or very small abun-
dances; are independent of richness; and range within the unit interval with increasing evenness
(Smith & Wilson 1996). Evenness metrics that fulfill these criteria include at least camargo, simp-
son, smith-wilson, and bulla. Also see Magurran & McGill (2011) and Beisel et al. (2003) for
further details.

Richness:

The richness is calculated per sample. This is a standard index in community ecology, and it
provides an estimate of the number of unique species in the community. This is often not directly
observed for the whole community but only for a limited sample from the community. This has
led to alternative richness indices that provide different ways to estimate the species richness.
Richness index differs from the concept of species diversity or evenness in that it ignores species
abundance, and focuses on the binary presence/absence values that indicate simply whether the
species was detected.

The function takes all index names in full lowercase. The user can provide the desired spelling
through the argument name (see examples).

The following richness indices are provided.

addAlpha 9

* ’ace’: Abundance-based coverage estimator (ACE) is another nonparametric richness index
that uses sample coverage, defined based on the sum of the probabilities of the observed
species. This method divides the species into abundant (more than 10 reads or observations)
and rare groups in a sample and tends to underestimate the real number of species. The ACE
index ignores the abundance information for the abundant species, based on the assumption
that the abundant species are observed regardless of their exact abundance. We use here the
bias-corrected version (O’Hara 2005, Chiu et al. 2014) implemented in estimateR. For an
exact formulation, see estimateR. Note that this index comes with an additional column with
standard error information.

» ’chaol’: This is a nonparametric estimator of species richness. It assumes that rare species
carry information about the (unknown) number of unobserved species. We use here the bias-
corrected version (O’Hara 2005, Chiu et al. 2014) implemented in estimateR. This index
implicitly assumes that every taxa has equal probability of being observed. Note that it gives a
lower bound to species richness. The bias-corrected for an exact formulation, see estimateR.
This estimator uses only the singleton and doubleton counts, and hence it gives more weight
to the low abundance species. Note that this index comes with an additional column with
standard error information.

* ’hill’: Effective species richness aka Hill index (see e.g. Chao et al. 2016). Currently only the
case 1D is implemented. This corresponds to the exponent of Shannon diversity. Intuitively,
the effective richness indicates the number of species whose even distribution would lead to
the same diversity than the observed community, where the species abundances are unevenly
distributed.

» ’observed’: The observed richness gives the number of species that is detected above a given
detection threshold in the observed sample (default 0). This is conceptually the simplest
richness index. The corresponding index in the vegan package is "richness".

Value

x with additional colData column(s) named code

References

Beisel J-N. et al. (2003) A Comparative Analysis of Diversity Index Sensitivity. Internal Rev. Hy-
drobiol. 88(1):3-15. https://portais.ufg.br/up/202/0/2003-comparative_evennes_index.
pdf

Berger WH & Parker FL (1970) Diversity of Planktonic Foraminifera in Deep-Sea Sediments. Sci-
ence 168(3937):1345-1347. doi: 10.1126/science.168.3937.1345

Bulla L. (1994) An index of diversity and its associated diversity measure. Oikos 70:167-171

Camargo, JA. (1992) New diversity index for assessing structural alterations in aquatic communi-
ties. Bull. Environ. Contam. Toxicol. 48:428-434.

Chao A. (1984) Non-parametric estimation of the number of classes in a population. Scand J Stat.
11:265-270.

Chao A, Chun-Huo C, Jost L (2016). Phylogenetic Diversity Measures and Their Decomposition:
A Framework Based on Hill Numbers. Biodiversity Conservation and Phylogenetic Systematics,
Springer International Publishing, pp. 141-172, doi:10.1007/978-3-319-22461-9_8.

Chiu, C.H., Wang, Y.T., Walther, B.A. & Chao, A. (2014). Improved nonparametric lower bound
of species richness via a modified Good-Turing frequency formula. Biometrics 70, 671-682.

Faith D.P. (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation
61(1):1-10.

https://portais.ufg.br/up/202/o/2003-comparative_evennes_index.pdf
https://portais.ufg.br/up/202/o/2003-comparative_evennes_index.pdf

10 addAlpha

Fisher R.A., Corbet, A.S. & Williams, C.B. (1943) The relation between the number of species and
the number of individuals in a random sample of animal population. Journal of Animal Ecology 12,
42-58.

Gini C (1921) Measurement of Inequality of Incomes. The Economic Journal 31(121): 124-126.
doi: 10.2307/2223319

Locey KJ and Lennon JT. (2016) Scaling laws predict global microbial diversity. PNAS 113(21):5970-
5975; doi:10.1073/pnas.1521291113.

Magurran AE, McGill BJ, eds (2011) Biological Diversity: Frontiers in Measurement and Assess-
ment (Oxford Univ Press, Oxford), Vol 12.

McNaughton, SJ and Wolf LL. (1970). Dominance and the niche in ecological systems. Science
167:13, 1-139

O’Hara, R.B. (2005). Species richness estimators: how many species can dance on the head of a
pin? J. Anim. Ecol. 74, 375-386.

Pielou, EC. (1966) The measurement of diversity in different types of biological collections. J
Theoretical Biology 13:131-144.

Simpson EH (1949) Measurement of Diversity. Nature 163(688). doi: 10.1038/163688a0
Smith B and Wilson JB. (1996) A Consumer’s Guide to Evenness Indices. Oikos 76(1):70-82.

Spellerberg and Fedor (2003). A tribute to Claude Shannon (1916 —2001) and a plea for more
rigorous use of species richness, species diversity and the ‘Shannon—Wiener’ Index. Alpha Ecology
& Biogeography 12, 177-197.

See Also

* plotColData
* estimateR

e diversity

Examples

data("GlobalPatterns")
tse <- GlobalPatterns

Calculate the default Shannon index with no rarefaction
tse <- addAlpha(tse, index = "shannon")

Shows the estimated Shannon index
tse$shannon

Calculate observed richness with 10 rarefaction rounds
tse <- addAlpha(tse,
assay.type = "counts”,
index = "observed_richness”,
sample = min(colSums(assay(tse, "counts”)), na.rm = TRUE),
niter=10)

Shows the estimated observed richness
tse$observed_richness

addCluster

11

addCluster

Clustering wrapper

Description

This function returns a SummarizedExperiment with clustering information in its colData or row-

Data
Usage
addCluster(
X y
BLUSPARAM,
assay.type = assay_name,
assay_name = "counts”,
by = MARGIN,
MARGIN = "rows”,
full = FALSE,
name = "clusters”,
clust.col = "clusters”,
)
S4 method for signature 'SummarizedExperiment'
addCluster(
X,
BLUSPARAM,
assay.type = assay_name,
assay_name = "counts”,
by = MARGIN,
MARGIN = "rows",
full = FALSE,
name = "clusters”,
clust.col = "clusters”,
)
Arguments
X A SummarizedExperiment object.
BLUSPARAM A BlusterParam object specifying the algorithm to use.
assay.type Character scalar. Specifies the name of the assay used in calculation. (De-

assay_nhame

by

MARGIN
full

fault: "counts")
Deprecated. Use assay. type instead.

Character scalar. Determines if association is calculated row-wise / for fea-
tures ("rows’) or column-wise / for samples ("cols’). Must be 'rows' or 'cols'.

Deprecated. Use by instead.

Logical scalar indicating whether the full clustering statistics should be returned
for each method.

12

addDivergence

name Character scalar. The name to store the result in metadata

clust.col Character scalar. Indicates the name of the rowData (or colData) where the

data will be stored. (Default: "clusters”)

Additional parameters to use altExps for example

Details

This is a wrapper for the clusterRows function from the bluster package.

When setting full = TRUE, the clustering information will be stored in the metadata of the object.

By default, clustering is done on the features.

Value

addCluster returns an object of the same type as the x parameter with clustering information

named clusters stored in colData or rowData.

Examples

library(bluster)
data(GlobalPatterns, package = "mia")
tse <- GlobalPatterns

Cluster on rows using Kmeans
tse <- addCluster(tse, KmeansParam(centers = 3))

Clustering done on the samples using Hclust
tse <- addCluster(tse,
by = "samples”,
HclustParam(metric = "bray”, dist.fun = vegan

Getting the clusters
colData(tse)$clusters

::vegdist))

addDivergence Estimate divergence

Description

Estimate divergence against a given reference sample.

Usage
addDivergence(
X’
assay.type = assay_name,
assay_name = "counts"”,
name = "divergence”,
reference = "median”,

FUN = vegan::vegdist,
method = "bray”,

addDivergence 13
)
S4 method for signature 'SummarizedExperiment'
addDivergence(
X,
assay.type = assay_name,
assay_name = "counts”,
name = "divergence”,
reference = "median”,

FUN = vegan::vegdist,

method = "bray”,

Arguments

X
assay. type

assay_name

name

reference

FUN

method

Details

a SummarizedExperiment object.
the name of the assay used for calculation of the sample-wise estimates.

a single character value for specifying which assay to use for calculation.
(Please use assay. type instead. At some point assay_name will be disabled.)

a name for the column of the colData the results should be stored in. By default,
name is "divergence"”.

a numeric vector that has length equal to number of features, or a non-empty
character value; either “'median’ or 'mean’. reference specifies the reference
that is used to calculate divergence. by default, reference is "median”.

a function for distance calculation. The function must expect the input matrix
as its first argument. With rows as samples and columns as features. By default,
FUN is vegan: : vegdist.

a method that is used to calculate the distance. Method is passed to the function
that is specified by FUN. By default, method is "bray”.

optional arguments

Microbiota divergence (heterogeneity / spread) within a given sample set can be quantified by the
average sample dissimilarity or beta diversity with respect to a given reference sample.

This measure is sensitive to sample size. Subsampling or bootstrapping can be applied to equalize
sample sizes between comparisons.

Value

x with additional colData named *namex*

See Also

plotColData

e estimateRichness

* estimateEvenness

e estimateDominance

14 addLDA

Examples

data(GlobalPatterns)
tse <- GlobalPatterns

By default, reference is median of all samples. The name of column where results
is "divergence" by default, but it can be specified.
tse <- addDivergence(tse)

The method that are used to calculate distance in divergence and
reference can be specified. Here, euclidean distance and dist function from
stats package are used. Reference is the first sample.
tse <- addDivergence(tse, name = "divergence_first_sample”,
reference = assays(tse)$counts[,1],
FUN = stats::dist, method = "euclidean"”)

Reference can also be median or mean of all samples.
By default, divergence is calculated by using median. Here, mean is used.
tse <- addDivergence(tse, name = "divergence_average”, reference = "mean")

All three divergence results are stored in colData.
colData(tse)

addLDA Latent Dirichlet Allocation

Description

These functions perform Latent Dirichlet Allocation on data stored in a TreeSummarizedExperiment

object.

Usage
getlLDA(Xx, ...)
addLDA(x, ...)

S4 method for signature 'SummarizedExperiment'’
getlLDA(x, k = 2, assay.type = "counts”, eval.metric = "perplexity”, ...)

S4 method for signature 'SummarizedExperiment'

addLDA(x, k = 2, assay.type = "counts”, name = "LDA", ...)
Arguments
X a TreeSummarizedExperiment object.

optional arguments passed to LDA
k Integer vector. A number of latent vectors/topics. (Default: 2)

assay.type Character scalar. Specifies which assay to use for LDA ordination. (Default:
"counts")

addNMF 15

eval.metric Character scalar. Specifies evaluation metric that will be used to select the
model with the best fit. Must be either "perplexity"” (topicmodels: :perplexity)
or "coherence” (topicdoc: : topic_coherence, the best model is selected based
on mean coherence). (Default: "perplexity")

name Character scalar. The name to be used to store the result in the reducedDims
of the output. (Default: "LDA")

Details

The functions getLDA and addLDA internally use LDA to compute the ordination matrix and feature
loadings.

Value

For getLDA, the ordination matrix with feature loadings matrix as attribute "loadings”.

For addLDA, a TreeSummarizedExperiment object is returned containing the ordination matrix in

reducedDim(. .., name) with feature loadings matrix as attribute "loadings”.
Examples
data(GlobalPatterns)

tse <- GlobalPatterns

Reduce the number of features
tse <- agglomerateByPrevalence(tse, rank="Phylum")

Run LDA and add the result to reducedDim(tse, "LDA")
tse <- addLDA(tse)

Extract feature loadings
loadings <- attr(reducedDim(tse, "LDA"), "loadings")
head(loadings)

Estimate models with number of topics from 2 to 10

tse <- addLDA(tse, k = c(2, 3, 4, 5, 6, 7, 8, 9, 10), name = "LDA_10")
Get the evaluation metrics

tab <- attr(reducedDim(tse, "LDA_10"),"eval_metrics"”)

Plot

plot(tab[["k"]1], tab[["perplexity”]], xlab = "k", ylab = "perplexity")

addNMF Non-negative Matrix Factorization

Description

These functions perform Non-negative Matrix Factorization on data stored in a TreeSummarizedExperiment
object.

16 addNMF
Usage

getNMF(x, ...)

addNMF (x, ...)

S4 method for signature 'SummarizedExperiment'’
getNMF(x, k = 2, assay.type = "counts”, eval.metric = "evar”, ...)

S4 method for signature 'SummarizedExperiment'’

addNMF (
X’
k =2,
assay.type = "counts”,
eval .metric = "evar”,
name = "NMF",
)
Arguments
X a TreeSummarizedExperiment object.
optional arguments passed to nmf: : NMF.
k numeric vector. A number of latent vectors/topics. (Default: 2)
assay. type Character scalar. Specifies which assay to use for NMF ordination. (Default:

"counts")

eval.metric Character scalar. Specifies the evaluation metric that will be used to select
the model with the best fit. Must be one of the following options: "evar”
(explained variance; maximized), "sparseness.basis” (degree of sparsity in
the basis matrix; maximized), "sparseness.coef"” (degree of sparsity in the
coefficient matrix; maximized), "rss"” (residual sum of squares; minimized),
"silhouette.coef” (quality of clustering based on the coefficient matrix; max-
imized), "silhouette.basis” (quality of clustering based on the basis matrix;
maximized), "cophenetic"” (correlation between cophenetic distances and orig-
inal distances; maximized), "dispersion” (spread of data points within clus-
ters; minimized). (Default: "evar™)

name Character scalar. The name to be used to store the result in the reducedDims
of the output. (Default: "NMF")

Details

The functions getNMF and addNMF internally use nmf::NMF compute the ordination matrix and
feature loadings.

If k is a vector of integers, NMF output is calculated for all the rank values contained in k, and the
best fit is selected based on eval.metric value.

Value

For getNMF, the ordination matrix with feature loadings matrix as attribute "loadings”.

For addNMF, a TreeSummarizedExperiment object is returned containing the ordination matrix in
reducedDims(x, name) with the following attributes:

agglomerate-methods 17

* "loadings" which is a matrix containing the feature loadings
* "NMF_output" which is the output of function nmf: : NMF

* "best_fit" which is the result of the best fit if k is a vector of integers

Examples

data(GlobalPatterns)
tse <- GlobalPatterns

Reduce the number of features
tse <- agglomerateByPrevalence(tse, rank = "Phylum")

Run NMF and add the result to reducedDim(tse, "NMF").
tse <- addNMF(tse, k = 2, name = "NMF")

Extract feature loadings
loadings_NMF <- attr(reducedDim(tse, "NMF"), "loadings")
head(loadings_NMF)

Estimate models with number of topics from 2 to 4. Perform 2 runs.
tse <- addNMF(tse, k = c(2, 3, 4), name = "NMF_4", nrun = 2)

Extract feature loadings
loadings_NMF_4 <- attr(reducedDim(tse, "NMF_4"), "loadings")
head(loadings_NMF_4)

agglomerate-methods Agglomerate or merge data using taxonomic information

Description

Agglomeration functions can be used to sum-up data based on specific criteria such as taxonomic
ranks, variables or prevalence.

agglomerateByRanks takes a SummarizedExperiment, splits it along the taxonomic ranks, ag-
gregates the data per rank, converts the input to a SingleCellExperiment objects and stores the
aggregated data as alternative experiments. unsplitByRanks takes these alternative experiments
and flattens them again into a single SummarizedExperiment.

Usage
agglomerateByRank(x, ...)

agglomerateByVariable(x, ...)

S4 method for signature 'SummarizedExperiment'

agglomerateByRank(
X,
rank = taxonomyRanks(x)[1],
na.rm = TRUE,

empty.fields - C(NA, un7 n n, "\t”, n_n, n_n)’

18

agglomerate-methods

)

S4 method for signature 'SummarizedExperiment'
agglomerateByVariable(x, by, f, ...)

S4 method for signature 'TreeSummarizedExperiment'
agglomerateByVariable(

X,

by,

f,

update.tree = mergeTree,

mergeTree = FALSE,

)

S4 method for signature 'SingleCellExperiment'’
agglomerateByRank (
X’

altexp = NULL,
altexp.rm = strip_altexp,
strip_altexp = TRUE

)

S4 method for signature 'TreeSummarizedExperiment'’
agglomerateByRank(

X,

update.tree = agglomerateTree,

agglomerate.tree = agglomerateTree,

agglomerateTree = FALSE

)
agglomerateByRanks(x, ...)

S4 method for signature 'SummarizedExperiment'’

agglomerateByRanks(
X,
ranks = taxonomyRanks(x),
na.rm = TRUE,

as.list = FALSE,

)

S4 method for signature 'SingleCellExperiment'’
agglomerateByRanks(

X,

ranks = taxonomyRanks(x),

na.rm = TRUE,

as.list = FALSE,

agglomerate-methods 19

S4 method for signature 'TreeSummarizedExperiment

agglomerateByRanks(
X,
ranks = taxonomyRanks(x),
na.rm = TRUE,

as.list = FALSE,

)
splitByRanks(x, ...)
unsplitByRanks(x, ...)

S4 method for signature 'SingleCellExperiment'’
unsplitByRanks(
X,
ranks = taxonomyRanks(x),
keep.dimred = keep_reducedDims,
keep_reducedDims = FALSE,

)

S4 method for signature 'TreeSummarizedExperiment'’
unsplitByRanks(

X,

ranks = taxonomyRanks(x),

keep.dimred = keep_reducedDims,

keep_reducedDims = FALSE,

)
Arguments

X TreeSummarizedExperiment.
arguments passed to agglomerateByRank function for SummarizedExperiment
objects and other functions. See agglomerateByRank for more details.

rank Character scalar. Defines a taxonomic rank. Must be a value of taxonomyRanks ()
function.

na.rm Logical scalar. Should NA values be omitted when calculating prevalence?

(Default: TRUE)

empty.fields Character vector. Defines which values should be regarded as empty. (De-

fault: c(NA, "", " ", "\t")). They will be removed if na.rm= TRUE before
agglomeration.
by Character scalar. Determines if data is merged row-wise / for features ('rows’)

or column-wise / for samples (’cols’). Must be 'rows' or 'cols'.

f A factor for merging. Must be the same length as nrow(x) /ncol(x). Rows/Cols
corresponding to the same level will be merged. If length(levels(f)) ==
nrow(x)/ncol(x), x will be returned unchanged.

update.tree Logical scalar. Should rowTree() also be merged? (Default: FALSE)

20 agglomerate-methods

mergeTree Deprecated. Use update. tree instead.

altexp Character scalar or integer scalar. Specifies an alternative experiment
containing the input data.

altexp.rm Logical scalar. Should alternative experiments be removed prior to agglom-
eration? This prevents too many nested alternative experiments by default. (De-
fault: TRUE)

strip_altexp Deprecated. Use altexp.rminstead.

agglomerate.tree
Deprecated. Use update. tree instead.

agglomerateTree
Deprecated. Use update. tree instead.

ranks Character vector. Defines taxonomic ranks. Must all be values of taxonomyRanks ()
function.
as.list Logical scalar. Should the list of SummarizedExperiment objects be re-

turned by the function agglomerateByRanks as a SimpleList or stored in alt-
Exps? (Default: FALSE)

keep.dimred Logical scalar. Should the reducedDims(x) be transferred to the result?
Please note, that this breaks the link between the data used to calculate the re-
duced dims. (Default: FALSE)

keep_reducedDims
Deprecated. Use keep.dimred instead.

Details

agglomerateByRank can be used to sum up data based on associations with certain taxonomic
ranks, as defined in rowData. Only available taxonomyRanks can be used.

agglomerateByVariable merges data on rows or columns of a SummarizedExperiment as defined
by a factor alongside the chosen dimension. This function allows agglomeration of data based on
other variables than taxonomy ranks. Metadata from the rowData or colData are retained as defined
by archetype. assay are agglomerated, i.e. summed up. If the assay contains values other than
counts or absolute values, this can lead to meaningless values being produced.

Agglomeration sums up the values of assays at the specified taxonomic level. With certain assays,
e.g. those that include binary or negative values, this summing can produce meaningless values. In
those cases, consider performing agglomeration first, and then applying the transformation after-
wards.

agglomerateByVariable works similarly to sumCountsAcrossFeatures. However, additional
support for TreeSummarizedExperiment was added and science field agnostic names were used.
In addition the archetype argument lets the user select how to preserve row or column data.

For merge data of assays the function from scuttle are used.

agglomerateByRanks will use by default all available taxonomic ranks, but this can be controlled
by setting ranks manually. NA values are removed by default, since they would not make sense, if
the result should be used for unsplitByRanks at some point. The input data remains unchanged in
the returned SingleCellExperiment objects.

unsplitByRanks will remove any NA value on each taxonomic rank so that no ambiguous data is
created. In additional, a column taxonomicLevel is created or overwritten in the rowData to spec-
ify from which alternative experiment this originates from. This can also be used for splitAltExps
to split the result along the same factor again. The input data from the base objects is not returned,
only the data from the altExp(). Be aware that changes to rowData of the base object are not
returned, whereas only the colData of the base object is kept.

agglomerate-methods 21

Value

agglomerateByRank returns a taxonomically-agglomerated, optionally-pruned object of the same
class as x. agglomerateByVariable returns an object of the same class as x with the spec-
ified entries merged into one entry in all relevant components. agglomerateByRank returns a
taxonomically-agglomerated, optionally-pruned object of the same class as x.

For agglomerateByRanks: If as.list = TRUE : SummarizedExperiment objects in a SimpleList
If as.list = FALSE : The SummarizedExperiment passed as a parameter and now containing the
SummarizedExperiment objects in its altExps

For unsplitByRanks: x, with rowData and assay data replaced by the unsplit data. colData of x
is kept as well and any existing rowTree is dropped as well, since existing rowLinks are not valid
anymore.

See Also

splitOnunsplitOn agglomerateByVariable, sumCountsAcrossFeatures, agglomerateByRank,
altExps, splitAltExps

Examples

Agglomerate data based on taxonomic information

data(GlobalPatterns)

print the available taxonomic ranks
colnames(rowData(GlobalPatterns))
taxonomyRanks (GlobalPatterns)

agglomerate at the Family taxonomic rank

x1 <- agglomerateByRank(GlobalPatterns, rank="Family")
How many taxa before/after agglomeration?
nrow(GlobalPatterns)

nrow(x1)

agglomerate the tree as well

x2 <- agglomerateByRank(GlobalPatterns, rank="Family",
update.tree = TRUE)

nrow(x2) # same number of rows, but

rowTree(x1) # ... different

rowTree(x2) # ... tree

If assay contains binary or negative values, summing might lead to

meaningless values, and you will get a warning. In these cases, you might
want to do agglomeration again at chosen taxonomic level.

tse <- transformAssay(GlobalPatterns, method = "pa")

tse <- agglomerateByRank(tse, rank = "Genus")

tse <- transformAssay(tse, method = "pa")

removing empty labels by setting na.rm = TRUE
sum(is.na(rowData(GlobalPatterns)$Family))

x3 <- agglomerateByRank(GlobalPatterns, rank="Family", na.rm = TRUE)
nrow(x3) # different from x2

Because all the rownames are from the same rank, rownames do not include
prefixes, in this case "Family:".
print(rownames(x3[1:3,]))

22

agglomerate-methods

To add them, use getTaxonomylLabels function.
rownames (x3) <- getTaxonomylLabels(x3, with.rank = TRUE)
print(rownames(x3[1:3,1))

use 'empty.ranks.rm' to remove columns that include only NAs
x4 <- agglomerateByRank(GlobalPatterns, rank="Phylum”,

empty.ranks.rm = TRUE)
head(rowData(x4))

If the assay contains NAs, you might want to consider replacing them,
since summing-up NAs lead to NA

x5 <- GlobalPatterns

Replace first value with NA

assay(x5)[1,1] <= NA

x6 <- agglomerateByRank(x5, "Kingdom")

head(assay(x6))

Replace NAs with @. This is justified when we are summing-up counts.
assay(x5)[is.na(assay(x5)) 1 <- 0

x6 <- agglomerateByRank(x5, "Kingdom")

head(assay(x6))

Look at enterotype dataset...

data(enterotype)

Print the available taxonomic ranks. Shows only 1 available rank,
not useful for agglomerateByRank

taxonomyRanks (enterotype)

Merge TreeSummarizedExperiments on rows and columns

data(esophagus)

esophagus

plot(rowTree(esophagus))

get a factor for merging

f <- factor(regmatches(rownames(esophagus),

regexpr("*[0-9]*x_[0-9]*", rownames (esophagus))))

merged <- agglomerateByVariable(esophagus, by = "rows"”, f,
update.tree = TRUE)

plot(rowTree(merged))

#

data(GlobalPatterns)

GlobalPatterns

merged <- agglomerateByVariable(GlobalPatterns, by = "cols”,
colData(GlobalPatterns)$SampleType)

merged

data(GlobalPatterns)

print the available taxonomic ranks

taxonomyRanks (GlobalPatterns)

agglomerateByRanks

#
tse <- agglomerateByRanks(GlobalPatterns)
altExps(tse)

altExp(tse, "Kingdom")
altExp(tse, "Species"”)

unsplitByRanks
tse <- unsplitByRanks(tse)

agglomerateByPrevalence 23

tse

agglomerateByPrevalence
Agglomerate data based on population prevalence

Description

Agglomerate data based on population prevalence

Usage

agglomerateByPrevalence(x, ...)

S4 method for signature 'SummarizedExperiment'
agglomerateByPrevalence(

X,

rank = NULL,

other.name = other_label,

other_label = "Other",

)

S4 method for signature 'TreeSummarizedExperiment'’
agglomerateByPrevalence(

X,

rank = NULL,

other.name = other_label,

other_label = "Other”,

update.tree = FALSE,

)
Arguments

X TreeSummarizedExperiment.
arguments passed to agglomerateByRank function for SummarizedExperiment
objects and other functions. See agglomerateByRank for more details.

rank Character scalar. Defines a taxonomic rank. Must be a value of taxonomyRanks ()
function.

other.name Character scalar. Used as the label for the summary of non-prevalent taxa.
(default: "Other")

other_label Deprecated. use other.name instead.

update.tree Logical scalar. Should rowTree() also be merged? (Default: FALSE)

24 calculateDMIN

Details

agglomerateByPrevalence sums up the values of assays at the taxonomic level specified by rank
(by default the highest taxonomic level available) and selects the summed results that exceed the
given population prevalence at the given detection level. The other summed values (below the
threshold) are agglomerated in an additional row taking the name indicated by other.name (by
default "Other").

Value

agglomerateByPrevalence returns a taxonomically-agglomerated object of the same class as x
and based on prevalent taxonomic results.

Examples

Data can be aggregated based on prevalent taxonomic results
data(GlobalPatterns)
tse <- GlobalPatterns
tse <- transformAssay(tse, method = "relabundance")
tse <- agglomerateByPrevalence(
tse,
rank = "Phylum”,
assay.type = "relabundance”,
detection = 1/100,
prevalence = 50/100)

tse

Here data is aggregated at the taxonomic level "Phylum". The five phyla

that exceed the population prevalence threshold of 50/100 represent the

five first rows of the assay in the aggregated data. The sixth and last row
named by default "Other"” takes the summed up values of all the other phyla
that are below the prevalence threshold.

assay(tse)[,1:5]

calculateDMN Dirichlet-Multinomial Mixture Model: Machine Learning for Micro-
biome Data

Description

These functions are accessors for functions implemented in the DirichletMultinomial package

Usage

calculateDMN(x, ...)

S4 method for signature 'ANY'

calculateDMN(
X,
k =1,

BPPARAM = SerialParam(),

calculate DMIN 25

seed = runif(1, @, .Machine$integer.max),

)

S4 method for signature 'SummarizedExperiment'’
calculateDMN(

X,

assay.type = assay_name,

assay_name = exprs_values,

exprs_values = "counts”,

transposed = FALSE,

)
runDMN(x, name = "DMN", ...)
getDMN(x, name = "DMN", ...)

S4 method for signature 'SummarizedExperiment'
getDMN(x, name = "DMN")

bestDMNFit(x, name = "DMN"”, type = c("laplace”, "AIC", "BIC"), ...)

S4 method for signature 'SummarizedExperiment'
bestDMNFit(x, name = "DMN", type = c("laplace”, "AIC", "BIC"))

getBestDMNFit(x, name = "DMN", type = c("laplace”, "AIC", "BIC"), ...)

S4 method for signature 'SummarizedExperiment'’
getBestDMNFit(x, name = "DMN”, type = c("laplace”, "AIC", "BIC"))

calculateDMNgroup(x, ...)

S4 method for signature 'ANY'
calculateDMNgroup(

X,

variable,

k=1,

seed = runif(1, @, .Machine$integer.max),

)

S4 method for signature 'SummarizedExperiment'’
calculateDMNgroup(

X,

variable,

assay.type = assay_name,

assay_name = exprs_values,

exprs_values = "counts”,

transposed = FALSE,

26 calculateDMIN

performbDMNgroupCV(x, ...)

S4 method for signature 'ANY'
performDMNgroupCV(

X,

variable,

k =1,

seed = runif(1, @, .Machine$integer.max),

)

S4 method for signature 'SummarizedExperiment'
performDMNgroupCV (

X,

variable,

assay.type = assay_name,

assay_name = exprs_values,

exprs_values = "counts”,

transposed = FALSE,

)
Arguments

X a numeric matrix with samples as rows or a SummarizedExperiment object.
optional arguments not used.

k Numeric scalar. The number of Dirichlet components to fit. See dmn. (Default:
)

BPPARAM A BiocParallelParam object specifying whether the calculation should be par-
allelized.

seed Numeric scalar. Random number seed. See dmn

assay.type Character scalar. Specifies the name of the assay used in calculation. (De-
fault: "counts")

assay_name Deprecated. Use assay . type instead.

exprs_values Deprecated. Use assay . type instead.

transposed Logical scalar. Is x transposed with samples in rows? (Default: FALSE)

name Character scalar. The name to store the result in metadata

type Character scalar. The type of measure used for the goodness of fit. One of
‘laplace’, ‘AIC’ or ‘BIC’.

variable Character scalar. A variable from colData to use as a grouping variable.

Must be a character of factor.

Value

calculateDMN and getDMN return a list of DMN objects, one element for each value of k provided.
bestDMNFit returns the index for the best fit and getBestDMNFit returns a single DMN object.
calculateDMNgroup returns a DMNGroup object

performDMNgroupCV returns a data. frame

convertFromDADA2 27

See Also

DMN-class, DMNGroup-class, dmn, dmngroup, cvdmngroup , accessors for DMN objects

Examples

fl <- system.file(package="DirichletMultinomial”, "extdata”, "Twins.csv")
counts <- as.matrix(read.csv(fl, row.names=1))

fl <- system.file(package="DirichletMultinomial”, "extdata”, "TwinStudy.t")
pheno® <- scan(fl)

lvls <- c("Lean"”, "Obese"”, "Overwt")

pheno <- factor(lvls[pheno® + 1], levels=lvls)

colData <- DataFrame(pheno = pheno)

tse <- TreeSummarizedExperiment(assays = list(counts = counts),
colData = colData)

library(bluster)

Compute DMM algorithm and store result in metadata
tse <- addCluster(tse, name = "DMM", DmmParam(k = 1:3, type = "laplace"),
by = "samples”, full = TRUE)

Get the list of DMN objects
metadata(tse)DMMdmm

Get and display which objects fits best
bestFit <- metadata(tse)DMMbest
bestFit

Get the model that generated the best fit
bestModel <- metadata(tse)DMMdmm[[bestFit]]
bestModel

Get the sample-cluster assignment probability matrix
head(metadata(tse)DMMprob)

Get the weight of each component for the best model
bestModel@mixture$Weight

convertFromDADA2 Create a TreeSummarizedExperiment object from ‘DADA2’ results

Description

Create a TreeSummarizedExperiment object from ‘DADA2’ results

Usage

convertFromDADA2(...)

Arguments

Additional arguments. For convertFromDADA2, see mergePairs function for
more details.

28

Details

convertFromPhyloseq

convertFromDADA2 is a wrapper for the mergePairs function from the dada2 package. A count
matrix is constructed via makeSequenceTable(mergePairs(. . .)) and rownames are dynamically
created as ASV(N) with N from 1 to nrow of the count tables. The colnames and rownames from
the output of makeSequenceTable are stored as colnames and in the referenceSeq slot of the
TreeSummarizedExperiment, respectively.

Value

convertFromDADA2 returns an object of class TreeSummarizedExperiment

Examples

Coerce DADA2 results to a TreeSE object
if(requireNamespace("dada2")) {
fnF <- system.file("extdata”, "samlF.fastq.gz", package="dada2")
fnR = system.file("extdata”, "samlR.fastq.gz", package="dada2")
dadaF <- dada2::dada(fnF, selfConsist=TRUE)
dadaR <- dada2::dada(fnR, selfConsist=TRUE)

tse <- convertFromDADA2(dadaF, fnF, dadaR, fnR)

tse

convertFromPhyloseq Create a TreeSummarizedExperiment object from a phyloseq object

Description

Create a TreeSummarizedExperiment object from a phyloseq object

Create a phyloseq object from a TreeSummarizedExperiment object

Usage

convertFromPhyloseq(x)

convertToPhyloseq(x, ...)

S4 method for signature 'SummarizedExperiment'’
convertToPhyloseq(x, assay.type = "counts”, assay_name = NULL, ...)

S4 method for signature 'TreeSummarizedExperiment'’

convertToPhyloseq(x, tree.name = tree_name, tree_name = "phylo”, ...)
Arguments
X a TreeSummarizedExperiment object

assay. type

assay_name

Additional arguments. Not used currently.
Character scalar. Specifies the name of assay used. (Default: "counts")

Deprecated. Use assay . type instead.

deprecate 29

tree.name Character scalar. Specifies the name of the tree to be included in the phyloseq
object that is created, (Default: "phylo")
tree_name Deprecated. Use tree.name instead.
Details

convertFromPhyloseq converts phyloseq objects into TreeSummarizedExperiment objects. All
data stored in a phyloseq object is transferred.

convertToPhyloseq creates a phyloseq object from a TreeSummarizedExperiment object. By
using assay . type, it is possible to specify which table from assay is added to the phyloseq object.

Value

convertFromPhyloseq returns an object of class TreeSummarizedExperiment

convertToPhyloseq returns an object of class phyloseq

Examples

Coerce a phyloseq object to a TreeSE object

if (requireNamespace("phyloseq”)) {
data(GlobalPatterns, package="phyloseq")
convertFromPhyloseq(GlobalPatterns)
data(enterotype, package="phyloseq")
convertFromPhyloseq(enterotype)
data(esophagus, package="phyloseq")
convertFromPhyloseq(esophagus)

}

Coerce a TreeSE object to a phyloseq object
Get tse object

data(GlobalPatterns)

tse <- GlobalPatterns

Create a phyloseq object from it
phy <- convertToPhyloseq(tse)
phy

By default the chosen table is counts, but if there are other tables,
they can be chosen with assay.type.

Counts relative abundances table

tse <- transformAssay(tse, method = "relabundance"”)

phy2 <- convertToPhyloseq(tse, assay.type = "relabundance”)
phy2

deprecate These functions will be deprecated. Please use other functions instead.

Description

These functions will be deprecated. Please use other functions instead.

30

Usage

cluster(x, ...)

S4 method for signature
cluster(x, ...)

addTaxonomyTree(x, ...)

S4 method for signature
addTaxonomyTree(x, ...)

taxonomyTree(x, ...)

S4 method for signature
taxonomyTree(x, ...)

mergeRows(x, ...)

S4 method for signature
mergeRows(x, ...)

S4 method for signature
mergeRows(x, ...)

mergeCols(x, ...)

S4 method for signature
mergeCols(x, ...)

S4 method for signature
mergeCols(x, ...)

mergeFeatures(x, ...)

S4 method for signature
mergeFeatures(x, ...)

S4 method for signature
mergeFeatures(x, ...)

mergeSamples(x, ...)

S4 method for signature
mergeSamples(x, ...)

S4 method for signature
mergeSamples(x, ...)

mergeFeaturesByRank(x,

S4 method for signature
mergeFeaturesByRank(x,

deprecate

'SummarizedExperiment'

'SummarizedExperiment'

'SummarizedExperiment'

'SummarizedExperiment'

'TreeSummarizedExperiment’

'SummarizedExperiment'

'TreeSummarizedExperiment'

'SummarizedExperiment'

'TreeSummarizedExperiment’

'SummarizedExperiment'

'TreeSummarizedExperiment'

'SummarizedExperiment'

deprecate 31

S4 method for signature 'SingleCellExperiment’
mergeFeaturesByRank(x, ...)

mergeFeaturesByPrevalence(x, ...)

S4 method for signature 'SummarizedExperiment’
mergeFeaturesByPrevalence(x, ...)

getExperimentCrossAssociation(x, ...)

S4 method for signature 'MultiAssayExperiment'’
getExperimentCrossAssociation(x, ...)

S4 method for signature 'SummarizedExperiment'’
getExperimentCrossAssociation(x, ...)

S4 method for signature 'TreeSummarizedExperiment'
mergeFeaturesByRank(x, ...)

testExperimentCrossAssociation(x, ...)

S4 method for signature 'ANY'
test