Package 'DELocal'

March 10, 2025

Title Identifies differentially expressed genes with respect to other local genes

Version 1.6.0

Description The goal of DELocal is to identify DE genes compared to their neighboring genes from the same chromosomal location. It has been shown that genes of related functions are generally very far from each other in the chromosome. DELocal utilzes this information to identify DE genes comparing with their neighbouring genes.

License MIT + file LICENSE

URL https://github.com/dasroy/DELocal

BugReports https://github.com/dasroy/DELocal/issues **Encoding** UTF-8 LazyData false RoxygenNote 7.2.3 biocViews GeneExpression, DifferentialExpression, RNASeq, Transcriptomics Imports DESeq2, dplyr, reshape2, limma, SummarizedExperiment, ggplot2, matrixStats, stats Suggests biomaRt, knitr, rmarkdown, stringr, BiocStyle VignetteBuilder knitr git_url https://git.bioconductor.org/packages/DELocal git_branch RELEASE_3_20 git_last_commit 5d503b9 git_last_commit_date 2024-10-29 **Repository** Bioconductor 3.20 Date/Publication 2025-03-10 Author Rishi Das Roy [aut, cre] (<https://orcid.org/0000-0002-3276-7279>) Maintainer Rishi Das Roy <rishi.dasroy@gmail.com>

Contents

DELocal	2
olotNeighbourhood	3

5

Index

DELocal

Description

Finds differentially expressed genes by comparing neighboring genes

Usage

```
DELocal(
   pSmrExpt,
   nearest_neighbours,
   pDesign,
   pValue_cut = 0.05,
   pLogFold_cut = 0
)
```

Arguments

pSmrExpt	SummarizedExperiment object			
nearest_neighbours				
	How many nearest neighbours within 1 Mb window to evaluate?			
pDesign	design formula			
pValue_cut	cut off value for adjusted p-value			
pLogFold_cut	cut off value for relative log fold change compared to neighbouring genes			

Value

A data.frame with top significant genes with the following columns: relative.logFC: relative logFC compared to neighbouring genes P.Value: raw p-value adj.P.Value: adjusted p-value B: log-odds that the gene is differentially expressed

Examples

plotNeighbourhood	Returns median expression from different conditions of genes from a
	neighbourhood of a gene of interest

Description

Returns median expression from different conditions of genes from a neighbourhood of a gene of interest

Usage

```
plotNeighbourhood(
  pSmrExpt,
  pNearest_neighbours = 5,
  pDesign = ~condition,
  colorFactor = "condition",
  pGene_id
)
```

Arguments

pSmrExpt	SummarizedExperiment object		
pNearest_neighbours			
	How many nearest neighbours within 1 Mb window to plot		
pDesign	design formula		
colorFactor	The coloring factor		
pGene_id	The gene of interest		

Value

a list which contains both the data from the neighbourhood and a ggplot object

Examples

```
x_genes <- SummarizedExperiment::rowData(smrExpt) %>%
    as.data.frame() %>%
    filter(chromosome_name=="X") %>% rownames()
DELocal::plotNeighbourhood(pSmrExpt = smrExpt, pGene_id = "ENSMUSG0000059401")
```

Index

 ${\tt DELocal, 2}$

plotNeighbourhood, 3