Package 'MOSim'

May 27, 2024

Title Multi-Omics Simulation (MOSim)

Version 2.0.0

Description MOSim package simulates multi-omic experiments that mimic regulatory mechanisms within the cell, allowing flexible experimental design including time course and multiple groups.

Encoding UTF-8

Depends R (>= 4.2.0)

License GPL-3

LazyData false

biocViews Software, TimeCourse, ExperimentalDesign, RNASeq

BugReports https://github.com/ConesaLab/MOSim/issues

URL https://github.com/ConesaLab/MOSim

Imports HiddenMarkov, zoo, IRanges, S4Vectors, dplyr, ggplot2, lazyeval, matrixStats, methods, rlang, stringi, stringr, scran, Seurat, Signac, edgeR, Rcpp

Suggests testthat, knitr, rmarkdown, codetools, BiocStyle, stats, utils, purrr, scales, tibble, tidyr, Biobase, scater, SingleCellExperiment, decor, markdown, Rsamtools, igraph, leiden, bluster

Collate 'AllClass.R' 'AllGeneric.R' 'Simulator.R' 'SimulatorRegion.R' 'ChIP-seq.R' 'DNase-seq.R' 'MOSim-package.R' 'functions.R' 'Simulation.R' 'MOSim.R' 'RNA-seq.R' 'data.R' 'simulate_WGBS_functions.R' 'methyl-seq.R' 'miRNA-seq.R' 'sc_MOSim.R' 'sc_coexpression.R' 'sparsim_functions.R' 'zzz.R'

RoxygenNote 7.3.1

VignetteBuilder knitr

LinkingTo cpp11, Rcpp
git_url https://git.bioconductor.org/packages/MOSim
git_branch RELEASE_3_19
git_last_commit bee9b3a

2 Contents

git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-26
Author Carolina Monzó [aut],
Carlos Martínez [aut],
Sonia Tarazona [cre, aut]

Maintainer Sonia Tarazona <sotacam@gmail.com>

Contents

MOSim-package
associationList
check_patterns
discretize
experimentalDesign
is.declared
make_association_dataframe
make_cluster_patterns
mosim
MOSimulation-class
MOSimulator-class
MOSimulatorRegion-class
omicData
omicResults
omicSettings
omicSim
order_FC_forMatrix
plotProfile
random_unif_interval
sampleData
scatac
scMOSim
scOmicResults
scOmicSettings
scrna
sc_omicData
sc_param_estimation
shuffle_group_matrix
simulate_coexpression
simulate_hyper
sparsim_create_simulation_parameter
sparsim_estimate_intensity
sparsim_estimate_library_size
sparsim_estimate_parameter_from_data
sparsim_estimate_variability
sparsim_simulation

MOSim-package 3

Index 32

MOSim-package

MOSim

Description

Multiomics simulation package.

Author(s)

Maintainer: Sonia Tarazona <sotacam@gmail.com>

Authors:

- Carolina Monzó <carolmonzoc@gmail.com>
- Carlos Martínez <cmarmir@gmail.com>

See Also

Useful links:

- https://github.com/ConesaLab/MOSim
- Report bugs at https://github.com/ConesaLab/MOSim/issues

associationList

Data to showcase scRNA and scATAC-seq association

Description

Data to showcase scRNA and scATAC-seq association

Usage

```
data("associationList")
```

Format

A dataframe with two columns and rows according to gene/feature relationships

Peak_ID ATAC chromosomic positions associated to genes

Gene_ID RNA genes associated to peaks

@source Created in-house to serve as an example

4 discretize

check_patterns

check_patterns

Description

Function to check if the TRUE FALSE patterns have at least two rows that are opposite, we need this to be able to generate repressor regulators

Usage

```
check_patterns(patterns_ret)
```

Arguments

```
patterns_ret tibble of TRUE FALSE values
```

Value

list of indices where the rows are opposite

Examples

discretize

Discretize ChIP-Seq counts to simulate a binary dataset

Description

Discretize ChIP-Seq counts to simulate a binary dataset

Usage

```
discretize(df, omic)
```

Arguments

df A MOSimulated object

omic Character string of the omic to transform into binary data

experimentalDesign 5

Value

A regulator dataframe of 0 and 1

Examples

```
omic_list <- c("RNA-seq", "ChIP-seq")
rnaseq_simulation <- mosim(omics = omic_list,
    omicsOptions = c(omicSim("ChIP-seq", totalFeatures = 2500)))
rnaseq_simulated <- omicResults(rnaseq_simulation, omic_list)
discrete_ChIP <- discretize(rnaseq_simulated, "ChIP-seq")</pre>
```

experimentalDesign

Retrieves the experimental design

Description

Retrieves the experimental design

Usage

```
experimentalDesign(simulation)
```

Arguments

simulation

A MOSimulation object

Value

A data frame containing the experimental design used to simulate the data.

Examples

```
omic_list <- c("RNA-seq")
rnaseq_simulation <- mosim(omics = omic_list)
# This will be a data frame with RNA-seq counts
design_matrix <- experimentalDesign(rnaseq_simulation)</pre>
```

is.declared

Check if a variable is declared.

Description

Check if a variable is declared.

Usage

```
is.declared(object, key = NULL)
```

Arguments

object Variable name to check

key Optional key to check inside object.

Value

TRUE or FALSE indicating if the variable is initialized & non-empty.

make_association_dataframe

make_association_dataframe

Description

This function generates a dataframe containing the information of the relationship between ATAC and RNA, based on the cluster groups, and then tells the order the genes and peaks should be in the simulated dataframe of the group

Usage

```
make_association_dataframe(group, genereggroup)
```

Arguments

group Group from which we are generating the association dataframe

genereggroup list of elements to generate the association dataframe such as clusters of each

omic, indices of opposite clusters, which genes are activated, repressed, behav-

ior of the features etc.

Value

a dataframe with all the information the user needs about each gene and the order of gene and peak names to rename them in the simulated datasets of the group

make_cluster_patterns 7

```
make_cluster_patterns make_cluster_patterns
```

Description

Function to make the tibble with cluster combinations for the gene expression patterns along the cells

Usage

```
make_cluster_patterns(numcells = 4, clusters = 8)
```

Arguments

numcells Number of different celltypes we are simulating

clusters OPTIONAL. Number of co-expression patterns the user wants to simulate

Value

A tibble with number of columns equal to number of celltypes, rows according to the number of TRUE/FALSE combinations corresponding to the gene expression patterns along the cells

Examples

mosim mosim

Description

Performs a multiomic simulation by chaining two actions: 1) Creating the "MOSimulation" class with the provided params. 2) Calling "simulate" method on the initialized object.

8 mosim

Usage

```
mosim(
  omics,
  omicsOptions,
  diffGenes,
  numberReps,
  numberGroups,
  times.
  depth,
  profileProbs,
 minMaxFC,
  TFtoGene
)
```

Arguments

omics

Character vector containing the names of the omics to simulate, which can be "RNA-seq", "miRNA-seq", "DNase-seq", "ChIP-seq" or "Methyl-seq" (e.g. c("RNA-seq", "miRNA-seq")). It can also be a list with the omic names as names and their options as values, but we recommend to use the argument omic-Sim to provide the options to simulated each omic.

omicsOptions

List containing the options to simulate each omic. We recommend to apply the helper method omicSim to create this list in a friendly way, and the function omicData to provide custom data (see the related sections for more information). Each omic may have different configuration parameters, but the common ones

simuData/idToGene Seed sample and association tables for regulatory omics. The helper function omicData should be used to provide this information (see the following section).

regulatorEffect For regulatory omics. List containing the percentage of effect types (repressor, activator or no effect) over the total number of regulators. See vignette for more information.

totalFeatures Number of features to simulate. By default, the total number of features in the seed dataset.

depth Sequencing depth in millions of reads. If not provided, it takes the global parameter passed to mosim function.

replicateParams List with parameters a and b for adjusting the variability in the generation of replicates using the negative binomial. See vignette for more information.

diffGenes Number of differentially expressed genes to simulate, given in percentage (0 -1) or in absolute number (> 1). By default 0.15

Number of replicates per experimetal condition (and time point, if time series

are to be generated). By default 3.

numberGroups Number of experimental groups or conditions to simulate.

times Vector of time points to consider in the experimental design.

Sequencing depth in millions of reads. depth

numberReps

MOSimulation-class 9

profileProbs Numeric vector with the probabilities to assign each of the patterns. Defaults to

0.2 for each.

minMaxFC Numeric vector of length 2 with minimum and maximum fold-change for dif-

ferentially expressed features, respectively.

TFtoGene A logical value indicating if default transcription factors data should be used

(TRUE) or not (FALSE), or a 3 column data frame containing custom associa-

tions. By default FALSE.

Value

Instance of class "MOSimulation" containing the multiomic simulation data.

Examples

```
moSimulation <- mosim(
    omics = c("RNA-seq"),
    numberReps = 3,
    times = c(0, 2, 6, 12, 24)
)

# Retrieve simulated count matrix for RNA-seq
dataRNAseq <- omicResults(moSimulation, "RNA-seq")</pre>
```

MOSimulation-class

This class manages the global simulation process, like associating genes with gene classes, regulatory programs and other settings. Finally it will initialize the simulators with their options that will use the previously generated settings to simulate the data.

Description

This class manages the global simulation process, like associating genes with gene classes, regulatory programs and other settings. Finally it will initialize the simulators with their options that will use the previously generated settings to simulate the data.

Slots

simulators Vector containing either S4 initialized classes of simulators or a list with the class name as keys, and its options as value, see example.

totalGenes A number with the total number of genes including not expressed. Overwritten if a genome reference is provided. Currently not used as we force to provide real data.

diffGenes A number with the total number of differential genes (if value > 1) or % or total genes (if value < 1).

numberReps Number of replicates of the experiment.

10 MOSimulator-class

numberGroups Number of samples considered on the experiment.

times Numeric vector containing the measured times. If numberGroups < 2, the number of times must be at least 2.

geneNames Read only. List containing the IDs of the genes. Overwrited by the genome reference if provided. Currently not used as we force to provide real data.

simSettings List of settings that overrides initializing the configuration of the simulation by passing a previously generated list. This could be used to tweak by hand the assigned profiles, genes, regulatory programs, etc.

noiseFunction Noise function to apply when simulating counts. Must accept the parameter 'n' and return a vector of the same length. Defaults to 'rnorm'

profiles Named list containing the patterns with their coefficients.

profileProbs Numeric vector with the probabilities to assign each of the patterns. Defaults to 0.2 for each.

noiseParams Default noise parameters to be used with noise function.

depth Default depth to simulate.

TFtoGene Boolean (for default data) or 3 column data frame containing Symbol-TFGene-LinkedGene

minMaxQuantile Numeric vector of length 2 indicating the quantiles to use in order to retrieve the absolute minimum and maximum value that a differentially expressed feature can have.

minMaxFC Numeric vector of length 2 indicating the minimum and maximum fold-change that a differentially expressed feature can have.

MOSimulator-class

Virtual class containing common methods and slots for child classes.

Description

Virtual class containing common methods and slots for child classes.

Slots

name Name of the simulator to be used in messages.

data Data frame containing the initial sample to be used, with the features IDs as rownames and only one column named "Counts".

regulator Boolean flag to indicate if the omic is a regulator or not.

regulatorEffect Possible regulation effects of the omic (enhancer, repressor or both).

idToGene Data frame with the association table between genes and other features. The structure must be 2 columns, one named "ID" and the other "Gene".

min Minimum value allowed in the omic.

max Maximum value allowed in the omic.

depth Sequencing depth to simulate.

depthRound Number of decimal places to round when adjusting depth.

depthAdjust Boolean indicating whether to adjust by sequencing depth or not.

totalFeatures Number of features to simulate. This will replace the data with a subset.

noiseFunction Noise function to apply when simulating counts. Must accept the parameter 'n' and return a vector of the same length. Defaults to 'rnorm'

increment Read-only. Minimum value to increase when simulating counts.

simData Contains the final simulated data.

pregenerated Indicates if the child class will generate the simulated data instead of the general process.

randData Auxiliary vector containing the original count data in random order with other adjustments.

noiseParams Noise parameters to be used with noise function.

roundDigits Number of digits to round the simulated count values.

minMaxQuantile Numeric vector of length 2 indicating the quantiles to use in order to retrieve the absolute minimum and maximum value that a differentially expressed feature can have.

minMaxFC Numeric vector of length 2 indicating the minimum and maximum fold-change that a differentially expressed feature can have.

minMaxDist Named list containing different minimum and maximum constraints values calculated at the beginning of the simulation process.

replicateParams Named list containing the parameters a and b to be used in the replicates generation process, see the vignette for more info.

MOSimulatorRegion-class

Virtual class containing general methods for simulators based on regions of the chromosomes, like DNase-seq, ChIP-seq or Methyl-seq

Description

Virtual class containing general methods for simulators based on regions of the chromosomes, like DNase-seq, ChIP-seq or Methyl-seq

Class to simulate RNA-seq data

Class to simulate transcription factor data

Class to simulate miRNA-seq

Class to simulate ChIP-seq data

Class to simulate DNase-seq data

Class to simulate Methyl-seq data.

12 omicData

Slots

locs Vector containing the list of locations of the sites.

locsName Type of the site to simulate, only for debug.

splitChar Character symbol used to split identifiers in chr/start/end

nCpG numeric. Number of CpG sites to simulate.

pSuccessMethReg numeric. Probability of success in methylated region.

pSuccessDemethReg numeric. Probability of success in non methylated region

errorMethReg numeric. Error rate in methylated region

errorDemethReg numeric. Error rate in methylated region

nReadsMethReg numeric. Mean number of reads in methylated region.

nReadsDemethReg numeric. Mean number of reads in non methylated regions.

phaseDiff numeric. Phase difference in the differentially methylated regions between two samples

balanceHypoHyper numeric. Balance of hypo/hyper methylation

ratesHMMMatrix numeric. Matrix of values that describes the exponential decay functions that define the distances between CpG values.

distType character. Distribution used to generate replicates:

transitionSize numeric.

PhiMeth matrix. Transition matrix for CpG locations.

PhiDemeth matrix. <Not used>

typesLocation numeric. <Not used>

returnValue character. Selected column:

betaThreshold numeric. Beta threshold value used to calculate M values.

omicData

Set customized data for an omic.

Description

Set customized data for an omic.

Usage

```
omicData(omic, data = NULL, associationList = NULL)
```

Arguments

omic The name of the omic to provide data.

data Data frame with the omic identifiers as row names and just one column named

Counts containing numeric values used as initial sample for the simulation.

associationList

Only for regulatory omics, a data frame with 2 columns, the first called containing the regulator ID and the second called Gene with the gene identifier.

omicResults 13

Value

Initialized simulation object with the given data.

Examples

```
# Take a subset of the included dataset for illustration
# purposes. We could also load it from a csv file or RData,
# as long as we transform it to have 1 column named "Counts"
# and the identifiers as row names.
data(sampleData)
custom_rnaseq <- head(sampleData$SimRNAseq$data, 100)</pre>
# In this case, 'custom_rnaseq' is a data frame with
# the structure:
head(custom_rnaseq)
                      Counts
## ENSMUSG00000000001
                        6572
## ENSMUSG00000000003
## ENSMUSG00000000028
                        4644
## ENSMUSG00000000031
## ENSMUSG00000000037
                            0
## ENSMUSG00000000049
                            0
# The helper 'omicData' returns an object with our custom data.
rnaseq_customdata <- omicData("RNA-seq", data = custom_rnaseq)</pre>
```

omicResults

Retrieves the simulated data.

Description

Retrieves the simulated data.

Usage

```
omicResults(simulation, omics = NULL, format = "data.frame")
```

Arguments

simulation A MOSimulation object.

omics List of the omics to retrieve the simulated data.

format Type of object to use for returning the results

14 omicSettings

Value

A list containing an element for every omic specifiec, with the simulation data in the format indicated, or a numeric matrix with simulated data if the omic name is directly provided.

Examples

```
omic_list <- c("RNA-seq")</pre>
rnaseq_simulation <- mosim(omics = omic_list)</pre>
#' # This will be a data frame with RNA-seq counts
rnaseq_simulated <- omicResults(rnaseq_simulation, "RNA-seq")</pre>
                      Group1.Time0.Rep1 Group1.Time0.Rep2 Group1.Time0.Rep3 ...
# ENSMUSG00000073155
                                    4539
                                                       5374
                                                                          5808 ...
# ENSMUSG00000026251
                                                          0
                                                                             0 ...
                                       0
# ENSMUSG00000040472
                                    2742
                                                       2714
                                                                          2912 ...
                                    5256
                                                                          5130 ...
# ENSMUSG00000021598
                                                       4640
# ENSMUSG00000032348
                                    421
                                                       348
                                                                           492 ...
# ENSMUSG00000097226
                                     16
                                                        14
                                                                             9 ...
# ENSMUSG00000027857
                                       0
                                                          0
                                                                             0 ...
                                                                             0 ...
# ENSMUSG00000032081
                                       1
                                                          0
                                                                           965 ...
                                     794
# ENSMUSG00000097164
                                                        822
# ENSMUSG00000097871
                                       0
                                                          0
                                                                             0 ...
```

omicSettings

Retrieves the settings used in a simulation

Description

Retrieves the settings used in a simulation

Usage

```
omicSettings(
  simulation,
  omics = NULL,
  association = FALSE,
  reverse = FALSE,
  only.linked = FALSE,
  prefix = FALSE,
  include.lagged = TRUE
)
```

Arguments

simulation A MOSimulation object.

omics List of omics to retrieve the settings.

association A boolean indicating if the association must also be returned for the regulators.

omicSim 15

reverse A boolean, swap the column order in the association list in case we want to use

the output directly and the program requires a different ordering.

only.linked Return only the interactions that have an effect.

prefix Logical indicating if the name of the omic should prefix the name of the regula-

tor.

include.lagged Logical indicating if interactions with transitory profile and different minimum/maximum

time point between gene and regulator should be included or not.

Value

A list containing a data frame with the settings used to simulate each of the indicated omics. If association is TRUE, it will be a list with 3 keys: 'associations', 'settings' and 'regulators', with the first two keys being a list containing the information for the selected omics and the last one a global data frame giving the merged information.

Examples

```
omic_list <- c("RNA-seq", "miRNA-seq")
multi_simulation <- mosim(omics = omic_list)

# This will be a data frame with RNA-seq settings (DE flag, profiles)
rnaseq_settings <- omicSettings(multi_simulation, "RNA-seq")

# This will be a list containing all the simulated omics (RNA-seq
# and DNase-seq in this case)
all_settings <- omicSettings(multi_simulation)</pre>
```

omicSim

Set the simulation settings for an omic.

Description

Set the simulation settings for an omic.

Usage

```
omicSim(omic, depth = NULL, totalFeatures = NULL, regulatorEffect = NULL)
```

Arguments

omic Name of the omic to set the settings.

depth Sequencing depth in millions of counts. If not provided will take the global

parameter passed to mosim function.

totalFeatures Limit the number of features to simulate. By default include all present in the

dataset.

order_FC_forMatrix

```
regulator Effect
```

only for regulatory omics. Associative list containing the percentage of effects over the total number of regulator, including repressor, association and no effect (NE).

Value

A list with the appropriate structure to be given as options in mosim function.

Examples

```
order_FC_forMatrix
```

Description

Function to sort the FC values according to the genes that must be up or downregulated

Usage

```
order_FC_forMatrix(A, B, C, D)
```

Arguments

A	Vector of c("Up", "Down", "NE) from the Gene or Peak_DE extracted from the association matrix
В	Calculated vector of Up FC values
С	Calculated vector of Down FC values
D	Calculated vector of NE FC values

Examples

```
DE <- c("Up", "Up", "Up", "Down", "Down", "NE", "NE", "NE", NA, NA, NA)
Up_FCvec <- c(1, 1, 1)
Down_FCvec <- c(2, 2)
notDE_FCvec <- c(2, 2, 2, 2)
FC_vec <- order_FC_forMatrix(DE, Up_FCvec, Down_FCvec, notDE_FCvec)</pre>
```

plotProfile 17

plotProfile	Generate a plot of a feature's profile for one or two omics.

Description

Generate a plot of a feature's profile for one or two omics.

Usage

```
plotProfile(simulation, omics, featureIDS, drawReps = FALSE, groups = NULL)
```

Arguments

simulation	A MOSimulation object
omics	Character vector of the omics to simulate.
featureIDS	List containing the feature to show per omic. Must have the omics as the list names and the features as values.
drawReps	Logical to enable/disable the representation of the replicates inside the plot.
groups	Character vector indicating the groups to plot in the form "GroupX" (i.e. Group1)

Value

A ggplot2 object.

Examples

18 sampleData

random_unif_interval random_unif_interval Function to call the C code

Description

random_unif_interval Function to call the C code

Usage

```
random_unif_interval(size, max_val)
```

Arguments

size from sparsim max_val from sparsim

sampleData

Default data

Description

Dataset with base counts and id-gene tables.

Usage

```
data("sampleData")
```

Format

An object of class list of length 6.

Details

List with 6 elements:

SimRNAseq data Dataframe with base counts with gene id as rownames.

geneLength Length of every gene.

SimChIPseq data Dataframe with base counts with regions as rownames.

idToGene Dataframe with region as "ID" column and gene name on "Gene" column.

SimDNaseseq data Dataframe with base counts with regions as rownames.

idToGene Dataframe with region as "ID" column and gene name on "Gene" column.

SimMiRNAseq data Dataframe with base counts with miRNA id as rownames.

idToGene Dataframe with miRNA as "ID" column and gene name on "Gene" column.

SimMethylseq idToGene Dataframe with region as "ID" column and gene name on "Gene" column.

CpGisland Dataframe of CpG to be used as initialization data, located on "Region" column

scatac 19

scatac

Data to test scMOSim

Description

Data to test scMOSim

Usage

```
data("scatac")
```

Format

A seurat Object, subset from seuratData with ATAC

assays ATAC expression values

meta.data annotations of celltypes

@source https://github.com/satijalab/seurat-data, we took 11 cells from each of 4 celltypes

scMOSim

scmOSim

Description

Performs multiomic simulation of single cell datasets

Usage

```
scMOSim(
 omics,
  cellTypes,
 numberReps = 1,
 numberGroups = 1,
 diffGenes = NULL,
 minFC = 0.25,
 maxFC = 4,
 numberCells = NULL,
 mean = NULL,
  sd = NULL,
  noiseRep = 0.1,
  noiseGroup = 0.5,
  regulatorEffect = NULL,
  associationList = NULL,
  feature_no = 8000,
 clusters = 3,
  cluster_size = NULL
)
```

20 scMOSim

Arguments

omics named list containing the omic to simulate as names, which can be "scRNA-seq"

or "scATAC-seq".

cellTypes list where the i-th element of the list contains the column indices for i-th exper-

imental conditions. List must be a named list.

numberReps OPTIONAL. Number of replicates per group

numberGroups OPTIONAL. number of different groups

diffGenes OPTIONAL. If number groups > 1, Percentage DE genes to simulate. List of

vectors (one per group to compare to group 1) where the vector contains absolute number of genes for Up and Down ex: c(250,500) or a percentage for up, down

ex: c(0.2, 0.2). The rest will be NE

minFC OPTIONAL. Threshold of FC below which are downregulated, by default 0.25

maxFC OPTIONAL. Threshold of FC above which are upregulated, by default 4

numberCells OPTIONAL. Vector of numbers. The numbers correspond to the number of cells

the user wants to simulate per each cell type. The length of the vector must be

the same as length of cellTypes.

mean OPTIONAL. Vector of numbers of mean depth per each cell type. Must be

specified just if numberCells is specified. The length of the vector must be the

same as length of cellTypes.

sd OPTIONAL. Vector of numbers of standard deviation per each cell type. Must

be specified just if numberCells is specified. The length of the vector must be

the same as length of cellTypes.

noiseRep OPTIONAL. Number indicating the desired standard deviation between biolog-

ical replicates.

noiseGroup OPTIONAL. Number indicating the desired standard deviation between treat-

ment groups

regulatorEffect

OPTIONAL. To simulate relationship scRNA-scATAC, list of vectors (one per group) where the vector contains absolute number of regulators for Activator and repressor ex: c(150, 200) or a percentage for Activator and repressor ex: c(0.2, 0.1). The rest will be NE. If not provided, no table of association between

scRNA and scATAC is outputted.

association List

REQUIRED A 2 columns dataframe reporting peak ids related to gene names.

If user doesnt have one, load from package data("associationList")

feature_no OPTIONAL. If only scRNA-seq to simulate or scRNA and scATAC but no reg-

ulatory constraints, total number of features to be distributed between the coex-

pression clusters.

clusters OPTIONAL. Number of co-expression patterns the user wants to simulate

cluster_size OPTIONAL. It may be inputted by the user. Recommended: by default, its the

number of features divided by the number of patterns to generate.

Value

a list of Seurat object, one per each omic.

scOmicResults 21

Examples

```
omic_list <- sc_omicData(list("scRNA-seq"))
cell_types <- list('Treg' = c(1:10),'cDC' = c(11:20),'CD4_TEM' = c(21:30),
'Memory_B' = c(31:40))
sim <- scMOSim(omic_list, cell_types)</pre>
```

scOmicResults

scOmicResults

Description

scOmicResults

Usage

```
scOmicResults(sim)
```

Arguments

sim

a simulated object from scMOSim function

Value

list of seurat objects with simulated data

Examples

```
cell_types <- list('Treg' = c(1:10),'cDC' = c(11:20),'CD4_TEM' = c(21:30),
'Memory_B' = c(31:40))
omicsList <- sc_omicData(list("scRNA-seq"))
sim <- scMOSim(omicsList, cell_types)
res <- scOmicResults(sim)</pre>
```

scOmicSettings

scOmicSettings

Description

scOmicSettings

Usage

```
scOmicSettings(sim)
```

22 scrna

Arguments

sim

a simulated object from scMOSim function

Value

list of Association matrices explaining the effects of each regulator to each gene

Examples

```
 cell\_types \leftarrow list('Treg' = c(1:10), 'cDC' = c(11:20), 'CD4\_TEM' = c(21:30), 'Memory\_B' = c(31:40)) \\ omicsList \leftarrow sc\_omicData(list("scRNA-seq")) \\ sim \leftarrow scMOSim(omicsList, cell\_types) \\ res \leftarrow scOmicSettings(sim)
```

scrna

Data to test scMOSim

Description

Data to test scMOSim

Usage

```
data("scrna")
```

Format

A seurat Object, subset from seuratData with RNA

assays RNA expression values

meta.data annotations of celltypes

@source https://github.com/satijalab/seurat-data, we took 11 cells from each of 4 celltypes This is how: dat <- pbmcMultiome.SeuratData::pbmc.rna dat <- subset(x = dat, subset = seurat_annotations "cDC", "Memory B", "Treg")) unique_cell_types <- unique(datATmeta.data\$seurat_annotations) extracted_cells <- list() cellnames <- c() for (cell_type in unique_cell_types) type_cells <- subset(dat, subset = seurat_annotations counts <- as.matrix(type_cellsATassays[["RNA"]]ATcounts) extracted_cells[[cell_type]] <- counts[, 1:10] cellnames <- append(cellnames, replicate(11, cell_type))

```
scrna <- Reduce(cbind, extracted_cells)</pre>
```

sc_omicData 23

sc_omicData sc omicData

Description

Checks if the user defined data is in the correct format, or loads the default multiomics pbmc dataset, a subset from SeuratData package

Usage

```
sc_omicData(omics_types, data = NULL)
```

Arguments

omics_types A list of strings which can be either "scRNA-seq" or "scATAC-seq"

data A user input matrix with genes (peaks in case of scATAC-seq) as rows and cells

as columns. By default, it loads the example data. If a user input matrix is

included, cell columns must be sorted by cell t ype.

Value

a named list with omics type as name and the count matrix as value

Examples

```
# Simulate from PBMC
omicsList <- sc_omicData(list("scRNA-seq", "scATAC-seq"))</pre>
```

sc_param_estimation sc_param_estimation

Description

Evaluate the users parameters for single cell simulation and use SPARSim to simulate the main dataset. Internal function

Usage

```
sc_param_estimation(
  omics,
  cellTypes,
  diffGenes = list(c(0.2, 0.2)),
  minFC = 0.25,
  maxFC = 4,
  numberCells = NULL,
```

24 sc_param_estimation

```
mean = NULL,
sd = NULL,
noiseGroup = 0.5,
group = 1,
genereggroup
)
```

Arguments

omics named list containing the omics to simulate as names, which can be "scRNAseq" or "scATAC-seq". cellTypes list where the i-th element of the list contains the column indices for i-th cell type. List must be a named list. diffGenes If number groups > 1, Percentage DE genes to simulate. List of vectors (one per group to compare to group 1) where the vector contains absolute number of genes for Up and Down ex: c(250, 500) or a percentage for up, down ex: c(0.2, 0.2). The rest will be NE minFC Threshold of FC below which are downregulated, by default 0.25 maxFC Threshold of FC above which are upregulated, by default 4 vector of numbers. The numbers correspond to the number of cells the user numberCells wants to simulate per each cell type. The length of the vector must be the same as length of cellTypes. vector of numbers of mean depth per each cell type. Must be specified just if mean numberCells is specified. sd vector of numbers of standard deviation per each cell type. Must be specified just if numberCells is specified. OPTIONAL. Number indicating the desired standard deviation between treatnoiseGroup ment groups

List with information of genes, clusters and regulators that must be related to

Value

group

genereggroup

a list of Seurat object, one per each omic.

each other

a named list with simulation parameters for each omics as values.

Examples

```
omicsList <- sc_omicData(list("scRNA-seq"))
cell_types <- list('Treg' = c(1:10),'cDC' = c(11:20),'CD4_TEM' = c(21:30),
'Memory_B' = c(31:40))
#estimated_params <- sc_param_estimation(omicsList, cell_types)</pre>
```

Group for which to estimate parameters

shuffle_group_matrix 25

shuffle_group_matrix shuffle_group_matrix, Reorder cell type-specific expression matrix during co-expression simulation. Copied from ACORDE (https://github.com/ConesaLab/acorde) to facilitate stability and running within our scripts

Description

This function is used internally by accorde to perform the shuffling of simulated features for an individual cell type, as part of the co-expression simulation process. The function is called recursively by simulate_coexpression() to perform the simulation on a full scRNA-seq matrix.

Usage

shuffle_group_matrix(sim_data, feature_ids, group_pattern, ngroups)

Arguments

sim_data	A count matrix with features as rows and cells as columns. Feature IDs must be included in an additional column named feature.
feature_ids	A two-column tibble containing top and bottom columns, each including the feature IDs of features to be used as highly or lowly expressed when shuffling by the indicated expression pattern.
group_pattern	A logical vector, containing TRUE to indicate that high expression in that cell type is desired and FALSE if the opposite. The vector must be ordered as the cell types in sim_data.
ngroups	An integer indicating the number of groups that top and bottom features should be divided into. It is computed by dividing the number of features selected as highly/lowly expressed by the size of the clusters that are to be generated.

Value

An expression matrix, with the same characteristics as sim_data, and a number of features defined as the total amount of top/bottom features selected divided by the number of clusters for which co-expression patterns where supplied.

simulate_coexpression simulate coexpression

Description

Adapted from ACORDE (https://github.com/ConesaLab/acorde) to adapt to our data input type. Simulates coexpression of genes along celltypes

26 simulate_hyper

Usage

```
simulate_coexpression(
  sim_matrix,
  feature_no,
  cellTypes,
 patterns,
  cluster_size = NULL
)
```

Arguments

Matrix with rows as features and columns as cells sim_matrix feature_no Total number of features to be distributed between the coexpression clusters cellTypes list where the i-th element of the list contains the column indices for i-th experimental conditions. List must be a named list. Tibble with TRUE FALSE depicting the cluster patterns to simulate. Generated patterns by the user or by make_cluster_patterns.

OPTIONAL. It may be inputted by the user. By default, its the number of feacluster_size

tures divided by the number of patterns to generate.

Value

the simulated coexpression

imulate technical variability

Description

Function to simulate the technical variability (i.e. a multivariate hypergeometric on a gamma expression value array)

Usage

```
simulate_hyper(avgAbund, seqdepth = NULL, digits, max_val)
```

Arguments

avgAbund array containing the intensity values for each feature. It describes the intensity

of a single sample

seqdepth sequencing depth (i.e. sample size of the MH) digits number of digits for random number generation max_val max value for random number generation

Value

An array of length(avgAbund) elements representing the count values for the current sample

```
sparsim\_create\_simulation\_parameter \\ \textit{Create SPARSim simulation parameter}
```

Description

Function to create a SPARSim simulation parameter.

Usage

```
sparsim_create_simulation_parameter(
  intensity,
  variability,
  library_size,
  feature_names = NA,
  sample_names = NA,
  condition_name = NA,
  intensity_2 = NULL,
  variability_2 = NULL,
  p_bimod = NULL
)
```

Arguments

intensity	Array of gene expression intensity values
variability	Array of gene expression variability values
library_size	Array of library size values
feature_names	Array of feature names. It must be of the same length of intensity array. If NA (default), feature will be automatically named "gene_1", "gene_2", "gene_ <n>", where N = length(intensity)</n>
sample_names	Array of sample names. It must be of the same length of library_size array. If NA (defatul), sample will be automatically named " <condition_name>_cell1", "<condition_name>_cell2",, "<condition_name>_cell<m>", where M = length(library_size)</m></condition_name></condition_name></condition_name>
condition_name	Name associated to the current experimental condition. If NA (default), it will be set to "cond<11><12>", where 11 and 12 are two random letters.
intensity_2	Array of gene expression intensity values for the second expression mode, if simulating genes with bimodal gene expression. Entries containing NAs will be ignored. If NULL (default), no bimodal gene expression is simulated.
variability_2	Array of gene expression variability values for the second expression mode, if simulating genes with bimodal gene expression. If NULL (default), no bimodal gene expression is simulated.
p_bimod	Array of bimodal gene expression probabilities; the i-th value indicates the probability p of the i-th gene to be expressed in the first mode (i.e. the one specified in the i-th entries of parameters intensity and variability); with probability 1-p the i-th gene will be expressed in the second mode (i.e. the one specified in the i-th entries of parameters intensity_2 and variability_2)

Details

To simulate N feature (e.g. genes), user must specify N values of gene expression level and gene expression variability in the function input parameters intensity and variability, respectively. To simulate M samples (i.e. cells), user must specify M values of sample library size in the function input parameter library_size.

User can optionally specify the names to assign at the single feature and sample to simulate (function input parameters feature_names and sample_names, respectively, as well as the name of the experimental condition (function input parameter condition_name). If the user does not specify such information, the function will set some default values.

To simulate T different experimental conditions in a single count table, then T different simulation parameters must be created.

Value

SPARSim simulation parameter describing one experimental condition

sparsim_estimate_intensity

Estimate SPARSIm "intensity" parameter

Description

Function to estimate the intensity values from the genes in data. The intensity is computed as mean of normalized counts for each gene.

Usage

sparsim_estimate_intensity(data)

Arguments

data

normalized count data matrix (gene on rows, samples on columns). rownames(data) must contain gene names.

Details

This function is used in sparsim_estimate_parameter_from_data to compute SPARSim "intensity" parameter, given a real count table as input. If the count table contains more than one experimental condition, then the function is applied to each experimental conditions.

Value

An array of intensity values having N_genes elements (N_genes = nrow(data)). Array entries are named with gene names.

sparsim_estimate_library_size

Estimate SPARSim "library size" parameter

Description

Function to estimate the library sizes from the samples in data.

Usage

```
sparsim_estimate_library_size(data)
```

Arguments

data

raw count data matrix (gene on rows, samples on columns)

Details

This function is used in sparsim_estimate_parameter_from_data to compute SPARSim "library size" parameter, given a real count table as input. If the count table contains more than one experimental condition, then the function is applied to each experimental conditions.

Value

An array of library size values having N_samples elements (N_samples = ncol(data))

sparsim_estimate_parameter_from_data

 ${\it Estimate SPARS im simulation parameter from a given count table}$

Description

Function to estimate SPARSim simulation parameters (intensity, variability and library sizes) from a real count table. If the real count table contains more than one experimental condition, it is possible to estimate the parameters for each experimental condition.

Usage

```
sparsim_estimate_parameter_from_data(raw_data, norm_data, conditions)
```

imental conditions. List must be a named list.

Arguments

raw_data	count matrix (gene on rows, samples on columns) containing raw count data
norm_data	count matrix (gene on rows, samples on columns) containing normalized count data
conditions	list where the i-th element of the list contains the column indices for i-th exper-

30 sparsim_simulation

Value

A SPARSim simulation parameters

Description

Function to estimate the variability values from the genes in data.

Usage

```
sparsim_estimate_variability(data)
```

Arguments

data

raw count data matrix (gene on rows, samples on columns)

Details

This function is used in sparsim_estimate_parameter_from_data to compute SPARSim "variability" parameter, given a real count table as input. If the count table contains more than one experimental condition, then the function is applied to each experimental conditions.

Value

An array of variability values having N_genes elements (N_genes = nrow(data))

sparsim_simulation

Function to simulate a raw count table

Description

Function to simulate a raw count table

Usage

```
sparsim_simulation(
  dataset_parameter,
  output_sim_param_matrices = FALSE,
  output_batch_matrix = FALSE,
  count_data_simulation_seed = NULL
)
```

sparsim_simulation 31

Arguments

dataset_parameter

list containing, the intensity, variability and lib sizes of each experimental condition. It is the return value of "estimate_parameter_from_data" or could be created by the users

output_sim_param_matrices

boolean flag. If TRUE, the function will output two additional matrices, called abundance_matrix and variability_matrix, containing the gene intensities and gene variabilities used as simulation input. (Default: FALSE)

output_batch_matrix

boolean flag. If TRUE, the function will output an additional matrix, called batch_factors_matrix, containing the multiplicative factors used in batch effect simulation. (Default: FALSE)

count_data_simulation_seed

inherited from sparsim

Value

A list of 5 elements:

- count_matrix: the simulated count matrix (genes on rows, samples on columns)
- gene_matrix: the simulated gene expression levels (genes on rows, samples on columns)
- abundance_matrix: the input gene intensity values provided as input (genes on rows, samples on columns), if output_sim_param_matrices = TRUE. NULL otherwise.
- variability_matrix: the input gene variability values provided as input (genes on rows, samples on columns), if output_sim_param_matrices = TRUE. NULL otherwise.
- batch_factors_matrix: the multiplicative factor used in batch generation (genes on rows, samples on columns), if output_batch_matrix = TRUE. NULL otherwise.

Index

* datasets	scMOSim, 19
sampleData, 18	scOmicResults, 21
* internal	scOmicSettings, 21
MOSim-package, 3	scrna, 22
MOSimulation-class, 9	<pre>shuffle_group_matrix, 25</pre>
MOSimulator-class, 10	SimChIPseq-class
MOSimulatorRegion-class, 11	(MOSimulatorRegion-class), 11
	SimDNaseseq-class
associationList, 3	(MOSimulatorRegion-class), 11
	SimMethylseq-class
check_patterns, 4	(MOSimulatorRegion-class), 11
	SimmiRNAseq-class
discretize, 4	(MOSimulatorRegion-class), 11
	SimRNAseq-class
experimentalDesign, 5	(MOSimulatorRegion-class), 11
	SimTF-class (MOSimulatorRegion-class),
is.declared,6	11
make_association_dataframe, 6	simulate_coexpression, 25
make_cluster_patterns, 7	<pre>simulate_coexpression(), 25</pre>
MOSim (MOSim-package), 3	simulate_hyper, 26
- · · · · · · · · · · · · · · · · · · ·	<pre>sparsim_create_simulation_parameter,</pre>
mosim, 7, 8	27
MOSim-package, 3	sparsim_estimate_intensity, 28
MOSimulation-class, 9	sparsim_estimate_library_size, 29
MOSimulator-class, 10	sparsim_estimate_parameter_from_data
MOSimulatorRegion-class, 11	29
omicData, 8, 12	sparsim_estimate_variability, 30
omicResults, 13	sparsim_simulation, 30
omicSettings, 14	
omicSim, 8, 15	
order_FC_forMatrix, 16	
order_re_rormatrix, ro	
plotProfile, 17	
<pre>random_unif_interval, 18</pre>	
sampleData, 18	
sc_omicData, 23	
sc_param_estimation, 23	
scatac, 19	