In the other package vignettes, usage of ceRNAnetsim is explained in details. But in this vignette, some of commands which facitate to use of other vignettes.
data("TCGA_E9_A1N5_tumor")
data("TCGA_E9_A1N5_normal")
data("mirtarbasegene")
data("TCGA_E9_A1N5_mirnanormal")TCGA_E9_A1N5_mirnanormal %>%
  inner_join(mirtarbasegene, by= "miRNA") %>%
  inner_join(TCGA_E9_A1N5_normal, 
             by = c("Target"= "external_gene_name")) %>%
  select(Target, miRNA, total_read, gene_expression) %>%
  distinct() -> TCGA_E9_A1N5_mirnageneTCGA_E9_A1N5_tumor%>%
  inner_join(TCGA_E9_A1N5_normal, by= "external_gene_name")%>%
  select(patient = patient.x, 
         external_gene_name, 
         tumor_exp = gene_expression.x, 
         normal_exp = gene_expression.y)%>%
  distinct()%>%
  inner_join(TCGA_E9_A1N5_mirnagene, by = c("external_gene_name"= "Target"))%>%
  filter(tumor_exp != 0, normal_exp != 0)%>%
  mutate(FC= tumor_exp/normal_exp)%>%
  filter(external_gene_name== "HIST1H3H")
#> # A tibble: 13 × 8
#>    patient      external_gene_name tumor_exp norma…¹ miRNA total…² gene_…³    FC
#>    <chr>        <chr>                  <dbl>   <dbl> <chr>   <int>   <dbl> <dbl>
#>  1 TCGA-E9-A1N5 HIST1H3H                 825      27 hsa-…     193      27  30.6
#>  2 TCGA-E9-A1N5 HIST1H3H                 825      27 hsa-…       7      27  30.6
#>  3 TCGA-E9-A1N5 HIST1H3H                 825      27 hsa-…       3      27  30.6
#>  4 TCGA-E9-A1N5 HIST1H3H                 825      27 hsa-…     450      27  30.6
#>  5 TCGA-E9-A1N5 HIST1H3H                 825      27 hsa-…    1345      27  30.6
#>  6 TCGA-E9-A1N5 HIST1H3H                 825      27 hsa-…      14      27  30.6
#>  7 TCGA-E9-A1N5 HIST1H3H                 825      27 hsa-…       3      27  30.6
#>  8 TCGA-E9-A1N5 HIST1H3H                 825      27 hsa-…      35      27  30.6
#>  9 TCGA-E9-A1N5 HIST1H3H                 825      27 hsa-…     205      27  30.6
#> 10 TCGA-E9-A1N5 HIST1H3H                 825      27 hsa-…     270      27  30.6
#> 11 TCGA-E9-A1N5 HIST1H3H                 825      27 hsa-…      38      27  30.6
#> 12 TCGA-E9-A1N5 HIST1H3H                 825      27 hsa-…       1      27  30.6
#> 13 TCGA-E9-A1N5 HIST1H3H                 825      27 hsa-…       4      27  30.6
#> # … with abbreviated variable names ¹normal_exp, ²total_read, ³gene_expression
#HIST1H3H: interacts with various miRNA in dataset, so we can say that HIST1H3H is non-isolated competing element and increases to 30-fold.TCGA_E9_A1N5_tumor%>%
  inner_join(TCGA_E9_A1N5_normal, by= "external_gene_name") %>%
  select(patient = patient.x, 
         external_gene_name, 
         tumor_exp = gene_expression.x, 
         normal_exp = gene_expression.y) %>%
  distinct() %>%
  inner_join(TCGA_E9_A1N5_mirnagene, 
             by = c("external_gene_name"= "Target")) %>%
  filter(tumor_exp != 0, normal_exp != 0) %>%
  mutate(FC= tumor_exp/normal_exp) %>%
  filter(external_gene_name == "ACTB")
#> # A tibble: 46 × 8
#>    patient      external_gene_name tumor_exp norma…¹ miRNA total…² gene_…³    FC
#>    <chr>        <chr>                  <dbl>   <dbl> <chr>   <int>   <dbl> <dbl>
#>  1 TCGA-E9-A1N5 ACTB                  191469  101917 hsa-…   67599  101917  1.88
#>  2 TCGA-E9-A1N5 ACTB                  191469  101917 hsa-…   47266  101917  1.88
#>  3 TCGA-E9-A1N5 ACTB                  191469  101917 hsa-…   14554  101917  1.88
#>  4 TCGA-E9-A1N5 ACTB                  191469  101917 hsa-…     191  101917  1.88
#>  5 TCGA-E9-A1N5 ACTB                  191469  101917 hsa-…       5  101917  1.88
#>  6 TCGA-E9-A1N5 ACTB                  191469  101917 hsa-…   12625  101917  1.88
#>  7 TCGA-E9-A1N5 ACTB                  191469  101917 hsa-…    5297  101917  1.88
#>  8 TCGA-E9-A1N5 ACTB                  191469  101917 hsa-…    2379  101917  1.88
#>  9 TCGA-E9-A1N5 ACTB                  191469  101917 hsa-…    8041  101917  1.88
#> 10 TCGA-E9-A1N5 ACTB                  191469  101917 hsa-…    1522  101917  1.88
#> # … with 36 more rows, and abbreviated variable names ¹normal_exp, ²total_read,
#> #   ³gene_expression
#ACTB: interacts with various miRNA in dataset, so ACTB is not isolated node in network and increases to 1.87-fold.Firstly, clean dataset as individual gene has one expression value. And then filter genes which have expression values greater than 10.
TCGA_E9_A1N5_mirnagene %>%    
  group_by(Target) %>%        
  mutate(gene_expression= max(gene_expression)) %>%
  distinct() %>%
  ungroup() -> TCGA_E9_A1N5_mirnagene
TCGA_E9_A1N5_mirnagene%>%
  filter(gene_expression > 10)->TCGA_E9_A1N5_mirnageneWe can determine perturbation efficiency of an element on entire network as following:
TCGA_E9_A1N5_mirnagene %>% 
  priming_graph(competing_count = gene_expression, 
                miRNA_count = total_read)%>%
  calc_perturbation(node_name= "ACTB", cycle=10, how= 1.87,limit = 0.1)On the other hand, the perturbation eficiency of ATCB gene is higher, when this gene is regulated with 30-fold upregulation like in HIST1H3H.
sessionInfo()
#> R version 4.2.1 (2022-06-23)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 20.04.5 LTS
#> 
#> Matrix products: default
#> BLAS:   /home/biocbuild/bbs-3.16-bioc/R/lib/libRblas.so
#> LAPACK: /home/biocbuild/bbs-3.16-bioc/R/lib/libRlapack.so
#> 
#> locale:
#>  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
#>  [3] LC_TIME=en_GB              LC_COLLATE=C              
#>  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
#>  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
#>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] ceRNAnetsim_1.10.0 tidygraph_1.2.2    dplyr_1.0.10      
#> 
#> loaded via a namespace (and not attached):
#>  [1] tidyselect_1.2.0   xfun_0.34          bslib_0.4.0        graphlayouts_0.8.3
#>  [5] purrr_0.3.5        listenv_0.8.0      colorspace_2.0-3   vctrs_0.5.0       
#>  [9] generics_0.1.3     viridisLite_0.4.1  htmltools_0.5.3    yaml_2.3.6        
#> [13] utf8_1.2.2         rlang_1.0.6        jquerylib_0.1.4    pillar_1.8.1      
#> [17] withr_2.5.0        glue_1.6.2         DBI_1.1.3          tweenr_2.0.2      
#> [21] lifecycle_1.0.3    stringr_1.4.1      munsell_0.5.0      gtable_0.3.1      
#> [25] future_1.28.0      codetools_0.2-18   evaluate_0.17      knitr_1.40        
#> [29] fastmap_1.1.0      parallel_4.2.1     fansi_1.0.3        furrr_0.3.1       
#> [33] Rcpp_1.0.9         scales_1.2.1       cachem_1.0.6       jsonlite_1.8.3    
#> [37] farver_2.1.1       parallelly_1.32.1  gridExtra_2.3      ggforce_0.4.1     
#> [41] ggplot2_3.3.6      digest_0.6.30      stringi_1.7.8      ggrepel_0.9.1     
#> [45] polyclip_1.10-4    grid_4.2.1         cli_3.4.1          tools_4.2.1       
#> [49] magrittr_2.0.3     sass_0.4.2         tibble_3.1.8       ggraph_2.1.0      
#> [53] tidyr_1.2.1        pkgconfig_2.0.3    MASS_7.3-58.1      viridis_0.6.2     
#> [57] assertthat_0.2.1   rmarkdown_2.17     R6_2.5.1           globals_0.16.1    
#> [61] igraph_1.3.5       compiler_4.2.1