Please use the devel version of the AnVIL Bioconductor package.
library(cBioPortalData)
library(AnVIL)The cBioPortal for Cancer Genomics website is a great resource for interactive exploration of study datasets. However, it does not easily allow the analyst to obtain and further analyze the data.
We’ve developed the cBioPortalData package to fill this need to
programmatically access the data resources available on the cBioPortal.
The cBioPortalData package provides an R interface for accessing the
cBioPortal study data within the Bioconductor ecosystem.
It downloads study data from the cBioPortal API (https://cbioportal.org/api) and uses Bioconductor infrastructure to cache and represent the data.
We use the MultiAssayExperiment (@Ramos2017-er) package to integrate,
represent, and coordinate multiple experiments for the studies availble in the
cBioPortal. This package in conjunction with curatedTCGAData give access to
a large trove of publicly available bioinformatic data. Please see our
publication here (@Ramos2020-ya).
We demonstrate common use cases of cBioPortalData and curatedTCGAData
during Bioconductor conference
workshops.
This vignette is for users / developers who would like to learn more about
the available data in cBioPortalData and to learn how to hit other endpoints
in the cBioPortal API implementation. The functionality demonstrated
here is used internally by the package to create integrative representations
of study datasets.
Note. To avoid overloading the API service, the API was designed to only query a part of the study data. Therefore, the user is required to enter either a set of genes of interest or a gene panel identifier.
Obtaining the cBioPortal API representation object
(cbio <- cBioPortal())## service: cBioPortal
## tags(); use cbioportal$<tab completion>:
## # A tibble: 65 × 3
##    tag                 operation                                  summary       
##    <chr>               <chr>                                      <chr>         
##  1 Cancer Types        getAllCancerTypesUsingGET                  Get all cance…
##  2 Cancer Types        getCancerTypeUsingGET                      Get a cancer …
##  3 Clinical Attributes fetchClinicalAttributesUsingPOST           Fetch clinica…
##  4 Clinical Attributes getAllClinicalAttributesInStudyUsingGET    Get all clini…
##  5 Clinical Attributes getAllClinicalAttributesUsingGET           Get all clini…
##  6 Clinical Attributes getClinicalAttributeInStudyUsingGET        Get specified…
##  7 Clinical Data       fetchAllClinicalDataInStudyUsingPOST       Fetch clinica…
##  8 Clinical Data       fetchClinicalDataUsingPOST                 Fetch clinica…
##  9 Clinical Data       getAllClinicalDataInStudyUsingGET          Get all clini…
## 10 Clinical Data       getAllClinicalDataOfPatientInStudyUsingGET Get all clini…
## # … with 55 more rows
## tag values:
##   Cancer Types, Clinical Attributes, Clinical Data, Copy Number
##   Segments, Discrete Copy Number Alterations, Gene Panel Data, Gene
##   Panels, Generic Assay Data, Generic Assays, Genes, Info, Molecular
##   Data, Molecular Profiles, Mutations, Patients, Sample Lists, Samples,
##   Server running status, Studies, Treatments
## schemas():
##   AlleleSpecificCopyNumber, AlterationFilter,
##   AndedPatientTreatmentFilters, AndedSampleTreatmentFilters,
##   CancerStudy
##   # ... with 58 more elementsCheck available tags, operations, and descriptions as a tibble:
tags(cbio)## # A tibble: 65 × 3
##    tag                 operation                                  summary       
##    <chr>               <chr>                                      <chr>         
##  1 Cancer Types        getAllCancerTypesUsingGET                  Get all cance…
##  2 Cancer Types        getCancerTypeUsingGET                      Get a cancer …
##  3 Clinical Attributes fetchClinicalAttributesUsingPOST           Fetch clinica…
##  4 Clinical Attributes getAllClinicalAttributesInStudyUsingGET    Get all clini…
##  5 Clinical Attributes getAllClinicalAttributesUsingGET           Get all clini…
##  6 Clinical Attributes getClinicalAttributeInStudyUsingGET        Get specified…
##  7 Clinical Data       fetchAllClinicalDataInStudyUsingPOST       Fetch clinica…
##  8 Clinical Data       fetchClinicalDataUsingPOST                 Fetch clinica…
##  9 Clinical Data       getAllClinicalDataInStudyUsingGET          Get all clini…
## 10 Clinical Data       getAllClinicalDataOfPatientInStudyUsingGET Get all clini…
## # … with 55 more rowshead(tags(cbio)$operation)## [1] "getAllCancerTypesUsingGET"              
## [2] "getCancerTypeUsingGET"                  
## [3] "fetchClinicalAttributesUsingPOST"       
## [4] "getAllClinicalAttributesInStudyUsingGET"
## [5] "getAllClinicalAttributesUsingGET"       
## [6] "getClinicalAttributeInStudyUsingGET"searchOps(cbio, "clinical")## [1] "getAllClinicalAttributesUsingGET"          
## [2] "fetchClinicalAttributesUsingPOST"          
## [3] "fetchClinicalDataUsingPOST"                
## [4] "getAllClinicalAttributesInStudyUsingGET"   
## [5] "getClinicalAttributeInStudyUsingGET"       
## [6] "getAllClinicalDataInStudyUsingGET"         
## [7] "fetchAllClinicalDataInStudyUsingPOST"      
## [8] "getAllClinicalDataOfPatientInStudyUsingGET"
## [9] "getAllClinicalDataOfSampleInStudyUsingGET"Get the list of studies available:
getStudies(cbio)## # A tibble: 365 × 13
##    name    descr…¹ publi…² groups status impor…³ allSa…⁴ readP…⁵ studyId cance…⁶
##    <chr>   <chr>   <lgl>   <chr>   <int> <chr>     <int> <lgl>   <chr>   <chr>  
##  1 Adreno… "TCGA … TRUE    "PUBL…      0 2022-1…      92 TRUE    acc_tc… acc    
##  2 Acute … "Compr… TRUE    "PUBL…      0 2022-1…      93 TRUE    all_st… bll    
##  3 Hypodi… "Whole… TRUE    ""          0 2022-1…      44 TRUE    all_st… myeloid
##  4 Adenoi… "Whole… TRUE    "ACYC…      0 2022-1…      12 TRUE    acbc_m… acbc   
##  5 Adenoi… "Targe… TRUE    "ACYC…      0 2022-1…      28 TRUE    acyc_f… acyc   
##  6 Adenoi… "Whole… TRUE    "ACYC…      0 2022-1…      25 TRUE    acyc_j… acyc   
##  7 Adenoi… "WGS o… TRUE    "ACYC…      0 2022-1…     102 TRUE    acyc_m… acyc   
##  8 Adenoi… "Whole… TRUE    "ACYC"      0 2022-1…      10 TRUE    acyc_m… acyc   
##  9 Adenoi… "Whole… TRUE    "ACYC…      0 2022-1…      24 TRUE    acyc_s… acyc   
## 10 Acute … "Whole… TRUE    "PUBL…      0 2022-1…      73 TRUE    all_st… bll    
## # … with 355 more rows, 3 more variables: referenceGenome <chr>, pmid <chr>,
## #   citation <chr>, and abbreviated variable names ¹description, ²publicStudy,
## #   ³importDate, ⁴allSampleCount, ⁵readPermission, ⁶cancerTypeIdObtain the clinical data for a particular study:
clinicalData(cbio, "acc_tcga")## # A tibble: 92 × 85
##    patie…¹ AGE   AJCC_…² ATYPI…³ CAPSU…⁴ CLIN_…⁵ CT_SC…⁶ CYTOP…⁷ DAYS_…⁸ DFS_M…⁹
##    <chr>   <chr> <chr>   <chr>   <chr>   <chr>   <chr>   <chr>   <chr>   <chr>  
##  1 TCGA-O… 58    Stage … Atypic… Invasi… M0      [Unkno… Cytopl… 0       24.77  
##  2 TCGA-O… 44    Stage … Atypic… Invasi… M1      YES     Cytopl… 0       9.49   
##  3 TCGA-O… 23    Stage … Atypic… Invasi… M0      YES     Cytopl… 0       37.75  
##  4 TCGA-O… 23    Stage … Atypic… Invasi… M1      YES     Cytopl… 0       4.14   
##  5 TCGA-O… 30    Stage … Atypic… Invasi… M0      YES     Cytopl… 0       1.64   
##  6 TCGA-O… 29    Stage … Atypic… Invasi… M0      YES     Cytopl… 0       88.80  
##  7 TCGA-O… 30    Stage … Atypic… Invasi… M0      YES     Cytopl… 0       5.32   
##  8 TCGA-O… 66    Stage … Atypic… Invasi… M0      YES     Cytopl… 0       17.41  
##  9 TCGA-O… 22    Stage … Atypic… Invasi… M0      YES     Cytopl… 0       13.60  
## 10 TCGA-O… 53    Stage … Atypic… Invasi… M1      YES     Cytopl… 0       <NA>   
## # … with 82 more rows, 75 more variables: DFS_STATUS <chr>,
## #   DIFFUSE_ARCHITECTURE <chr>, ETHNICITY <chr>, FORM_COMPLETION_DATE <chr>,
## #   HISTOLOGICAL_DIAGNOSIS <chr>, HISTORY_ADRENAL_HORMONE_EXCESS <chr>,
## #   HISTORY_BASIS_ADRENAL_HORMONE_DX <chr>, HISTORY_NEOADJUVANT_TRTYN <chr>,
## #   HISTORY_OTHER_MALIGNANCY <chr>, ICD_10 <chr>, ICD_O_3_HISTOLOGY <chr>,
## #   ICD_O_3_SITE <chr>, INFORMED_CONSENT_VERIFIED <chr>,
## #   INITIAL_PATHOLOGIC_DX_YEAR <chr>, LATERALITY <chr>, …A table of molecular profiles for a particular study can be obtained by running the following:
mols <- molecularProfiles(cbio, "acc_tcga")
mols[["molecularProfileId"]]## [1] "acc_tcga_rppa"                                     
## [2] "acc_tcga_rppa_Zscores"                             
## [3] "acc_tcga_gistic"                                   
## [4] "acc_tcga_linear_CNA"                               
## [5] "acc_tcga_mutations"                                
## [6] "acc_tcga_methylation_hm450"                        
## [7] "acc_tcga_rna_seq_v2_mrna"                          
## [8] "acc_tcga_rna_seq_v2_mrna_median_Zscores"           
## [9] "acc_tcga_rna_seq_v2_mrna_median_all_sample_Zscores"The data for a molecular profile can be obtained with prior knowledge of
available entrezGeneIds:
molecularData(cbio, molecularProfileId = "acc_tcga_rna_seq_v2_mrna",
    entrezGeneIds = c(1, 2),
    sampleIds = c("TCGA-OR-A5J1-01",  "TCGA-OR-A5J2-01")
)## $acc_tcga_rna_seq_v2_mrna
## # A tibble: 4 × 8
##   uniqueSampleKey         uniqu…¹ entre…² molec…³ sampl…⁴ patie…⁵ studyId  value
##   <chr>                   <chr>     <int> <chr>   <chr>   <chr>   <chr>    <dbl>
## 1 VENHQS1PUi1BNUoxLTAxOm… VENHQS…       1 acc_tc… TCGA-O… TCGA-O… acc_tc… 1.63e1
## 2 VENHQS1PUi1BNUoxLTAxOm… VENHQS…       2 acc_tc… TCGA-O… TCGA-O… acc_tc… 1.04e4
## 3 VENHQS1PUi1BNUoyLTAxOm… VENHQS…       1 acc_tc… TCGA-O… TCGA-O… acc_tc… 9.60e0
## 4 VENHQS1PUi1BNUoyLTAxOm… VENHQS…       2 acc_tc… TCGA-O… TCGA-O… acc_tc… 9.84e3
## # … with abbreviated variable names ¹uniquePatientKey, ²entrezGeneId,
## #   ³molecularProfileId, ⁴sampleId, ⁵patientIdA list of all the genes provided by the API service including hugo symbols,
and entrez gene IDs can be obtained by using the geneTable function:
geneTable(cbio)## # A tibble: 1,000 × 3
##    entrezGeneId hugoGeneSymbol  type 
##           <int> <chr>           <chr>
##  1        -3624 MIR-10A/10A     miRNA
##  2        -3712 MIR-559/559     miRNA
##  3        -3042 MIR-4315-2/4315 miRNA
##  4        -3204 MIR-4535/4535   miRNA
##  5        -3763 MIR-607/607     miRNA
##  6        -3457 MIR-1269A/1269A miRNA
##  7        -3286 MIR-4679-1/4679 miRNA
##  8        -3295 MIR-4686/4686   miRNA
##  9        -3054 MIR-4325/4325   miRNA
## 10        -3510 MIR-124A-1/5P   miRNA
## # … with 990 more rowsgenePanels(cbio)## # A tibble: 55 × 2
##    description                                                           geneP…¹
##    <chr>                                                                 <chr>  
##  1 Targeted (27 cancer genes) sequencing of adenoid cystic carcinomas o… ACYC_F…
##  2 Targeted panel of 232 genes.                                          Agilent
##  3 Targeted panel of 8 genes.                                            AmpliS…
##  4 ARCHER-HEME gene panel (199 genes)                                    ARCHER…
##  5 ARCHER-SOLID Gene Panel (62 genes)                                    ARCHER…
##  6 Targeted sequencing of various tumor types via bait v3.               bait_v3
##  7 Targeted sequencing of various tumor types via bait v4.               bait_v4
##  8 Targeted sequencing of various tumor types via bait v5.               bait_v5
##  9 Targeted panel of 387 cancer-related genes.                           bcc_un…
## 10 Research (CMO) IMPACT-Heme gene panel version 3.                      HemePA…
## # … with 45 more rows, and abbreviated variable name ¹genePanelIdgetGenePanel(cbio, "IMPACT341")## # A tibble: 341 × 2
##    entrezGeneId hugoGeneSymbol
##           <int> <chr>         
##  1           25 ABL1          
##  2        84142 ABRAXAS1      
##  3          207 AKT1          
##  4          208 AKT2          
##  5        10000 AKT3          
##  6          238 ALK           
##  7          242 ALOX12B       
##  8       139285 AMER1         
##  9          324 APC           
## 10          367 AR            
## # … with 331 more rowsgprppa <- genePanelMolecular(cbio,
    molecularProfileId = "acc_tcga_rppa",
    sampleListId = "acc_tcga_all")
gprppa## # A tibble: 92 × 7
##    uniqueSampleKey               uniqu…¹ molec…² sampl…³ patie…⁴ studyId profi…⁵
##    <chr>                         <chr>   <chr>   <chr>   <chr>   <chr>   <lgl>  
##  1 VENHQS1PUi1BNUoxLTAxOmFjY190… VENHQS… acc_tc… TCGA-O… TCGA-O… acc_tc… FALSE  
##  2 VENHQS1PUi1BNUoyLTAxOmFjY190… VENHQS… acc_tc… TCGA-O… TCGA-O… acc_tc… TRUE   
##  3 VENHQS1PUi1BNUozLTAxOmFjY190… VENHQS… acc_tc… TCGA-O… TCGA-O… acc_tc… TRUE   
##  4 VENHQS1PUi1BNUo0LTAxOmFjY190… VENHQS… acc_tc… TCGA-O… TCGA-O… acc_tc… FALSE  
##  5 VENHQS1PUi1BNUo1LTAxOmFjY190… VENHQS… acc_tc… TCGA-O… TCGA-O… acc_tc… FALSE  
##  6 VENHQS1PUi1BNUo2LTAxOmFjY190… VENHQS… acc_tc… TCGA-O… TCGA-O… acc_tc… TRUE   
##  7 VENHQS1PUi1BNUo3LTAxOmFjY190… VENHQS… acc_tc… TCGA-O… TCGA-O… acc_tc… TRUE   
##  8 VENHQS1PUi1BNUo4LTAxOmFjY190… VENHQS… acc_tc… TCGA-O… TCGA-O… acc_tc… TRUE   
##  9 VENHQS1PUi1BNUo5LTAxOmFjY190… VENHQS… acc_tc… TCGA-O… TCGA-O… acc_tc… TRUE   
## 10 VENHQS1PUi1BNUpBLTAxOmFjY190… VENHQS… acc_tc… TCGA-O… TCGA-O… acc_tc… TRUE   
## # … with 82 more rows, and abbreviated variable names ¹uniquePatientKey,
## #   ²molecularProfileId, ³sampleId, ⁴patientId, ⁵profiledgetGenePanelMolecular(cbio,
    molecularProfileIds = c("acc_tcga_rppa", "acc_tcga_gistic"),
    sampleIds = allSamples(cbio, "acc_tcga")$sampleId
)## # A tibble: 184 × 7
##    uniqueSampleKey               uniqu…¹ molec…² sampl…³ patie…⁴ studyId profi…⁵
##    <chr>                         <chr>   <chr>   <chr>   <chr>   <chr>   <lgl>  
##  1 VENHQS1PUi1BNUoxLTAxOmFjY190… VENHQS… acc_tc… TCGA-O… TCGA-O… acc_tc… TRUE   
##  2 VENHQS1PUi1BNUoyLTAxOmFjY190… VENHQS… acc_tc… TCGA-O… TCGA-O… acc_tc… TRUE   
##  3 VENHQS1PUi1BNUozLTAxOmFjY190… VENHQS… acc_tc… TCGA-O… TCGA-O… acc_tc… TRUE   
##  4 VENHQS1PUi1BNUo0LTAxOmFjY190… VENHQS… acc_tc… TCGA-O… TCGA-O… acc_tc… TRUE   
##  5 VENHQS1PUi1BNUo1LTAxOmFjY190… VENHQS… acc_tc… TCGA-O… TCGA-O… acc_tc… TRUE   
##  6 VENHQS1PUi1BNUo2LTAxOmFjY190… VENHQS… acc_tc… TCGA-O… TCGA-O… acc_tc… TRUE   
##  7 VENHQS1PUi1BNUo3LTAxOmFjY190… VENHQS… acc_tc… TCGA-O… TCGA-O… acc_tc… TRUE   
##  8 VENHQS1PUi1BNUo4LTAxOmFjY190… VENHQS… acc_tc… TCGA-O… TCGA-O… acc_tc… TRUE   
##  9 VENHQS1PUi1BNUo5LTAxOmFjY190… VENHQS… acc_tc… TCGA-O… TCGA-O… acc_tc… TRUE   
## 10 VENHQS1PUi1BNUpBLTAxOmFjY190… VENHQS… acc_tc… TCGA-O… TCGA-O… acc_tc… TRUE   
## # … with 174 more rows, and abbreviated variable names ¹uniquePatientKey,
## #   ²molecularProfileId, ³sampleId, ⁴patientId, ⁵profiledgetDataByGenes(cbio, "acc_tcga", genePanelId = "IMPACT341",
    molecularProfileId = "acc_tcga_rppa", sampleListId = "acc_tcga_rppa")## $acc_tcga_rppa
## # A tibble: 2,622 × 9
##    uniqueSampl…¹ uniqu…² entre…³ molec…⁴ sampl…⁵ patie…⁶ studyId   value hugoG…⁷
##    <chr>         <chr>     <int> <chr>   <chr>   <chr>   <chr>     <dbl> <chr>  
##  1 VENHQS1PUi1B… VENHQS…    5728 acc_tc… TCGA-O… TCGA-O… acc_tc…  0.303  PTEN   
##  2 VENHQS1PUi1B… VENHQS…     595 acc_tc… TCGA-O… TCGA-O… acc_tc…  0.151  CCND1  
##  3 VENHQS1PUi1B… VENHQS…     596 acc_tc… TCGA-O… TCGA-O… acc_tc…  0.0994 BCL2   
##  4 VENHQS1PUi1B… VENHQS…   10413 acc_tc… TCGA-O… TCGA-O… acc_tc…  0.147  YAP1   
##  5 VENHQS1PUi1B… VENHQS…    3791 acc_tc… TCGA-O… TCGA-O… acc_tc… -0.268  KDR    
##  6 VENHQS1PUi1B… VENHQS…    7157 acc_tc… TCGA-O… TCGA-O… acc_tc…  0.0161 TP53   
##  7 VENHQS1PUi1B… VENHQS…     207 acc_tc… TCGA-O… TCGA-O… acc_tc… -0.580  AKT1   
##  8 VENHQS1PUi1B… VENHQS…     208 acc_tc… TCGA-O… TCGA-O… acc_tc… -0.580  AKT2   
##  9 VENHQS1PUi1B… VENHQS…   57521 acc_tc… TCGA-O… TCGA-O… acc_tc…  0.0258 RPTOR  
## 10 VENHQS1PUi1B… VENHQS…    2064 acc_tc… TCGA-O… TCGA-O… acc_tc…  0.130  ERBB2  
## # … with 2,612 more rows, and abbreviated variable names ¹uniqueSampleKey,
## #   ²uniquePatientKey, ³entrezGeneId, ⁴molecularProfileId, ⁵sampleId,
## #   ⁶patientId, ⁷hugoGeneSymbolIt uses the getAllGenesUsingGET function from the API.
To display all available sample list identifiers for a particular study ID,
one can use the sampleLists function:
sampleLists(cbio, "acc_tcga")## # A tibble: 9 × 5
##   category                                      name     descr…¹ sampl…² studyId
##   <chr>                                         <chr>    <chr>   <chr>   <chr>  
## 1 all_cases_with_mrna_rnaseq_data               Samples… Sample… acc_tc… acc_tc…
## 2 all_cases_in_study                            All sam… All sa… acc_tc… acc_tc…
## 3 all_cases_with_cna_data                       Samples… Sample… acc_tc… acc_tc…
## 4 all_cases_with_mutation_and_cna_data          Samples… Sample… acc_tc… acc_tc…
## 5 all_cases_with_mutation_and_cna_and_mrna_data Complet… Sample… acc_tc… acc_tc…
## 6 all_cases_with_methylation_data               Samples… Sample… acc_tc… acc_tc…
## 7 all_cases_with_methylation_data               Samples… Sample… acc_tc… acc_tc…
## 8 all_cases_with_rppa_data                      Samples… Sample… acc_tc… acc_tc…
## 9 all_cases_with_mutation_data                  Samples… Sample… acc_tc… acc_tc…
## # … with abbreviated variable names ¹description, ²sampleListIdOne can obtain the barcodes / identifiers for each sample using a specific sample list identifier, in this case we want all the copy number alteration samples:
samplesInSampleLists(cbio, "acc_tcga_cna")## CharacterList of length 1
## [["acc_tcga_cna"]] TCGA-OR-A5J1-01 TCGA-OR-A5J2-01 ... TCGA-PK-A5HC-01This returns a CharacterList of all identifiers for each sample list
identifier input:
samplesInSampleLists(cbio, c("acc_tcga_cna", "acc_tcga_cnaseq"))## CharacterList of length 2
## [["acc_tcga_cna"]] TCGA-OR-A5J1-01 TCGA-OR-A5J2-01 ... TCGA-PK-A5HC-01
## [["acc_tcga_cnaseq"]] TCGA-OR-A5J1-01 TCGA-OR-A5J2-01 ... TCGA-PK-A5HC-01allSamples(cbio, "acc_tcga")## # A tibble: 92 × 6
##    uniqueSampleKey                  uniquePati…¹ sampl…² sampl…³ patie…⁴ studyId
##    <chr>                            <chr>        <chr>   <chr>   <chr>   <chr>  
##  1 VENHQS1PUi1BNUoxLTAxOmFjY190Y2dh VENHQS1PUi1… Primar… TCGA-O… TCGA-O… acc_tc…
##  2 VENHQS1PUi1BNUoyLTAxOmFjY190Y2dh VENHQS1PUi1… Primar… TCGA-O… TCGA-O… acc_tc…
##  3 VENHQS1PUi1BNUozLTAxOmFjY190Y2dh VENHQS1PUi1… Primar… TCGA-O… TCGA-O… acc_tc…
##  4 VENHQS1PUi1BNUo0LTAxOmFjY190Y2dh VENHQS1PUi1… Primar… TCGA-O… TCGA-O… acc_tc…
##  5 VENHQS1PUi1BNUo1LTAxOmFjY190Y2dh VENHQS1PUi1… Primar… TCGA-O… TCGA-O… acc_tc…
##  6 VENHQS1PUi1BNUo2LTAxOmFjY190Y2dh VENHQS1PUi1… Primar… TCGA-O… TCGA-O… acc_tc…
##  7 VENHQS1PUi1BNUo3LTAxOmFjY190Y2dh VENHQS1PUi1… Primar… TCGA-O… TCGA-O… acc_tc…
##  8 VENHQS1PUi1BNUo4LTAxOmFjY190Y2dh VENHQS1PUi1… Primar… TCGA-O… TCGA-O… acc_tc…
##  9 VENHQS1PUi1BNUo5LTAxOmFjY190Y2dh VENHQS1PUi1… Primar… TCGA-O… TCGA-O… acc_tc…
## 10 VENHQS1PUi1BNUpBLTAxOmFjY190Y2dh VENHQS1PUi1… Primar… TCGA-O… TCGA-O… acc_tc…
## # … with 82 more rows, and abbreviated variable names ¹uniquePatientKey,
## #   ²sampleType, ³sampleId, ⁴patientIdgetSampleInfo(cbio, studyId = "acc_tcga",
    sampleListIds = c("acc_tcga_rppa", "acc_tcga_gistic"))## # A tibble: 1 × 1
##   message                               
##   <chr>                                 
## 1 Sample list not found: acc_tcga_gisticThe cBioPortal API representation is not limited to the functions
provided in the package. Users who wish to make use of any of the endpoints
provided by the API specification should use the dollar sign $ function
to access the endpoints.
First the user should see the input for a particular endpoint as detailed in the API:
cbio$getGeneUsingGET## getGeneUsingGET 
## Get a gene 
## 
## Parameters:
##   geneId (string)
##     Entrez Gene ID or Hugo Gene Symbol e.g. 1 or A1BGThen the user can provide such input:
(resp <- cbio$getGeneUsingGET("BRCA1"))## Response [https://www.cbioportal.org/api/genes/BRCA1]
##   Date: 2023-01-04 21:24
##   Status: 200
##   Content-Type: application/json
##   Size: 69 Bwhich will require the user to ‘translate’ the response using httr::content:
httr::content(resp)## $entrezGeneId
## [1] 672
## 
## $hugoGeneSymbol
## [1] "BRCA1"
## 
## $type
## [1] "protein-coding"For users who wish to clear the entire cBioPortalData cache, it is
recommended that they use:
unlink("~/.cache/cBioPortalData/")sessionInfo()## R version 4.2.2 (2022-10-31)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.5 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.16-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.16-bioc/R/lib/libRlapack.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB              LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] survminer_0.4.9             ggpubr_0.5.0               
##  [3] ggplot2_3.4.0               survival_3.4-0             
##  [5] cBioPortalData_2.10.3       MultiAssayExperiment_1.24.0
##  [7] SummarizedExperiment_1.28.0 Biobase_2.58.0             
##  [9] GenomicRanges_1.50.2        GenomeInfoDb_1.34.6        
## [11] IRanges_2.32.0              S4Vectors_0.36.1           
## [13] BiocGenerics_0.44.0         MatrixGenerics_1.10.0      
## [15] matrixStats_0.63.0          AnVIL_1.10.1               
## [17] dplyr_1.0.10                BiocStyle_2.26.0           
## 
## loaded via a namespace (and not attached):
##   [1] backports_1.4.1           BiocBaseUtils_1.0.0      
##   [3] BiocFileCache_2.6.0       RCircos_1.2.2            
##   [5] splines_4.2.2             BiocParallel_1.32.5      
##   [7] TCGAutils_1.18.0          digest_0.6.31            
##   [9] htmltools_0.5.4           magick_2.7.3             
##  [11] fansi_1.0.3               magrittr_2.0.3           
##  [13] memoise_2.0.1             tzdb_0.3.0               
##  [15] limma_3.54.0              Biostrings_2.66.0        
##  [17] readr_2.1.3               vroom_1.6.0              
##  [19] prettyunits_1.1.1         colorspace_2.0-3         
##  [21] blob_1.2.3                rvest_1.0.3              
##  [23] rappdirs_0.3.3            xfun_0.36                
##  [25] crayon_1.5.2              RCurl_1.98-1.9           
##  [27] jsonlite_1.8.4            RaggedExperiment_1.22.0  
##  [29] zoo_1.8-11                glue_1.6.2               
##  [31] GenomicDataCommons_1.22.0 gtable_0.3.1             
##  [33] zlibbioc_1.44.0           XVector_0.38.0           
##  [35] DelayedArray_0.24.0       car_3.1-1                
##  [37] abind_1.4-5               scales_1.2.1             
##  [39] futile.options_1.0.1      DBI_1.1.3                
##  [41] rstatix_0.7.1             miniUI_0.1.1.1           
##  [43] Rcpp_1.0.9                gridtext_0.1.5           
##  [45] xtable_1.8-4              progress_1.2.2           
##  [47] archive_1.1.5             bit_4.0.5                
##  [49] km.ci_0.5-6               DT_0.26                  
##  [51] htmlwidgets_1.6.0         httr_1.4.4               
##  [53] ellipsis_0.3.2            farver_2.1.1             
##  [55] pkgconfig_2.0.3           XML_3.99-0.13            
##  [57] rapiclient_0.1.3          sass_0.4.4               
##  [59] dbplyr_2.2.1              utf8_1.2.2               
##  [61] RJSONIO_1.3-1.6           labeling_0.4.2           
##  [63] tidyselect_1.2.0          rlang_1.0.6              
##  [65] later_1.3.0               AnnotationDbi_1.60.0     
##  [67] munsell_0.5.0             tools_4.2.2              
##  [69] cachem_1.0.6              cli_3.5.0                
##  [71] generics_0.1.3            RSQLite_2.2.20           
##  [73] broom_1.0.2               evaluate_0.19            
##  [75] stringr_1.5.0             fastmap_1.1.0            
##  [77] yaml_2.3.6                knitr_1.41               
##  [79] bit64_4.0.5               survMisc_0.5.6           
##  [81] purrr_1.0.0               KEGGREST_1.38.0          
##  [83] mime_0.12                 formatR_1.13             
##  [85] xml2_1.3.3                biomaRt_2.54.0           
##  [87] compiler_4.2.2            filelock_1.0.2           
##  [89] curl_4.3.3                png_0.1-8                
##  [91] ggsignif_0.6.4            tibble_3.1.8             
##  [93] bslib_0.4.2               stringi_1.7.8            
##  [95] highr_0.10                futile.logger_1.4.3      
##  [97] GenomicFeatures_1.50.3    lattice_0.20-45          
##  [99] Matrix_1.5-3              commonmark_1.8.1         
## [101] markdown_1.4              KMsurv_0.1-5             
## [103] RTCGAToolbox_2.28.0       vctrs_0.5.1              
## [105] pillar_1.8.1              lifecycle_1.0.3          
## [107] BiocManager_1.30.19       jquerylib_0.1.4          
## [109] data.table_1.14.6         bitops_1.0-7             
## [111] httpuv_1.6.7              rtracklayer_1.58.0       
## [113] R6_2.5.1                  BiocIO_1.8.0             
## [115] bookdown_0.31             promises_1.2.0.1         
## [117] gridExtra_2.3             codetools_0.2-18         
## [119] lambda.r_1.2.4            assertthat_0.2.1         
## [121] rjson_0.2.21              withr_2.5.0              
## [123] GenomicAlignments_1.34.0  Rsamtools_2.14.0         
## [125] GenomeInfoDbData_1.2.9    ggtext_0.1.2             
## [127] parallel_4.2.2            hms_1.1.2                
## [129] grid_4.2.2                tidyr_1.2.1              
## [131] rmarkdown_2.19            carData_3.0-5            
## [133] shiny_1.7.4               restfulr_0.0.15