
Package ‘epistasisGA’
April 10, 2023

Type Package

Title An R package to identify multi-snp effects in nuclear family
studies using the GADGETS method

Version 1.0.2

Description This package runs the GADGETS method to identify epistatic effects
in nuclear family studies. It also provides functions for permutation-based
inference and graphical visualization of the results.

License GPL-3

Encoding UTF-8

Imports BiocParallel, data.table, matrixStats, stats, survival,
igraph, batchtools, qgraph, grDevices, parallel, Rcpp (>=
0.11.0), ggplot2, grid, graphics, utils

Suggests Matrix, BiocStyle, knitr, rmarkdown, magrittr, kableExtra,
testthat (>= 3.0.0)

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.2.1

Depends R (>= 4.0)

biocViews Genetics, SNP, GeneticVariability

VignetteBuilder knitr

URL https://github.com/mnodzenski/epistasisGA

BugReports https://github.com/mnodzenski/epistasisGA/issues

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/epistasisGA

git_branch RELEASE_3_16

git_last_commit 89c2598

git_last_commit_date 2023-01-19

Date/Publication 2023-04-10

Author Michael Nodzenski [aut, cre],
Juno Krahn [ctb]

Maintainer Michael Nodzenski <michael.nodzenski@gmail.com>

1

https://github.com/mnodzenski/epistasisGA
https://github.com/mnodzenski/epistasisGA/issues


2 case

R topics documented:

case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
chrom.fitness.score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
combine.islands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
compute.graphical.scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
dad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
epistasis.test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
epistasisGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
GADGETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
global.test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
mom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
network.plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
permute.dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
preprocess.genetic.data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
run.gadgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
snp.annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Index 34

case SNP counts for the affected children of case-parent triads.

Description

A simulated dataset containing the counts of the alternate allele for 100 SNPs for the affected child
in 1000 simulated case-parent triads. Columns represent SNPs, rows are individuals. SNPs in
columns 51, 52, 76, and 77 represent a true risk pathway.

Usage

data(case)

Format

A data frame with 1000 rows and 100 variables



chrom.fitness.score 3

chrom.fitness.score A function to assign a fitness score to a chromosome

Description

This function assigns a fitness score to a chromosome. It is a wrapper for the Rcpp function
chrom_fitness_score.

Usage

chrom.fitness.score(
case.genetic.data,
complement.genetic.data,
case.comp.differences,
target.snps,
cases.minus.complements,
both.one.mat,
block.ld.mat,
weight.lookup,
case2.mat,
case0.mat,
comp2.mat,
comp0.mat,
n.different.snps.weight = 2,
n.both.one.weight = 1,
recessive.ref.prop = 0.75,
recode.test.stat = 1.64,
epi.test = FALSE,
dif.coding = FALSE

)

Arguments

case.genetic.data

The genetic data of the disease affected children from case-parent trios or af-
fected/unaffected sibling pairs. Columns are SNP allele counts, and rows are
individuals. The ordering of the columns must be consistent with the LD struc-
ture specified in block.ld.mat.

complement.genetic.data

A genetic dataset from the complements of the cases, where complement.genetic.data
= mother SNP counts + father SNP counts - case SNP counts. Columns are SNP
allele counts, rows are families. If using affected/unaffected sibling pairs, this
should contain the unaffected sibling genotypes.

case.comp.differences

A data frame or matrix indicating case.genetic.data != complement.genetic.data,
where rows correspond to individuals and columns correspond to snps.



4 chrom.fitness.score

target.snps A numeric vector of the columns corresponding to the collection of SNPs, or
chromosome, for which the fitness score will be computed.

cases.minus.complements

A matrix equal to case.genetic.data - complement genetic data.

both.one.mat A matrix whose elements indicate whether both the case and complement have
one copy of the minor allele, equal to case.genetic.data == 1 & complement.genetic.data
== 1.

block.ld.mat A logical, block diagonal matrix indicating whether the SNPs in case.genetic.data
should be considered to be in linkage disequilibrium. Note that this means the
ordering of the columns (SNPs) in case.genetic.data must be consistent with
the LD blocks specified in ld.block.mat. In the absence of outside informa-
tion, a reasonable default is to consider SNPs to be in LD if they are located on
the same biological chromosome.

weight.lookup A vector that maps a family weight to the weighted sum of the number of dif-
ferent SNPs and SNPs both equal to one.

case2.mat A logical matrix indicating whether, for each SNP, the case carries 2 copies of
the minor allele.

case0.mat A logical matrix indicating whether, for each SNP, the case carries 0 copies of
the minor allele.

comp2.mat A logical matrix indicating whether, for each SNP, the complement/unaffected
sibling carries 2 copies of the minor allele.

comp0.mat A logical matrix indicating whether, for each SNP, the complement/unaffected
sibling carries 0 copies of the minor allele.

n.different.snps.weight

The number by which the number of different SNPs between a case and comple-
ment/unaffected sibling is multiplied in computing the family weights. Defaults
to 2.

n.both.one.weight

The number by which the number of SNPs equal to 1 in both the case and com-
plement/unaffected sibling is multiplied in computing the family weights. De-
faults to 1.

recessive.ref.prop

The proportion to which the observed proportion of informative cases with the
provisional risk genotype(s) will be compared to determine whether to recode
the SNP as recessive. Defaults to 0.75.

recode.test.stat

For a given SNP, the minimum test statistic required to recode and recompute
the fitness score using recessive coding. Defaults to 1.64. See the GADGETS
paper for specific details.

epi.test A logical indicating whether the function should return the information required
to run function epistasis.test. for a given SNP. See the GADGETS paper
for specific details on the implementation of this argument.

dif.coding A logical indicating whether, for a given SNP, the case - complement genotype
difference should be coded as the sign of the difference (defaulting to false) or
the raw difference Defaults to FALSE.



chrom.fitness.score 5

Value

A list:

fitness_score The chromosome fitness score.

sum_dif_vecs The weighted mean difference vector corresponding to the chromosome, with each
element divided by it’s pseudo-standard error. The magnitudes of these values are not partic-
ularly important, but the sign is useful. A positive value for a given SNP indicates the minor
allele is positively associated with disease status, while a negative value implies the reference
(‘wild type’) allele is positively associated with the disease.

q The number of cases with a risk-related genotype at each locus over the total number of cases or
controls that have a full set of risk genotypes at each locus, among families where only one of
the case or control has the full risk set.

risk_set_alleles A vector indicating the number risk alleles a case or complement must have for
each SNP in target.snps for the case or complement to be classified as having the proposed
risk set. ’1+’ indicates at least one copy of the risk allele is required, while ’2’ indicates 2
copies are needed. The risk allele can be determined based on the signs of the elements of
sum_dif_vecs, where a negative value indicates the major allele for a given SNP is the risk
allele, while a positive value implicates the minor allele.

inf_families An integer vector of the informative family rows. Only returned if epi.test = TRUE.

Examples

data(case)
data(dad)
data(mom)
case <- as.matrix(case)
dad <- as.matrix(dad)
mom <- as.matrix(mom)
comp <- mom + dad - case
case.comp.diff <- case != comp
case.minus.comp <- case - comp
storage.mode(case.minus.comp) <- "integer"
both.one.mat <- case == 1 & comp == 1
case2.mat <- case == 2
case0.mat <- case == 0
comp2.mat <- comp == 2
comp0.mat <- comp == 0
library(Matrix)
block.ld.mat <- as.matrix(bdiag(list(

matrix(rep(TRUE, 25^2), nrow = 25),
matrix(rep(TRUE, 25^2), nrow = 25),
matrix(rep(TRUE, 25^2), nrow = 25),
matrix(rep(TRUE, 25^2), nrow = 25)

)))
weight.lookup <- vapply(seq_len(6), function(x) 2^x, 1)
storage.mode(weight.lookup) <- "integer"
chrom.fitness.score(

case, comp, case.comp.diff, c(1, 4, 7),
case.minus.comp, both.one.mat,
block.ld.mat, weight.lookup,



6 combine.islands

case2.mat, case0.mat, comp2.mat,
comp0.mat

)

combine.islands A function to combine GADGETS results for individual islands into a
single dataset.

Description

This function combines GADGETS results for individual islands into a single dataset.

Usage

combine.islands(
results.dir,
annotation.data,
preprocessed.list,
n.top.chroms.per.island = 1

)

Arguments

results.dir The directory in which individual island results from run.gadgets are saved.

annotation.data

A data frame containing columns ’RSID’, ’REF’ and ’ALT’. Column ’RSID’
gives the RSIDs for the input SNPs, with the rows ordered such that the first
RSID entry corresponds to the first SNP column in the data passed to function
preprocess.genetic.data, the second RSID corresponds to the second SNP
column, etc.

preprocessed.list

The initial list produced by function preprocess.genetic.data.

n.top.chroms.per.island

The number of top chromosomes per island to save in the final combined list.
Defaults to the top scorer.

Value

A data.table containing the results aggregated across islands. Note these results be written to
results.dir as ’combined.island.unique.chromosome.results.rds’. See the package vignette for
more detailed descriptions of the content of each output column.



compute.graphical.scores 7

Examples

data(case)
data(dad)
data(mom)
data(snp.annotations)
library(Matrix)
block.ld.mat <- as.matrix(bdiag(list(

matrix(rep(TRUE, 25^2), nrow = 25),
matrix(rep(TRUE, 25^2), nrow = 25),
matrix(rep(TRUE, 25^2), nrow = 25),
matrix(rep(TRUE, 25^2), nrow = 25)

)))

pp.list <- preprocess.genetic.data(case[, 1:10],
father.genetic.data = dad[, 1:10],
mother.genetic.data = mom[, 1:10],
block.ld.mat = block.ld.mat[, 1:10]

)

run.gadgets(pp.list,
n.chromosomes = 4, chromosome.size = 3, results.dir = "tmp",
cluster.type = "interactive", registryargs = list(

file.dir = "tmp_reg",
seed = 1500

),
generations = 2, n.islands = 2, island.cluster.size = 1,
n.migrations = 0

)

combined.res <- combine.islands("tmp", snp.annotations[1:10, ], pp.list, 1)

unlink("tmp", recursive = TRUE)
unlink("tmp_reg", recursive = TRUE)

compute.graphical.scores

A function to compute SNP-pair scores for network plots of results.

Description

This function returns a data.table of graphical SNP-pair scores for use in network plots of GAD-
GETS results.

Usage

compute.graphical.scores(
results.list,
pp.list,



8 compute.graphical.scores

score.type = "logsum",
pval.thresh = 0.05,
n.permutes = 10000,
n.different.snps.weight = 2,
n.both.one.weight = 1,
weight.function.int = 2,
recessive.ref.prop = 0.75,
recode.test.stat = 1.64,
dif.coding = FALSE,
bp.param = bpparam()

)

Arguments

results.list A list of length d, where d is the number of chromosome sizes to be included in
the network plot. Each element of the list must be a data.table from combine.islands
for a given chromosome size. Each data.table in the list should be subset to the
top n.top.scores scores, otherwise an error will be returned.

pp.list The list output by preprocess.genetic.data run on the observed data.

score.type A character string specifying the method for aggregating SNP-pair scores across
chromosome sizes. Options are ’max’, ’sum’, or ’logsum’, defaulting to "log-
sum". For a given SNP-pair, it’s graphical score will be the score.type of all
graphical scores of chromosomes containing that pair across chromosome sizes.
The choice of ’logsum’ rather than ’sum’ may be useful in cases where there
are multiple risk-sets, and one is found much more frequently. However, it may
be of interest to examine plots using both score.type approaches. Note that
"logsum" is actually the log of one plus the sum of the SNP-pair scores to avoid
nodes or edges having negative weights.

pval.thresh A numeric value between 0 and 1 specifying the epistasis test p-value threshold
for a chromosome to contribute to the network. Any chromosomes with epistasis
p-value greater than pval.thresh will not contribute to network plots. The
argument defaults to 0.05. It must be <= 0.6 (to ensure positive scores).

n.permutes The number of permutations on which to base the epistasis tests. Defaults to
10000.

n.different.snps.weight

The number by which the number of different SNPs between a case and comple-
ment/unaffected sibling is multiplied in computing the family weights. Defaults
to 2.

n.both.one.weight

The number by which the number of SNPs equal to 1 in both the case and com-
plement/unaffected sibling is multiplied in computing the family weights. De-
faults to 1.

weight.function.int

An integer used to assign family weights. Specifically, we use weight.function.int
in a function that takes the weighted sum of the number of different SNPs and
SNPs both equal to one as an argument, denoted as x, and returns a family
weight equal to weight.function.int^x. Defaults to 2.



compute.graphical.scores 9

recessive.ref.prop

The proportion to which the observed proportion of informative cases with the
provisional risk genotype(s) will be compared to determine whether to recode
the SNP as recessive. Defaults to 0.75.

recode.test.stat

For a given SNP, the minimum test statistic required to recode and recompute
the fitness score using recessive coding. Defaults to 1.64. See the GADGETS
paper for specific details.

dif.coding A logical indicating whether, for a given SNP, the case - complement genotype
difference should be coded as the sign of the difference (defaulting to false) or
the raw difference.

bp.param The BPPARAM argument to be passed to bplapply. See BiocParallel::bplapply
for more details.

Value

A list of two elements:

pair.scores A data.table containing SNP-pair graphical scores, where the first four columns repre-
sent SNPs and the fifth column (pair.score) is the graphical SNP-pair score.

snp.scores A data.table containing individual SNP graphical scores, where the first two columns
represent SNPs and the third column (snp.score) is the graphical SNP score.

Examples

data(case)
data(dad)
data(mom)
data(snp.annotations)
library(Matrix)
set.seed(1400)
block.ld.mat <- as.matrix(bdiag(list(

matrix(rep(TRUE, 25^2), nrow = 25),
matrix(rep(TRUE, 25^2), nrow = 25),
matrix(rep(TRUE, 25^2), nrow = 25),
matrix(rep(TRUE, 25^2), nrow = 25)

)))

# preprocess data
target.snps <- c(1:3, 30:32, 60:62, 85)
pp.list <- preprocess.genetic.data(case[, target.snps],

father.genetic.data = dad[, target.snps],
mother.genetic.data = mom[, target.snps],
block.ld.mat = block.ld.mat[target.snps, target.snps]

)
## run GA for observed data

# observed data chromosome size 2
run.gadgets(pp.list,

n.chromosomes = 5, chromosome.size = 2, results.dir = "tmp_2",
cluster.type = "interactive", registryargs = list(



10 dad

file.dir = "tmp_reg",
seed = 1500

),
generations = 2, n.islands = 2, island.cluster.size = 1,
n.migrations = 0

)
combined.res2 <- combine.islands(

"tmp_2", snp.annotations[target.snps, ],
pp.list, 2

)
unlink("tmp_reg", recursive = TRUE)

# observed data chromosome size 3
run.gadgets(pp.list,

n.chromosomes = 5, chromosome.size = 3, results.dir = "tmp_3",
cluster.type = "interactive", registryargs = list(

file.dir = "tmp_reg",
seed = 1500

),
generations = 2, n.islands = 2, island.cluster.size = 1,
n.migrations = 0

)
combined.res3 <- combine.islands(

"tmp_3", snp.annotations[target.snps, ],
pp.list, 2

)
unlink("tmp_reg", recursive = TRUE)

## create list of results

final.results <- list(combined.res2[1:3, ], combined.res3[1:3, ])

## compute edge scores
edge.dt <- compute.graphical.scores(final.results, pp.list,

pval.thresh = 0.5
)

lapply(c("tmp_2", "tmp_3"), unlink, recursive = TRUE)

dad SNP counts for the fathers of case-parent triads.

Description

A simulated dataset containing the counts of the alternate allele for 100 SNPs for the fathers in 1000
simulated case-parent triads. Columns represent SNPs, rows are individuals. SNPs in columns 51,
52, 76, and 77 represent a true risk pathway.



epistasis.test 11

Usage

data(dad)

Format

A data frame with 1000 rows and 100 variables

epistasis.test A function to run a test of the null hypothesis that a collection of SNPs
do not exhibit epistasis, conditional upon observed marginal SNP-
disease associations.

Description

This function runs a permutation based test of the null hypothesis that a collection of SNPs do not
exhibit epistasis, conditional upon observed marginal SNP-disease associations.

Usage

epistasis.test(
snp.cols,
preprocessed.list,
n.permutes = 10000,
n.different.snps.weight = 2,
n.both.one.weight = 1,
weight.function.int = 2,
recessive.ref.prop = 0.75,
recode.test.stat = 1.64,
dif.coding = FALSE

)

Arguments

snp.cols An integer vector specifying the columns in the input data containing the SNPs
to be tested.

preprocessed.list

The initial list produced by function preprocess.genetic.data.

n.permutes The number of permutations on which to base the test. Defaults to 1000.
n.different.snps.weight

The number by which the number of different SNPs between a case and comple-
ment/unaffected sibling is multiplied in computing the family weights. Defaults
to 2.

n.both.one.weight

The number by which the number of SNPs equal to 1 in both the case and com-
plement/unaffected sibling is multiplied in computing the family weights. De-
faults to 1.



12 epistasis.test

weight.function.int

An integer used to assign family weights. Specifically, we use weight.function.int
in a function that takes the weighted sum of the number of different SNPs and
SNPs both equal to one as an argument, denoted as x, and returns a family
weight equal to weight.function.int^x. Defaults to 2.

recessive.ref.prop

The proportion to which the observed proportion of informative cases with the
provisional risk genotype(s) will be compared to determine whether to recode
the SNP as recessive. Defaults to 0.75.

recode.test.stat

For a given SNP, the minimum test statistic required to recode and recompute
the fitness score using recessive coding. Defaults to 1.64. See the GADGETS
paper for specific details.

dif.coding A logical indicating whether, for a given SNP, the case - complement genotype
difference should be coded as the sign of the difference (defaulting to false) or
the raw difference.

Value

A list of thee elements:

pval The p-value of the test.

obs.fitness.score The fitness score from the observed data

perm.fitness.scores A vector of fitness scores for the permuted datasets.

Examples

data(case)
data(dad)
data(mom)
data(snp.annotations)
library(Matrix)
block.ld.mat <- as.matrix(bdiag(list(

matrix(rep(TRUE, 25^2), nrow = 25),
matrix(rep(TRUE, 25^2), nrow = 25),
matrix(rep(TRUE, 25^2), nrow = 25),
matrix(rep(TRUE, 25^2), nrow = 25)

)))

pp.list <- preprocess.genetic.data(case,
father.genetic.data = dad,
mother.genetic.data = mom,
block.ld.mat = block.ld.mat

)

run.gadgets(pp.list,
n.chromosomes = 5, chromosome.size = 3,
results.dir = "tmp", cluster.type = "interactive",
registryargs = list(file.dir = "tmp_reg", seed = 1300),
n.islands = 8, island.cluster.size = 4,



epistasisGA 13

n.migrations = 2
)

combined.res <- combine.islands("tmp", snp.annotations, pp.list, 2)

top.snps <- as.vector(t(combined.res[1, 1:3]))
set.seed(10)
epi.test.res <- epistasis.test(top.snps, pp.list)

unlink("tmp", recursive = TRUE)
unlink("tmp_reg", recursive = TRUE)

epistasisGA epistasisGA package

Description

A package implementing the GADGETS method to detect multi-SNP effects in case-parent triad or
affected/unaffected sibling studies.

GADGETS A function to run the GADGETS method

Description

This function runs the GADGETS method on a given cluster of islands. It is a wrapper for the
underlying Rcpp function run_GADGETS.

Usage

GADGETS(
cluster.number,
results.dir,
case.genetic.data,
complement.genetic.data,
case.comp.different,
case.minus.comp,
both.one.mat,
block.ld.mat,
n.chromosomes,
chromosome.size,
snp.chisq,
original.col.numbers,
weight.lookup,
case2.mat,



14 GADGETS

case0.mat,
comp2.mat,
comp0.mat,
island.cluster.size = 4,
n.migrations = 20,
n.different.snps.weight = 2,
n.both.one.weight = 1,
migration.interval = 50,
gen.same.fitness = 50,
max.generations = 500,
initial.sample.duplicates = FALSE,
crossover.prop = 0.8,
recessive.ref.prop = 0.75,
recode.test.stat = 1.64,
dif.coding = FALSE

)

Arguments

cluster.number An integer indicating the cluster number (used for labeling the output file).

results.dir The directory to which island results will be saved.
case.genetic.data

The genetic data of the disease affected children from case-parent trios or af-
fected/unaffected sibling pairs. Columns are SNP allele counts, and rows are
individuals. The ordering of the columns must be consistent with the LD struc-
ture specified in block.ld.mat.

complement.genetic.data

A genetic dataset from the complements of the cases, where complement.genetic.data
= mother SNP counts + father SNP counts - case SNP counts. Columns are SNP
allele counts, rows are families. If using affected/unaffected sibling pairs, this
should contain the unaffected sibling genotypes.

case.comp.different

A data frame or matrix indicating case.genetic.data != complement.genetic.data,
where rows correspond to individuals and columns correspond to snps.

case.minus.comp

A matrix equal to case.genetic.data - complement genetic data.

both.one.mat A matrix whose elements indicate whether both the case and complement have
one copy of the minor allele, equal to case.genetic.data == 1 & complement.genetic.data
== 1.

block.ld.mat A logical, block diagonal matrix indicating whether the SNPs in case.genetic.data
should be considered to be in linkage disequilibrium. Note that this means the
ordering of the columns (SNPs) in case.genetic.data must be consistent with
the LD blocks specified in ld.block.mat. In the absence of outside informa-
tion, a reasonable default is to consider SNPs to be in LD if they are located on
the same biological chromosome.

n.chromosomes An integer specifying the number of chromosomes to use in the GA.



GADGETS 15

chromosome.size

An integer specifying the number of SNPs on each chromosome.

snp.chisq A vector of statistics to be used in sampling SNPs for mutation. By default, these
are the square roots of the chi-square marginal SNP-disease association statistics
for each column in case.genetic.data, but can also be manually specified or
uniformly 1 (corresponding to totally random sampling).

original.col.numbers

A vector of integers indicating the original column number of each SNP in
case.genetic.data. This is needed due to removal of low frequency SNPs
in preprocess.genetic.data.

weight.lookup A vector that maps a family weight to the weighted sum of the number of dif-
ferent SNPs and SNPs both equal to one.

case2.mat A logical matrix indicating whether, for each SNP, the case carries 2 copies of
the minor allele.

case0.mat A logical matrix indicating whether, for each SNP, the case carries 0 copies of
the minor allele.

comp2.mat A logical matrix indicating whether, for each SNP, the complement/unaffected
sibling carries 2 copies of the minor allele.

comp0.mat A logical matrix indicating whether, for each SNP, the complement/unaffected
sibling carries 0 copies of the minor allele.

island.cluster.size

An integer specifying the number of islands in the cluster. See coderun.gadgets
for additional details.

n.migrations The number of chromosomes that migrate among islands. This value must be
less than n.chromosomes and greater than 0, defaulting to 20.

n.different.snps.weight

The number by which the number of different SNPs between a case and com-
plement is multiplied in computing the family weights. Defaults to 2.

n.both.one.weight

The number by which the number of SNPs equal to 1 in both the case and com-
plement is multiplied in computing the family weights. Defaults to 1.

migration.interval

The interval of generations for which GADGETS will run prior to migration of
top chromosomes among islands in a cluster. Defaults to 50. In other words, top
chromosomes will migrate among cluster islands every migration.interval
generations. We also check for convergence at each of these intervals.

gen.same.fitness

The number of consecutive generations with the same fitness score required for
algorithm termination. Defaults to 50.

max.generations

The maximum number of generations for which GADGETS will run. Defaults
to 500.

initial.sample.duplicates

A logical indicating whether the same SNP can appear in more than one chro-
mosome in the initial sample of chromosomes (the same SNP may appear in
more than one chromosome thereafter, regardless) . Defaults to FALSE.



16 GADGETS

crossover.prop A numeric between 0 and 1 indicating the proportion of chromosomes to be
subjected to cross over. The remaining proportion will be mutated. Defaults to
0.8.

recessive.ref.prop

The proportion to which the observed proportion of informative cases with the
provisional risk genotype(s) will be compared to determine whether to recode
the SNP as recessive. Defaults to 0.75.

recode.test.stat

For a given SNP, the minimum test statistic required to recode and recompute
the fitness score using recessive coding. Defaults to 1.64. See the GADGETS
paper for specific details.

dif.coding A logical indicating whether, for a given SNP, the case - complement genotype
difference should be coded as the sign of the difference (defaulting to false) or
the raw difference.

Value

For each island in the cluster, an rds object containing a list with the following elements will be
written to results.dir:

top.chromosome.results A data.table of the final generation chromosomes, their fitness scores,
their difference vectors, and the number of risk alleles required for each chromosome SNP
for a case or complement to be classified as having the provisional risk set. See the pack-
age vignette for an example and the documentation for chrom.fitness.score for additional
details.

n.generations The total number of generations run.

Examples

set.seed(10)
data(case)
data(dad)
data(mom)
library(Matrix)
block.ld.mat <- as.matrix(bdiag(list(

matrix(rep(TRUE, 25^2), nrow = 25),
matrix(rep(TRUE, 25^2), nrow = 25),
matrix(rep(TRUE, 25^2), nrow = 25),
matrix(rep(TRUE, 25^2), nrow = 25)

)))
data.list <- preprocess.genetic.data(case[, 1:10],

father.genetic.data = dad[, 1:10],
mother.genetic.data = mom[, 1:10],
block.ld.mat = block.ld.mat[1:10, 1:10]

)

case.genetic.data <- as.matrix(data.list$case.genetic.data)
complement.genetic.data <- as.matrix(data.list$complement.genetic.data)
original.col.numbers <- data.list$original.col.numbers
chisq.stats <- data.list$chisq.stats



global.test 17

block.ld.mat <- data.list$block.ld.mat
case.minus.comp <- as.matrix(case.genetic.data -

complement.genetic.data)
case.comp.different <- case.minus.comp != 0
both.one.mat <- complement.genetic.data == 1 & case.genetic.data == 1
case2.mat <- case.genetic.data == 2
case0.mat <- case.genetic.data == 0
comp2.mat <- complement.genetic.data == 2
comp0.mat <- complement.genetic.data == 0
snp.chisq <- sqrt(chisq.stats)
weight.lookup <- vapply(seq_len(6), function(x) 2^x, 1)
dir.create("tmp")
GADGETS(

cluster.number = 1, results.dir = "tmp",
case.genetic.data = case.genetic.data,
complement.genetic.data = complement.genetic.data,
case.comp.different = case.comp.different,
case.minus.comp = case.minus.comp, both.one.mat = both.one.mat,
block.ld.mat = block.ld.mat, n.chromosomes = 10,
chromosome.size = 3, snp.chisq = snp.chisq,
original.col.numbers = original.col.numbers,
weight.lookup = weight.lookup, case2.mat = case2.mat,
case0.mat = case0.mat, comp2.mat = comp2.mat,
comp0.mat = comp0.mat, n.migrations = 2,
migration.interval = 5, max.generations = 10

)
unlink("tmp", recursive = TRUE)

global.test A function to run a global test of the null hypothesis that there are no
SNP-disease associations across a range of chromosome sizes

Description

This function runs a global test of the null hypothesis that there are no SNP-disease associations
across a range of chromosome sizes

Usage

global.test(results.list, n.top.scores = 10)

Arguments

results.list A list of length d, where d is the number of chromosome sizes to be included in
a global test. Each element of the list must itself be a list whose first element
observed.data is a vector of fitness scores from combine.islands for a given
chromosome size. The second element permutation.list is a list containing
vectors of all permutation results fitness scores, again using the results output
by combine.islands for each permutation.



18 global.test

n.top.scores The number of top scoring chromosomes, for each chromosome size, to be used
in calculating the global test. Defaults to 10.

Value

A list containing the following:

obs.test.stat The observed test statistic.

perm.test.stats A vector of test statistics from permuted data.

pval The p-value for the global test.

obs.marginal.test.stats A vector of observed test statistics for each chromosome size.

perm.marginal.test.stats.mat A matrix of test statistics for the permutation datasets, where rows
correspond to permutations and columns correspond to chromosome sizes.

marginal.pvals A vector containing marignal p-values for each chromosome size.

max.obs.fitness A vector of the maximum fitness score for each chromosome size in the observed
data.

max.perm.fitness A list of vectors for each chromosome size of maximum observed fitness scores
for each permutation.

max.order.pvals A vector of p-values for the maximum observed order statistics for each chromo-
some size. P-values are one plus the number of permutation based maximum order statistics
that exceed the observed maximum fitness score divided by the total number of permutations
plus one.

boxplot.grob A grob of a ggplot plot of the observed vs permuted fitness score densities for each
chromosome size.

chrom.size.k A vector indicating the number of top scores (k) from each chromosome size that
the test used. This will be equal to n.top.scores unless GADGETS returns fewer than
n.top.scores unique chromosomes for the observed data or any permute, in which case the
chromosome size-specific value will be equal to the smallest number of unique chromosomes
returned.

max.perm.95th.pctl The 95th percentile of the permutation maximum order statistics for each
chromosome size.

Examples

data(case)
data(dad)
data(mom)
data(snp.annotations)
library(Matrix)
set.seed(1400)
block.ld.mat <- as.matrix(bdiag(list(

matrix(rep(TRUE, 25^2), nrow = 25),
matrix(rep(TRUE, 25^2), nrow = 25),
matrix(rep(TRUE, 25^2), nrow = 25),
matrix(rep(TRUE, 25^2), nrow = 25)

)))



global.test 19

pp.list <- preprocess.genetic.data(case[, 1:10],
father.genetic.data = dad[, 1:10],
mother.genetic.data = mom[, 1:10],
block.ld.mat = block.ld.mat[1:10, 1:10]

)
## run GA for observed data

# observed data chromosome size 2
run.gadgets(pp.list,

n.chromosomes = 5, chromosome.size = 2, results.dir = "tmp_2",
cluster.type = "interactive", registryargs = list(

file.dir = "tmp_reg",
seed = 1500

),
generations = 2, n.islands = 2, island.cluster.size = 1,
n.migrations = 0

)
combined.res2 <- combine.islands(

"tmp_2", snp.annotations[1:10, ], pp.list,
2

)
unlink("tmp_reg", recursive = TRUE)

# observed data chromosome size 3
run.gadgets(pp.list,

n.chromosomes = 5, chromosome.size = 3, results.dir = "tmp_3",
cluster.type = "interactive", registryargs = list(

file.dir = "tmp_reg",
seed = 1500

),
generations = 2, n.islands = 2, island.cluster.size = 1,
n.migrations = 0

)
combined.res3 <- combine.islands(

"tmp_3", snp.annotations[1:10, ], pp.list,
2

)
unlink("tmp_reg", recursive = TRUE)

# create three permuted datasets
set.seed(1400)
perm.data.list <- permute.dataset(case[, 1:10],

father.genetic.data = dad[, 1:10],
mother.genetic.data = mom[, 1:10],
n.permutations = 3

)

# pre-process permuted data
p1.list <- preprocess.genetic.data(perm.data.list[["permutation1"]]$case,

complement.genetic.data = perm.data.list[["permutation1"]]$comp,
block.ld.mat = block.ld.mat[1:10, 1:10]

)



20 global.test

p2.list <- preprocess.genetic.data(perm.data.list[["permutation2"]]$case,
complement.genetic.data = perm.data.list[["permutation2"]]$comp,
block.ld.mat = block.ld.mat[1:10, 1:10]

)

p3.list <- preprocess.genetic.data(perm.data.list[["permutation3"]]$case,
complement.genetic.data = perm.data.list[["permutation3"]]$comp,
block.ld.mat = block.ld.mat[1:10, 1:10]

)

## run GA for permuted data

# permutation 1, chromosome size 2
run.gadgets(p1.list,

n.chromosomes = 5, chromosome.size = 2, results.dir = "p1_tmp_2",
cluster.type = "interactive", registryargs = list(

file.dir = "tmp_reg",
seed = 1500

),
generations = 2, n.islands = 2, island.cluster.size = 1,
n.migrations = 0

)
p1.combined.res2 <- combine.islands(

"p1_tmp_2", snp.annotations[1:10, ],
p1.list, 2

)
unlink("tmp_reg", recursive = TRUE)

# permutation 1, chromosome size 3
run.gadgets(p1.list,

n.chromosomes = 5, chromosome.size = 3, results.dir = "p1_tmp_3",
cluster.type = "interactive", registryargs = list(

file.dir = "tmp_reg",
seed = 1500

),
generations = 2, n.islands = 2, island.cluster.size = 1,
n.migrations = 0

)
p1.combined.res3 <- combine.islands(

"p1_tmp_3", snp.annotations[1:10, ],
p1.list, 2

)
unlink("tmp_reg", recursive = TRUE)

# permutation 2, chromosome size 2
run.gadgets(p2.list,

n.chromosomes = 5, chromosome.size = 2, results.dir = "p2_tmp_2",
cluster.type = "interactive", registryargs = list(

file.dir = "tmp_reg",
seed = 1500

),
generations = 2, n.islands = 2, island.cluster.size = 1,
n.migrations = 0



global.test 21

)
p2.combined.res2 <- combine.islands(

"p2_tmp_2", snp.annotations[1:10, ],
p2.list, 2

)
unlink("tmp_reg", recursive = TRUE)

# permutation 2, chromosome size 3
run.gadgets(p2.list,

n.chromosomes = 5, chromosome.size = 3, results.dir = "p2_tmp_3",
cluster.type = "interactive", registryargs = list(

file.dir = "tmp_reg",
seed = 1500

),
generations = 2, n.islands = 2, island.cluster.size = 1,
n.migrations = 0

)
p2.combined.res3 <- combine.islands(

"p2_tmp_3", snp.annotations[1:10, ],
p2.list, 2

)
unlink("tmp_reg", recursive = TRUE)

# permutation 3, chromosome size 2
run.gadgets(p3.list,

n.chromosomes = 5, chromosome.size = 2, results.dir = "p3_tmp_2",
cluster.type = "interactive", registryargs = list(

file.dir = "tmp_reg",
seed = 1500

),
generations = 2, n.islands = 2, island.cluster.size = 1,
n.migrations = 0

)
p3.combined.res2 <- combine.islands(

"p3_tmp_2", snp.annotations[1:10, ],
p3.list, 2

)
unlink("tmp_reg", recursive = TRUE)

# permutation 3, chromosome size 3
run.gadgets(p3.list,

n.chromosomes = 5, chromosome.size = 3, results.dir = "p3_tmp_3",
cluster.type = "interactive", registryargs = list(

file.dir = "tmp_reg",
seed = 1500

),
generations = 2, n.islands = 2, island.cluster.size = 1,
n.migrations = 0

)
p3.combined.res3 <- combine.islands(

"p3_tmp_3", snp.annotations[1:10, ],
p3.list, 2

)



22 mom

unlink("tmp_reg", recursive = TRUE)

## create list of results

# chromosome size 2 results
chrom2.list <- list(

observed.data = combined.res2$fitness.score,
permutation.list = list(

p1.combined.res2$fitness.score,
p2.combined.res2$fitness.score,
p3.combined.res2$fitness.score

)
)

# chromosome size 3 results
chrom3.list <- list(

observed.data = combined.res3$fitness.score,
permutation.list = list(

p1.combined.res3$fitness.score,
p2.combined.res3$fitness.score,
p3.combined.res3$fitness.score

)
)

final.results <- list(chrom2.list, chrom3.list)

## run global test
global.test.res <- global.test(final.results, 1)

lapply(c(
"tmp_2", "tmp_3", "p1_tmp_2", "p2_tmp_2", "p3_tmp_2",
"p1_tmp_3", "p2_tmp_3", "p3_tmp_3"

), unlink, recursive = TRUE)

mom SNP counts for the mothers of case-parent triads.

Description

A simulated dataset containing the counts of the alternate allele for 100 SNPs for the mothers in
1000 simulated case-parent triads. Columns represent SNPs, rows are individuals. SNPs in columns
51, 52, 76, and 77 represent a true risk pathway.

Usage

data(mom)

Format

A data frame with 1000 rows and 100 variables



network.plot 23

network.plot A function to plot a network of SNPs with potential multi-SNP effects.

Description

This function plots a network of SNPs with potential multi-SNP effects.

Usage

network.plot(
graphical.score.list,
preprocessed.list,
score.type = "logsum",
n.top.scoring.pairs = NULL,
node.shape = "circle",
repulse.rad = 1000,
node.size = 25,
graph.area = 100,
vertex.label.cex = 0.5,
edge.width.cex = 12,
plot = TRUE,
edge.color.ramp = c("lightblue", "blue"),
node.color.ramp = c("white", "red"),
plot.legend = TRUE,
high.ld.threshold = 0.1,
plot.margins = c(2, 1, 2, 1),
legend.title.cex = 1.75,
legend.axis.cex = 1.75,
...

)

Arguments

graphical.score.list

The list returned by function compute.graphical.scores, or a subset of it. By
default, the SNPs will be labeled with their RSIDs, listed in columns 3 and 4.
Users can create custom labels by changing the values in these two columns.

preprocessed.list

The initial list produced by function preprocess.genetic.data.

score.type A character string specifying the method for aggregating SNP-pair scores across
chromosome sizes. Options are ’max’, ’sum’, or ’logsum’, defaulting to "log-
sum". For a given SNP-pair, it’s graphical score will be the score.type of all
graphical scores of chromosomes containing that pair across chromosome sizes.
Pair scores will be proportional to the sum of graphical scores for either ’log-
sum’ or ’sum’, but ’logsum’ may be useful in cases where there are multiple



24 network.plot

risk-sets, and one is found much more frequently. Note that "logsum" is actu-
ally the log of one plus the sum of the SNP-pair scores to avoid nodes or edges
having negative weights.

n.top.scoring.pairs

An integer indicating the number of top scoring pairs to plot. Defaults to, NULL,
which plots all pairs. For large networks, plotting a subset of the top scoring
pairs can improve the appearance of the graph.

node.shape The desired node shape. See names(igraph:::.igraph.shapes) for available
shapes. Defaults to circle.

repulse.rad A scalar affecting the graph shape. Decrease to reduce overlapping nodes, in-
crease to move nodes closer together.

node.size A scalar affecting the size of the graph nodes. Increase to increase size.

graph.area A scalar affecting the size of the graph area. Increase to increase graph area.
vertex.label.cex

A scalar controlling the size of the vertex label. Increase to increase size.

edge.width.cex A scalar controlling the width of the graph edges. Increase to make edges wider.

plot A logical indicating whether the network should be plotted. If set to false, this
function will return an igraph object to be used for manual plotting.

edge.color.ramp

A character vector of colors. The coloring of the network edges will be shown
on a gradient, with the lower scoring edge weights closer to the first color spec-
ified in edge.color.ramp, and higher scoring weights closer to the last color
specified. By default, the low scoring edges are light blue, and high scoring
edges are dark blue.

node.color.ramp

A character vector of colors. The coloring of the network nodes will be shown
on a gradient, with the lower scoring nodes closer to the first color specified in
node.color.ramp, and higher scoring nodes closer to the last color specified.
By default, the low scoring nodes are whiter, and high scoring edges are redder.

plot.legend A boolean indicating whether a legend should be plotted. Defaults to TRUE.
high.ld.threshold

A numeric value between 0 and 1, indicating the r^2 threshold in complements
(or unaffected siblings) above which a pair of SNPs in the same LD block (as
specified in preprocessed.list) should be considered in high LD. Connec-
tions between these high LD SNPs will be dashed instead of solid lines. Defaults
to 0.1.

plot.margins A vector of length 4 passed to par(mar = ). Defaults to c(2, 1, 2, 1).
legend.title.cex

A numeric value controlling the size of the legend titles. Defaults to 1.75. In-
crease to increase font size, decrease to decrease font size.

legend.axis.cex

A numeric value controlling the size of the legend axis labels. Defaults to 1.75.
Increase to increase font size, decrease to decrease font size.

... Additional arguments to be passed to plot.igraph.



network.plot 25

Value

An igraph object, if plot is set to FALSE.

Examples

data(case)
data(dad)
data(mom)
data(snp.annotations)
library(Matrix)
set.seed(1400)
block.ld.mat <- as.matrix(bdiag(list(

matrix(rep(TRUE, 25^2), nrow = 25),
matrix(rep(TRUE, 25^2), nrow = 25),
matrix(rep(TRUE, 25^2), nrow = 25),
matrix(rep(TRUE, 25^2), nrow = 25)

)))

# preprocess data
target.snps <- c(1:3, 30:32, 60:62, 85)
pp.list <- preprocess.genetic.data(case[, target.snps],

father.genetic.data = dad[, target.snps],
mother.genetic.data = mom[, target.snps],
block.ld.mat = block.ld.mat[target.snps, target.snps]

)
## run GA for observed data

# observed data chromosome size 2
run.gadgets(pp.list,

n.chromosomes = 5, chromosome.size = 2, results.dir = "tmp_2",
cluster.type = "interactive", registryargs = list(

file.dir = "tmp_reg",
seed = 1500

),
generations = 2, n.islands = 2, island.cluster.size = 1,
n.migrations = 0

)
combined.res2 <- combine.islands(

"tmp_2", snp.annotations[target.snps, ],
pp.list, 2

)
unlink("tmp_reg", recursive = TRUE)

# observed data chromosome size 3
run.gadgets(pp.list,

n.chromosomes = 5, chromosome.size = 3, results.dir = "tmp_3",
cluster.type = "interactive", registryargs = list(

file.dir = "tmp_reg",
seed = 1500

),
generations = 2, n.islands = 2, island.cluster.size = 1,
n.migrations = 0



26 permute.dataset

)
combined.res3 <- combine.islands(

"tmp_3", snp.annotations[target.snps, ],
pp.list, 2

)
unlink("tmp_reg", recursive = TRUE)

## create list of results
final.results <- list(combined.res2[1:3, ], combined.res3[1:3, ])

## compute edge scores
set.seed(20)
graphical.list <- compute.graphical.scores(final.results, pp.list,

pval.thresh = 0.5
)

## plot
set.seed(10)
network.plot(graphical.list, pp.list)

lapply(c("tmp_2", "tmp_3"), unlink, recursive = TRUE)

permute.dataset A function to create permuted datasets for permutation based hypoth-
esis testing.

Description

This function creates permuted datasets for permutation based hypothesis testing of GADGETS
fitness scores.

Usage

permute.dataset(
case.genetic.data,
complement.genetic.data = NULL,
father.genetic.data = NULL,
mother.genetic.data = NULL,
n.permutations = 100

)

Arguments

case.genetic.data

The genetic data of the disease affected children. Columns are SNP allele
counts, and rows are individuals.



preprocess.genetic.data 27

complement.genetic.data

A genetic dataset from the complements of the cases, where complement.genetic.data
= mother SNP counts + father SNP counts - case SNP counts. If using af-
fected/unaffected sibling pairs, this should be the genetic data for the unaffected
sibling. Columns are SNP allele counts, rows are families. If not specified,
father.genetic.data and mother.genetic.data must be specified.

father.genetic.data

The genetic data for the fathers of the cases. Columns are SNP allele counts,
rows are individuals. Does not need to be specified if complement.genetic.data
is specified.

mother.genetic.data

The genetic data for the mothers of the cases. Columns are SNP allele counts,
rows are individuals. Does not need to be specified if complement.genetic.data
is specified.

n.permutations The number of permuted datasets to create.

Value

A list of n.permutations pairs of case and complement data, where the observed case/complement
status has been randomly flipped or not flipped.

Examples

data(case)
data(dad)
data(mom)
set.seed(15)
perm.data.list <- permute.dataset(case,

father.genetic.data = dad, mother.genetic.data = mom,
n.permutations = 2

)

preprocess.genetic.data

A function to pre-process case-parent triad of affected/unaffected sib-
ling data.

Description

This function performs several pre-processing steps, intended for use before function run.gadgets.

Usage

preprocess.genetic.data(
case.genetic.data,
complement.genetic.data = NULL,



28 preprocess.genetic.data

father.genetic.data = NULL,
mother.genetic.data = NULL,
block.ld.mat,
min.allele.freq = 0,
bp.param = bpparam(),
snp.sampling.probs = NULL

)

Arguments

case.genetic.data

The genetic data of the disease affected children from case-parent trios or af-
fected/unaffected sibling pairs. Columns are SNP allele counts, and rows are
individuals. The ordering of the columns must be consistent with the LD struc-
ture specified in block.ld.mat.

complement.genetic.data

A genetic dataset from the complements of the cases, where complement.genetic.data
= mother SNP counts + father SNP counts - case SNP counts. If using af-
fected/unaffected siblings this should be the genotypes for the unaffected sib-
lings. Columns are SNP allele counts, rows are families. If not specified,
father.genetic.data and mother.genetic.data must be specified.

father.genetic.data

The genetic data for the fathers of the cases. Columns are SNP allele counts,
rows are individuals. Does not need to be specified if complement.genetic.data
is specified.

mother.genetic.data

The genetic data for the mothers of the cases. Columns are SNP allele counts,
rows are individuals. Does not need to be specified if complement.genetic.data
is specified.

block.ld.mat A logical, block diagonal matrix indicating whether the SNPs in case.genetic.data
should be considered to be in linkage disequilibrium. Note that this means the
ordering of the columns (SNPs) in case.genetic.data must be consistent with
the LD blocks specified in ld.block.mat. In the absence of outside informa-
tion, a reasonable default is to consider SNPs to be in LD if they are located on
the same biological chromosome.

min.allele.freq

The minimum minor allele frequency required for a SNP to be considered for
inclusion in the genetic algorithm. Any SNPs with MAF < min.allele.freq
in the parents, or the combined group of affected and unaffected siblings, will
be filtered out. Defaults to 0 (no filtering).

bp.param The BPPARAM argument to be passed to bplapply when estimating marginal
disease associations for each SNP. If using a cluster computer, this parameter
needs to be set with care. See BiocParallel::bplapply for more details

snp.sampling.probs

A vector indicating the sampling probabilities of the SNPs in case.genetic.data.
SNPs will be sampled in the genetic algorithm proportional to the values spec-
ified. If not specified, by default, chi-square statistics of association will be



preprocess.genetic.data 29

computed for each SNP, and sampling will be proportional to the root of these
statistics. If user specified, the vector values need not sum to 1, they just need
to be positive real numbers. See argument prob from function sample for more
details.

Value

A list containing the following:

case.genetic.data The pre-processed version of the case genetic data. Any missing genotypes for a
given family will be coded as -9 for both case and complement, resulting in that family being
uninformative for that SNP.

complement.genetic.data Pre-processed complement or unaffected sibling genetic data. If mother
and father data are input, the complement genetic data are first created and then pre-processed.
Any missing genotypes for a given family will be coded as -9 for both case and complement,
resulting in that family being uninformative for that SNP.

chisq.stats A vector of chi-square statistics corresponding to marginal SNP-disease associations,
if snp.sampling.probs is not specified, and snp.sampling.probs if specified.

original.col.numbers A vector indicating the original column number of each non-filtered SNP
remaining in the analysis data.

block.ld.mat The pre-processed version of block.ld.mat.

minor.allele.vec A vector indicating whether the alternate allele was the minor allele for each col-
umn in the input data.

Examples

data(case)
data(dad)
data(mom)
library(Matrix)
block.ld.mat <- as.matrix(bdiag(list(

matrix(rep(TRUE, 25^2), nrow = 25),
matrix(rep(TRUE, 25^2), nrow = 25),
matrix(rep(TRUE, 25^2), nrow = 25),
matrix(rep(TRUE, 25^2), nrow = 25)

)))
res <- preprocess.genetic.data(case[, 1:10],

father.genetic.data = dad[, 1:10],
mother.genetic.data = mom[, 1:10],
block.ld.mat = block.ld.mat[, 1:10]

)



30 run.gadgets

run.gadgets A function to run the GADGETS algorithm to detect multi-SNP effects
in case-parent triad studies.

Description

This function runs the GADGETS algorithm to detect multi-SNP effects in case-parent triad studies.

Usage

run.gadgets(
data.list,
n.chromosomes,
chromosome.size,
results.dir,
cluster.type,
registryargs = list(file.dir = NA, seed = 1500),
resources = list(),
cluster.template = NULL,
n.workers = min(detectCores() - 2, n.islands/island.cluster.size),
n.chunks = NULL,
n.different.snps.weight = 2,
n.both.one.weight = 1,
weight.function.int = 2,
generations = 500,
gen.same.fitness = 50,
initial.sample.duplicates = FALSE,
snp.sampling.type = "chisq",
crossover.prop = 0.8,
n.islands = 1000,
island.cluster.size = 4,
migration.generations = 50,
n.migrations = 20,
recessive.ref.prop = 0.75,
recode.test.stat = 1.64,
dif.coding = FALSE

)

Arguments

data.list The output list from preprocess.genetic.data.

n.chromosomes An integer specifying the number of chromosomes to use for each island in
GADGETS.

chromosome.size

An integer specifying the number of SNPs in each chromosome.

results.dir The directory to which island results will be saved.



run.gadgets 31

cluster.type A character string indicating the type of cluster on which to evolve solutions
in parallel. Supported options are interactive, socket, multicore, sge, slurm, lsf,
openlava, or torque. See the documentation for package batchtools for more
information.

registryargs A list of the arguments to be provided to batchtools::makeRegistry.

resources A named list of key-value pairs to be substituted into the template file. Options
available are specified in batchtools::submitJobs.

cluster.template

A character string of the path to the template file required for the cluster speci-
fied in cluster.type. Defaults to NULL. Required for options sge, slurm, lsf,
openlava and torque of argument cluster.type.

n.workers An integer indicating the number of workers for the cluster specified in cluster.type,
if socket or multicore. Defaults to parallel::detectCores - 2.

n.chunks An integer specifying the number of chunks jobs running island clusters should
be split into when dispatching jobs using batchtools. For multicore or socket
cluster.type, this defaults to n.workers, resulting in the total number of is-
land cluster jobs (equal to n.islands\island.cluster.size) being split into
n.chunks chunks. All chunks then run in parallel, with jobs within a chunk
running sequentially. For other cluster types, this defaults to 1 chunk, with the
recommendation that users of HPC clusters which support array jobs specify
chunks.as.arrayjobs = TRUE in argument resources. For those users, the
setup will submit an array of n.islands\island.cluster.size jobs to the
cluster. For HPC clusters that do not support array jobs, the default setting
should not be used. See batchtools::submitJobs for more information on
job chunking.

n.different.snps.weight

The number by which the number of different SNPs between a case and com-
plement or unaffected sibling is multiplied in computing the family weights.
Defaults to 2.

n.both.one.weight

The number by which the number of SNPs equal to 1 in both the case and com-
plement or unaffected sibling is multiplied in computing the family weights.
Defaults to 1.

weight.function.int

An integer used to assign family weights. Specifically, we use weight.function.int
in a function that takes the weighted sum of the number of different SNPs and
SNPs both equal to one as an argument, denoted as x, and returns a family
weight equal to weight.function.int^x. Defaults to 2.

generations The maximum number of generations for which GADGETS will run. Defaults
to 500.

gen.same.fitness

The number of consecutive generations with the same fitness score required for
algorithm termination. Defaults to 50.

initial.sample.duplicates

A logical indicating whether the same SNP can appear in more than one chro-
mosome in the initial sample of chromosomes (the same SNP may appear in
more than one chromosome thereafter, regardless) . Default to FALSE.



32 run.gadgets

snp.sampling.type

A string indicating how SNPs are to be sampled for mutations. Options are
’chisq’, ’random’, or ’manual’. The ’chisq’ option takes into account the marginal
association between a SNP and disease status, with larger marginal associa-
tions corresponding to higher sampling probabilities.The ’random’ option gives
each SNP the same sampling probability regardless of marginal association. The
’manual’ option should be used when snp.sampling.probs are manually input
into function preprocess.genetic.data. Defaults to ’chisq’.

crossover.prop A numeric between 0 and 1 indicating the proportion of chromosomes to be
subjected to cross over. The remaining proportion will be mutated. Defaults to
0.8.

n.islands An integer indicating the number of islands to be used. Defaults to 1000.
island.cluster.size

An integer specifying the number of islands in a given cluster. Must evenly
divide n.islands and defaults to 4. More specifically, under the default set-
tings, the 1000 n.islands are split into 250 distinct clusters each containing 4
islands (island.cluster.size). Within a cluster, migrations of top chromo-
somes from one cluster island to another are periodically permitted (controlled
by migration.generations), and distinct clusters evolve completely indepen-
dently.

migration.generations

An integer equal to the number of generations between migrations among is-
lands of a distinct cluster. Argument generations must be an integer multiple
of this value. Defaults to 50.

n.migrations The number of chromosomes that migrate among islands. This value must be
less than n.chromosomes and greater than 0, defaulting to 20.

recessive.ref.prop

The proportion to which the observed proportion of informative cases with the
provisional risk genotype(s) will be compared to determine whether to recode
the SNP as recessive. Defaults to 0.75.

recode.test.stat

For a given SNP, the minimum test statistic required to recode and recompute
the fitness score using recessive coding. Defaults to 1.64. See the GADGETS
paper for specific details.

dif.coding A logical indicating whether, for a given SNP, the case - complement genotype
difference should be coded as the sign of the difference (defaulting to false) or
the raw difference.

Value

For each island, a list of two elements will be written to results.dir:

top.chromosome.results A data.table of the final generation chromosomes, their fitness scores,
their difference vectors, and the number of risk alleles required for each chromosome SNP
for a case or complement to be classified as having the provisional risk set. See the pack-
age vignette for an example and the documentation for chrom.fitness.score for additional
details.

n.generations The total number of generations run.



snp.annotations 33

Examples

data(case)
data(dad)
data(mom)
library(Matrix)
block.ld.mat <- as.matrix(bdiag(list(

matrix(rep(TRUE, 25^2), nrow = 25),
matrix(rep(TRUE, 25^2), nrow = 25),
matrix(rep(TRUE, 25^2), nrow = 25),
matrix(rep(TRUE, 25^2), nrow = 25)

)))
pp.list <- preprocess.genetic.data(case[, 1:10],

father.genetic.data = dad[, 1:10],
mother.genetic.data = mom[, 1:10],
block.ld.mat = block.ld.mat[1:10, 1:10]

)
run.gadgets(pp.list,

n.chromosomes = 4, chromosome.size = 3, results.dir = "tmp",
cluster.type = "interactive", registryargs = list(

file.dir = "tmp_reg",
seed = 1500

),
generations = 2, n.islands = 2, island.cluster.size = 1,
n.migrations = 0

)

unlink("tmp", recursive = TRUE)
unlink("tmp_reg", recursive = TRUE)

snp.annotations RSID, REF, and ALT annotations for example dataset SNPs

Description

A data.frame containing the RSID, REF allele and ALT allele for each SNP in the example datasets.
The SNPs are in the same order as they appear in the example dataset columns.

Usage

data(snp.annotations)

Format

A data frame with 100 rows and 3 variables



Index

∗ datasets
case, 2
dad, 10
mom, 22
snp.annotations, 33

case, 2
chrom.fitness.score, 3
combine.islands, 6
compute.graphical.scores, 7

dad, 10

epistasis.test, 11
epistasisGA, 13

GADGETS, 13
global.test, 17

mom, 22

network.plot, 23

permute.dataset, 26
preprocess.genetic.data, 27

run.gadgets, 30

snp.annotations, 33

34


	case
	chrom.fitness.score
	combine.islands
	compute.graphical.scores
	dad
	epistasis.test
	epistasisGA
	GADGETS
	global.test
	mom
	network.plot
	permute.dataset
	preprocess.genetic.data
	run.gadgets
	snp.annotations
	Index

