
parglms: fitting generalized linear and related models with parallel
evaluation of contributions to sufficient statistics

Vincent J. Carey, stvjc at channing.harvard.edu

December 2014

Contents
1 Introduction 1

2 Illustration with a data.frame: dispersal and analysis 1

3 Illustration with geuvStore2 3

1 Introduction
The main concern of the parglms package is supporting efficient computations for modeling with dispersed
data. The motivating use case is an eQTL analysis as exemplified in geuvStore2. A BatchJobs Registry
mediates access to collections of millions of statistics on SNP-transcript association. We want to use statistical
modeling to perform inference on features of SNPs contributing to various phenotypic conditions through
effects on gene expression.

Formally, let y denote an N vector with mean function µ(β) and variance function V (µ). The parameter
vector of interest, β, is of dimension p, satisfying g(µ) = Xβ, where X is N × p. In conventional use of
generalized linear models (GLMs), functions µ and V have simple forms and are programmed in the family
elements for stats::glm. The models are fit by solving equations of the form

DtW [y − µ(β)] = 0

where W is diagonal with elements prescribed by the reciprocal variance function, and D = ∂µ/∂β.

The key motivation for this package is the recognition that steps towards the solution of the equation can
often be arithmetically decomposed in various ways, and neither holistic nor serial computation is required for
most of the calculations. We can therefore accomplish the model fitting task in a scalable way, decomposing
the data into parts that fit comfortably in memory, and performing operations in parallel among the parts
whenever possible.

2 Illustration with a data.frame: dispersal and analysis
We use BatchJobs to disperse data into small chunks.
library(MASS)
library(BatchJobs)

Loading required package: BBmisc

##
Attaching package: 'BBmisc'

1

https://bioconductor.org/packages/3.15/parglms
https://bioconductor.org/packages/3.15/geuvStore2
https://CRAN.R-project.org/package=BatchJobs

The following object is masked from 'package:base':
##
isFALSE

The development of BatchJobs and BatchExperiments is discontinued.

Consider switching to 'batchtools' for new features and improved stability

Sourced 1 configuration files:

1: /home/biocbuild/bbs-3.15-bioc/R/library/BatchJobs/etc/BatchJobs_global_config.R

BatchJobs configuration:
cluster functions: Interactive
mail.from:
mail.to:
mail.start: none
mail.done: none
mail.error: none
default.resources: list()
debug: FALSE
raise.warnings: FALSE
staged.queries: TRUE
max.concurrent.jobs: Inf
fs.timeout: NA
measure.mem: TRUE
data(anorexia) # N = 72
myr = makeRegistry("abc", file.dir=tempfile())

Creating dir: /tmp/Rtmp9a4rU7/filea26a077aeafad

Saving registry: /tmp/Rtmp9a4rU7/filea26a077aeafad/registry.RData
chs = chunk(1:nrow(anorexia), n.chunks=18) # 4 recs/chunk
f = function(x) anorexia[x,]
options(BBmisc.ProgressBar.style="off")
batchMap(myr, f, chs)

Adding 18 jobs to DB.
showStatus(myr)

Status for 18 jobs at 2022-04-26 17:27:27
Submitted: 0 (0.00%)
Started: 0 (0.00%)
Running: 0 (0.00%)
Done: 0 (0.00%)
Errors: 0 (0.00%)
Expired: 0 (0.00%)
Time: min=NAs avg=NAs max=NAs

We are now poised to rewrite the data.frame contents into chunks.

Syncing registry ...
submitJobs(myr)
waitForJobs(myr)

loadResult(myr,1)

2

Treat Prewt Postwt
1 Cont 80.7 80.2
2 Cont 89.4 80.1
3 Cont 91.8 86.4
4 Cont 74.0 86.3

The parGLM method will fit the model specified in the formula. The task of iterating over chunks is left to
the BiocParallel bplapply, and this will implicitly use whatever concurrent computing approach has been
registered.
library(parglms)
pp = parGLM(Postwt ~ Treat + Prewt, myr,

family=gaussian, binit = c(0,0,0,0), maxit=10, tol=.001)

Warning: executing %dopar% sequentially: no parallel backend registered
names(pp)

[1] "coefficients" "eff.variance" "robust.variance" "s2"
[5] "niter" "converged" "formula" "N"
[9] "theCall"
pp$coef

[,1]
(Intercept) 49.7711090
TreatCont -4.0970655
TreatFT 4.5630627
Prewt 0.4344612

3 Illustration with geuvStore2
In this application we model the probability that a SNP has been identified as a GWAS hit, as a function of
aspects of its genomic context and its association with expression as measured using RNA-seq in GEUVADIS.

In the decorate function, we emend the outputs of gQTLstats cisAssoc after applying storeToFDR and
enumerateByFDR, as serialized in a GRanges (demoEnum) with information on GWAS hit status and
enclosing chromatin state. This is intensive; the litdec function simply computes GWAS hit status and
chromatin state.
litdec = function(grWithFDR) {
tmp = grWithFDR
library(gQTLstats)
if (!exists("hmm878")) data(hmm878)
seqlevelsStyle(hmm878) = "NCBI"
library(GenomicRanges)
ov = findOverlaps(tmp, hmm878)
states = hmm878$name
states[which(states %in% c("13_Heterochrom/lo", "14_Repetitive/CNV",

"15_Repetitive/CNV"))] = "hetrep_1315"
levs = unique(states)
tmp$hmmState = factor(rep("hetrep_1315", length(tmp)),levels=levs)
tmp$hmmState = relevel(tmp$hmmState, "hetrep_1315")
tmp$hmmState[queryHits(ov)] = factor(states[subjectHits(ov)],

levels=levs)
if (!exists("gwrngs19")) data(gwrngs19)
library(GenomeInfoDb)

3

https://bioconductor.org/packages/3.15/BiocParallel
https://bioconductor.org/packages/3.15/gQTLstats

seqlevelsStyle(gwrngs19) = "NCBI"
tmp$isGwasHit = 1*(tmp %in% gwrngs19)
tmp

}

decorate = function(grWithFDR) {
#
the data need a distance/MAF filter
#
library(gQTLstats)
data(filtFDR)
if (!exists("hmm878")) data(hmm878)
library(gwascat)
if (!exists("gwrngs19")) data(gwrngs19)
if (!exists("gwastagger")) data(gwastagger) # will use locations here
library(GenomeInfoDb)
seqlevelsStyle(hmm878) = "NCBI"
seqlevelsStyle(gwrngs19) = "NCBI"
seqlevelsStyle(gwastagger) = "NCBI"
tmp = grWithFDR
tmp$isGwasHit = 1*(tmp %in% gwrngs19)
tmp$isGwasTagger = 1*(tmp %in% gwastagger)
#levs = unique(hmm878$name)
library(GenomicRanges)
ov = findOverlaps(tmp, hmm878)
states = hmm878$name
states[which(states %in% c("13_Heterochrom/lo", "14_Repetitive/CNV",

"15_Repetitive/CNV"))] = "hetrep_1315"
levs = unique(states)
tmp$hmmState = factor(rep("hetrep_1315", length(tmp)),levels=levs)
tmp$hmmState = relevel(tmp$hmmState, "hetrep_1315")
tmp$hmmState[queryHits(ov)] = factor(states[subjectHits(ov)],

levels=levs)
tmp$estFDR = getFDRfunc(filtFDR)(tmp$chisq)
tmp$fdrcat = cut(tmp$estFDR, c(-.01, .01, .05, .1, .25, .5, 1.01))
tmp$fdrcat = relevel(tmp$fdrcat, "(0.5,1.01]")
#tmp$distcat = cut(tmp$mindist, c(-1,0,1000,5000,10000,50000,100000,250000,500001))
tmp$distcat = cut(tmp$mindist, c(-1,0,1000,5000,10000,25000,50001))
#tmp$distcat = relevel(tmp$distcat, "(2.5e+05,5e+05]")
tmp$distcat = relevel(tmp$distcat, "(2.5e+04,5e+04]")
tmp$MAFcat = cut(tmp$MAF, c(.049, .075, .1, .25, .51))
tmp$MAFcat = relevel(tmp$MAFcat, "(0.25,0.51]")
kp = c("seqnames", "start", "probeid", "snp", "estFDR", "fdrcat", "hmmState",
"distcat", "MAFcat", "isGwasHit", "isGwasTagger")

names(tmp) = NULL
as(tmp, "data.frame")[,kp]

}

We’ll try this out here:
suppressPackageStartupMessages({
library(geuvStore2)
library(gQTLBase)
library(gQTLstats)

4

})
prst = g17transRegistry()

Now we can fit a very simple model for SNP phenorelevance. We set the extractor component of the registry
to the litdec function defined above.
prst$extractor = function(store,i) litdec(loadResult(store,i)[[1]])
p1 = parGLM(isGwasHit ~ hmmState, prst,

family=binomial, binit=rep(0,13), tol=.001,
maxit = 10)

summaryPG(p1)
#ans= list(coef=p1$coef, s.e.=sqrt(diag(p1$eff.var)))
#ans$z = ans[[1]]/ans[[2]]
#do.call(cbind, ans)

5

	Introduction
	Illustration with a data.frame: dispersal and analysis
	Illustration with geuvStore2

