To install and load NBAMSeq
High-throughput sequencing experiments followed by differential expression analysis is a widely used approach to detect genomic biomarkers. A fundamental step in differential expression analysis is to model the association between gene counts and covariates of interest. NBAMSeq is a flexible statistical model based on the generalized additive model and allows for information sharing across genes in variance estimation. Specifically, we model the logarithm of mean gene counts as sums of smooth functions with the smoothing parameters and coefficients estimated simultaneously by a nested iteration. The variance is estimated by the Bayesian shrinkage approach to fully exploit the information across all genes.
The workflow of NBAMSeq contains three main steps:
Step 1: Data input using NBAMSeqDataSet;
Step 2: Differential expression (DE) analysis using NBAMSeq function;
Step 3: Pulling out DE results using results function.
Here we illustrate each of these steps respectively.
Users are expected to provide three parts of input, i.e. countData, colData, and design.
countData is a matrix of gene counts generated by RNASeq experiments.
## An example of countData
n = 50  ## n stands for number of genes
m = 20   ## m stands for sample size
countData = matrix(rnbinom(n*m, mu=100, size=1/3), ncol = m) + 1
mode(countData) = "integer"
colnames(countData) = paste0("sample", 1:m)
rownames(countData) = paste0("gene", 1:n)
head(countData)      sample1 sample2 sample3 sample4 sample5 sample6 sample7 sample8 sample9
gene1     321     160     310      14     167     118       5     264      77
gene2     736       2       5      32     134       3     115    1013     116
gene3       1     112       1      27      53     289      26     201      33
gene4      90      48       6      52      53     192     258     356      42
gene5      81      12      17      45      86       3      43       2      98
gene6     242     122      18      38       7       5     149     614      27
      sample10 sample11 sample12 sample13 sample14 sample15 sample16 sample17
gene1      237       45      127       75        5        2        1      309
gene2       24        1       61      596      166       14        6        2
gene3        2        1        1        6       32       20        1        1
gene4       23      115      140        1      781       41        7        2
gene5      191       61      334        7       18        7       54        1
gene6        3       17        7      114      149       11        9        9
      sample18 sample19 sample20
gene1      316        4      271
gene2        1        7       25
gene3      153      177     1067
gene4       47       48       11
gene5       92        1      568
gene6        1      273        1colData is a data frame which contains the covariates of samples. The sample order in colData should match the sample order in countData.
## An example of colData
pheno = runif(m, 20, 80)
var1 = rnorm(m)
var2 = rnorm(m)
var3 = rnorm(m)
var4 = as.factor(sample(c(0,1,2), m, replace = TRUE))
colData = data.frame(pheno = pheno, var1 = var1, var2 = var2,
    var3 = var3, var4 = var4)
rownames(colData) = paste0("sample", 1:m)
head(colData)           pheno        var1       var2       var3 var4
sample1 65.53931 -1.41484246 -0.4286336  0.8210214    0
sample2 67.40928 -0.22382841  1.1054109  0.7785891    2
sample3 72.15319  0.02647715 -0.9673179 -0.5929070    1
sample4 36.94218 -1.15264117 -0.3431567 -0.2390098    2
sample5 75.84780  0.69098219 -1.2337943  0.3538889    2
sample6 70.66884 -1.45000600 -0.1383750 -0.9596376    1design is a formula which specifies how to model the samples. Compared with other packages performing DE analysis including DESeq2 (Love, Huber, and Anders 2014), edgeR (Robinson, McCarthy, and Smyth 2010), NBPSeq (Di et al. 2015) and BBSeq (Zhou, Xia, and Wright 2011), NBAMSeq supports the nonlinear model of covariates via mgcv (Wood and Wood 2015). To indicate the nonlinear covariate in the model, users are expected to use s(variable_name) in the design formula. In our example, if we would like to model pheno as a nonlinear covariate, the design formula should be:
Several notes should be made regarding the design formula:
multiple nonlinear covariates are supported, e.g. design = ~ s(pheno) + s(var1) + var2 + var3 + var4;
the nonlinear covariate cannot be a discrete variable, e.g.  design = ~ s(pheno) + var1 + var2 + var3 + s(var4) as var4 is a factor, and it makes no sense to model a factor as nonlinear;
at least one nonlinear covariate should be provided in design. If all covariates are assumed to have linear effect on gene count, use DESeq2 (Love, Huber, and Anders 2014), edgeR (Robinson, McCarthy, and Smyth 2010), NBPSeq (Di et al. 2015) or BBSeq (Zhou, Xia, and Wright 2011) instead. e.g.  design = ~ pheno + var1 + var2 + var3 + var4 is not supported in NBAMSeq;
design matrix is not supported.
We then construct the NBAMSeqDataSet using countData, colData, and design:
class: NBAMSeqDataSet 
dim: 50 20 
metadata(1): fitted
assays(1): counts
rownames(50): gene1 gene2 ... gene49 gene50
rowData names(0):
colnames(20): sample1 sample2 ... sample19 sample20
colData names(5): pheno var1 var2 var3 var4Differential expression analysis can be performed by NBAMSeq function:
Several other arguments in NBAMSeq function are available for users to customize the analysis.
gamma argument can be used to control the smoothness of the nonlinear function. Higher gamma means the nonlinear function will be more smooth. See the gamma argument of gam function in mgcv (Wood and Wood 2015) for details. Default gamma is 2.5;
fitlin is either TRUE or FALSE indicating whether linear model should be fitted after fitting the nonlinear model;
parallel is either TRUE or FALSE indicating whether parallel should be used. e.g. Run NBAMSeq with parallel = TRUE:
Results of DE analysis can be pulled out by results function. For continuous covariates, the name argument should be specified indicating the covariate of interest. For nonlinear continuous covariates, base mean, effective degrees of freedom (edf), test statistics, p-value, and adjusted p-value will be returned.
DataFrame with 6 rows and 7 columns
       baseMean       edf       stat      pvalue       padj       AIC       BIC
      <numeric> <numeric>  <numeric>   <numeric>  <numeric> <numeric> <numeric>
gene1  128.5210   1.00005  0.0567017 0.811899471 0.88249942   251.524   258.494
gene2  159.8815   1.00003 14.3845115 0.000148782 0.00743909   217.286   224.256
gene3  102.0467   1.85582  2.5322205 0.284216863 0.47369477   214.139   221.961
gene4   96.3421   1.00006  1.3272192 0.249323484 0.44522051   226.962   233.932
gene5   69.7584   1.00004  2.9155560 0.087737044 0.33533234   219.650   226.620
gene6   92.4897   1.00005  1.7019983 0.192032137 0.40773716   214.266   221.236For linear continuous covariates, base mean, estimated coefficient, standard error, test statistics, p-value, and adjusted p-value will be returned.
DataFrame with 6 rows and 8 columns
       baseMean      coef        SE      stat    pvalue      padj       AIC
      <numeric> <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
gene1  128.5210 -0.441345  0.458029 -0.963572 0.3352604  0.718358   251.524
gene2  159.8815  0.855387  0.448642  1.906612 0.0565708  0.404077   217.286
gene3  102.0467 -0.490912  0.525848 -0.933564 0.3505287  0.718358   214.139
gene4   96.3421 -0.183150  0.379806 -0.482219 0.6296503  0.852578   226.962
gene5   69.7584 -0.254720  0.439487 -0.579585 0.5621945  0.826757   219.650
gene6   92.4897  0.518804  0.432105  1.200642 0.2298899  0.638583   214.266
            BIC
      <numeric>
gene1   258.494
gene2   224.256
gene3   221.961
gene4   233.932
gene5   226.620
gene6   221.236For discrete covariates, the contrast argument should be specified. e.g.  contrast = c("var4", "2", "0") means comparing level 2 vs. level 0 in var4.
DataFrame with 6 rows and 8 columns
       baseMean       coef        SE       stat    pvalue      padj       AIC
      <numeric>  <numeric> <numeric>  <numeric> <numeric> <numeric> <numeric>
gene1  128.5210  0.0540399   1.17315  0.0460639 0.9632593  0.963259   251.524
gene2  159.8815 -2.7387434   1.14412 -2.3937473 0.0166772  0.166732   217.286
gene3  102.0467  2.0432624   1.32708  1.5396638 0.1236423  0.364844   214.139
gene4   96.3421  0.4522329   0.97891  0.4619759 0.6440986  0.805123   226.962
gene5   69.7584 -0.4903549   1.12470 -0.4359857 0.6628471  0.808350   219.650
gene6   92.4897 -1.3231486   1.10595 -1.1963939 0.2315429  0.445275   214.266
            BIC
      <numeric>
gene1   258.494
gene2   224.256
gene3   221.961
gene4   233.932
gene5   226.620
gene6   221.236We suggest two approaches to visualize the nonlinear associations. The first approach is to plot the smooth components of a fitted negative binomial additive model by plot.gam function in mgcv (Wood and Wood 2015). This can be done by calling makeplot function and passing in NBAMSeqDataSet object. Users are expected to provide the phenotype of interest in phenoname argument and gene of interest in genename argument.
## assuming we are interested in the nonlinear relationship between gene10's 
## expression and "pheno"
makeplot(gsd, phenoname = "pheno", genename = "gene10", main = "gene10")In addition, to explore the nonlinear association of covariates, it is also instructive to look at log normalized counts vs. variable scatter plot. Below we show how to produce such plot.
## here we explore the most significant nonlinear association
res1 = res1[order(res1$pvalue),]
topgene = rownames(res1)[1]  
sf = getsf(gsd)  ## get the estimated size factors
## divide raw count by size factors to obtain normalized counts
countnorm = t(t(countData)/sf) 
head(res1)DataFrame with 6 rows and 7 columns
        baseMean       edf      stat      pvalue       padj       AIC       BIC
       <numeric> <numeric> <numeric>   <numeric>  <numeric> <numeric> <numeric>
gene2   159.8815   1.00003  14.38451 0.000148782 0.00743909   217.286   224.256
gene23   78.3548   1.00004   9.35953 0.002219253 0.05548133   207.935   214.905
gene27   33.7972   1.00006   7.19056 0.007330558 0.10880910   182.010   188.980
gene15   75.3277   1.00004   6.88315 0.008704728 0.10880910   217.003   223.973
gene26   91.5546   1.00004   6.13869 0.013229514 0.11858628   215.383   222.353
gene8    48.7895   1.00006   6.00996 0.014230354 0.11858628   209.388   216.359library(ggplot2)
setTitle = topgene
df = data.frame(pheno = pheno, logcount = log2(countnorm[topgene,]+1))
ggplot(df, aes(x=pheno, y=logcount))+geom_point(shape=19,size=1)+
    geom_smooth(method='loess')+xlab("pheno")+ylab("log(normcount + 1)")+
    annotate("text", x = max(df$pheno)-5, y = max(df$logcount)-1, 
    label = paste0("edf: ", signif(res1[topgene,"edf"],digits = 4)))+
    ggtitle(setTitle)+
    theme(text = element_text(size=10), plot.title = element_text(hjust = 0.5))R version 4.2.0 RC (2022-04-19 r82224)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.4 LTS
Matrix products: default
BLAS:   /home/biocbuild/bbs-3.15-bioc/R/lib/libRblas.so
LAPACK: /home/biocbuild/bbs-3.15-bioc/R/lib/libRlapack.so
locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_GB              LC_COLLATE=C              
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     
other attached packages:
 [1] ggplot2_3.3.5               BiocParallel_1.30.0        
 [3] NBAMSeq_1.12.0              SummarizedExperiment_1.26.0
 [5] Biobase_2.56.0              GenomicRanges_1.48.0       
 [7] GenomeInfoDb_1.32.0         IRanges_2.30.0             
 [9] S4Vectors_0.34.0            BiocGenerics_0.42.0        
[11] MatrixGenerics_1.8.0        matrixStats_0.62.0         
loaded via a namespace (and not attached):
 [1] httr_1.4.2             sass_0.4.1             bit64_4.0.5           
 [4] jsonlite_1.8.0         splines_4.2.0          bslib_0.3.1           
 [7] assertthat_0.2.1       highr_0.9              blob_1.2.3            
[10] GenomeInfoDbData_1.2.8 yaml_2.3.5             pillar_1.7.0          
[13] RSQLite_2.2.12         lattice_0.20-45        glue_1.6.2            
[16] digest_0.6.29          RColorBrewer_1.1-3     XVector_0.36.0        
[19] colorspace_2.0-3       htmltools_0.5.2        Matrix_1.4-1          
[22] DESeq2_1.36.0          XML_3.99-0.9           pkgconfig_2.0.3       
[25] genefilter_1.78.0      zlibbioc_1.42.0        purrr_0.3.4           
[28] xtable_1.8-4           scales_1.2.0           tibble_3.1.6          
[31] annotate_1.74.0        mgcv_1.8-40            KEGGREST_1.36.0       
[34] farver_2.1.0           generics_0.1.2         ellipsis_0.3.2        
[37] withr_2.5.0            cachem_1.0.6           cli_3.3.0             
[40] survival_3.3-1         magrittr_2.0.3         crayon_1.5.1          
[43] memoise_2.0.1          evaluate_0.15          fansi_1.0.3           
[46] nlme_3.1-157           tools_4.2.0            lifecycle_1.0.1       
[49] stringr_1.4.0          locfit_1.5-9.5         munsell_0.5.0         
[52] DelayedArray_0.22.0    AnnotationDbi_1.58.0   Biostrings_2.64.0     
[55] compiler_4.2.0         jquerylib_0.1.4        rlang_1.0.2           
[58] grid_4.2.0             RCurl_1.98-1.6         labeling_0.4.2        
[61] bitops_1.0-7           rmarkdown_2.14         gtable_0.3.0          
[64] DBI_1.1.2              R6_2.5.1               knitr_1.38            
[67] dplyr_1.0.8            fastmap_1.1.0          bit_4.0.4             
[70] utf8_1.2.2             stringi_1.7.6          parallel_4.2.0        
[73] Rcpp_1.0.8.3           vctrs_0.4.1            geneplotter_1.74.0    
[76] png_0.1-7              tidyselect_1.1.2       xfun_0.30             Di, Y, DW Schafer, JS Cumbie, and JH Chang. 2015. “NBPSeq: Negative Binomial Models for Rna-Sequencing Data.” R Package Version 0.3. 0, URL Http://CRAN. R-Project. Org/Package= NBPSeq.
Love, Michael I, Wolfgang Huber, and Simon Anders. 2014. “Moderated Estimation of Fold Change and Dispersion for Rna-Seq Data with Deseq2.” Genome Biology 15 (12): 550.
Robinson, Mark D, Davis J McCarthy, and Gordon K Smyth. 2010. “EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data.” Bioinformatics 26 (1): 139–40.
Wood, Simon, and Maintainer Simon Wood. 2015. “Package ’Mgcv’.” R Package Version 1: 29.
Zhou, Yi-Hui, Kai Xia, and Fred A Wright. 2011. “A Powerful and Flexible Approach to the Analysis of Rna Sequence Count Data.” Bioinformatics 27 (19): 2672–8.