In this vignette, we demonstrate the unsegmented block bootstrap functionality implemented in nullranges. “Unsegmented” refers to the fact that this implementation does not consider segmentation of the genome for sampling of blocks, see the segmented block bootstrap vignette for the alternative implementation.

Timing on DHS peaks

First we use the DNase hypersensitivity peaks in A549 downloaded from AnnotationHub, and pre-processed as described in the nullrangesOldData package.

library(nullrangesData)
dhs <- DHSA549Hg38()
library(nullranges)

The following chunk of code evaluates various types of bootstrap/permutation schemes, first within chromosome, and then across chromosome (the default). The default type is bootstrap, and the default for withinChrom is FALSE (bootstrapping with blocks moving across chromosomes).

set.seed(5) # reproducibility
library(microbenchmark)
blockLength <- 5e5
microbenchmark(
  list=alist(
    p_within=bootRanges(dhs, blockLength=blockLength,
                        type="permute", withinChrom=TRUE),
    b_within=bootRanges(dhs, blockLength=blockLength,
                        type="bootstrap", withinChrom=TRUE),
    p_across=bootRanges(dhs, blockLength=blockLength,
                        type="permute", withinChrom=FALSE),
    b_across=bootRanges(dhs, blockLength=blockLength,
                        type="bootstrap", withinChrom=FALSE)
  ), times=10)
## Unit: milliseconds
##      expr       min        lq      mean    median        uq       max neval cld
##  p_within 1010.6040 1031.6861 1056.2933 1056.4756 1073.5097 1112.6601    10   b
##  b_within  881.9462  918.9972  965.7295  941.7946 1005.7543 1113.5343    10   b
##  p_across  236.9382  243.4249  362.5208  262.4285  288.0741 1257.4925    10  a 
##  b_across  277.8253  279.9926  296.4042  291.0987  314.4386  327.5488    10  a

Visualize on synthetic data

We create some synthetic ranges in order to visualize the different options of the unsegmented bootstrap implemented in nullranges.

library(GenomicRanges)
seq_nms <- rep(c("chr1","chr2","chr3"),c(4,5,2))
gr <- GRanges(seqnames=seq_nms,
              IRanges(start=c(1,101,121,201,
                              101,201,216,231,401,
                              1,101),
                      width=c(20, 5, 5, 30,
                              20, 5, 5, 5, 30,
                              80, 40)),
              seqlengths=c(chr1=300,chr2=450,chr3=200),
              chr=factor(seq_nms))

The following function uses functionality from plotgardener to plot the ranges. Note in the plotting helper function that chr will be used to color ranges by chromosome of origin.

suppressPackageStartupMessages(library(plotgardener))
plotGRanges <- function(gr) {
  pageCreate(width = 5, height = 2, xgrid = 0,
                ygrid = 0, showGuides = FALSE)
  for (i in seq_along(seqlevels(gr))) {
    chrom <- seqlevels(gr)[i]
    chromend <- seqlengths(gr)[[chrom]]
    suppressMessages({
      p <- pgParams(chromstart = 0, chromend = chromend,
                    x = 0.5, width = 4*chromend/500, height = 0.5,
                    at = seq(0, chromend, 50),
                    fill = colorby("chr", palette=palette.colors))
      prngs <- plotRanges(data = gr, params = p,
                          chrom = chrom,
                          y = 0.25 + (i-1)*.7,
                          just = c("left", "bottom"))
      annoGenomeLabel(plot = prngs, params = p, y = 0.30 + (i-1)*.7)
    })
  }
}
plotGRanges(gr)

Within chromosome

Visualizing two permutations of blocks within chromosome:

for (i in 1:2) {
  gr_prime <- bootRanges(gr, blockLength=100, type="permute", withinChrom=TRUE)
  plotGRanges(gr_prime)
}

Visualizing two bootstraps within chromosome:

for (i in 1:2) {
  gr_prime <- bootRanges(gr, blockLength=100, withinChrom=TRUE)
  plotGRanges(gr_prime)
}

Across chromosome

Visualizing two permutations of blocks across chromosome. Here we use larger blocks than previously.

for (i in 1:2) {
  gr_prime <- bootRanges(gr, blockLength=200, type="permute", withinChrom=FALSE)
  plotGRanges(gr_prime)
}

Visualizing two bootstraps across chromosome:

for (i in 1:2) {
  gr_prime <- bootRanges(gr, blockLength=200, withinChrom=FALSE)
  plotGRanges(gr_prime)
}

Session information

sessionInfo()
## R version 4.2.0 RC (2022-04-19 r82224 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows Server x64 (build 20348)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=C                          
## [2] LC_CTYPE=English_United States.utf8   
## [3] LC_MONETARY=English_United States.utf8
## [4] LC_NUMERIC=C                          
## [5] LC_TIME=English_United States.utf8    
## 
## attached base packages:
## [1] grid      stats4    stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] microbenchmark_1.4.9        tidyr_1.2.0                
##  [3] EnsDb.Hsapiens.v86_2.99.0   ensembldb_2.20.0           
##  [5] AnnotationFilter_1.20.0     GenomicFeatures_1.48.0     
##  [7] AnnotationDbi_1.58.0        patchwork_1.1.1            
##  [9] plyranges_1.16.0            nullrangesData_1.1.1       
## [11] ExperimentHub_2.4.0         AnnotationHub_3.4.0        
## [13] BiocFileCache_2.4.0         dbplyr_2.1.1               
## [15] ggplot2_3.3.5               plotgardener_1.2.0         
## [17] nullranges_1.2.0            InteractionSet_1.24.0      
## [19] SummarizedExperiment_1.26.0 Biobase_2.56.0             
## [21] MatrixGenerics_1.8.0        matrixStats_0.62.0         
## [23] GenomicRanges_1.48.0        GenomeInfoDb_1.32.0        
## [25] IRanges_2.30.0              S4Vectors_0.34.0           
## [27] BiocGenerics_0.42.0        
## 
## loaded via a namespace (and not attached):
##   [1] plyr_1.8.7                    RcppHMM_1.2.2                
##   [3] lazyeval_0.2.2                splines_4.2.0                
##   [5] BiocParallel_1.30.0           TH.data_1.1-1                
##   [7] digest_0.6.29                 yulab.utils_0.0.4            
##   [9] htmltools_0.5.2               fansi_1.0.3                  
##  [11] magrittr_2.0.3                memoise_2.0.1                
##  [13] ks_1.13.5                     Biostrings_2.64.0            
##  [15] sandwich_3.0-1                prettyunits_1.1.1            
##  [17] jpeg_0.1-9                    colorspace_2.0-3             
##  [19] blob_1.2.3                    rappdirs_0.3.3               
##  [21] xfun_0.30                     dplyr_1.0.8                  
##  [23] crayon_1.5.1                  RCurl_1.98-1.6               
##  [25] jsonlite_1.8.0                survival_3.3-1               
##  [27] zoo_1.8-10                    glue_1.6.2                   
##  [29] gtable_0.3.0                  zlibbioc_1.42.0              
##  [31] XVector_0.36.0                strawr_0.0.9                 
##  [33] DelayedArray_0.22.0           scales_1.2.0                 
##  [35] mvtnorm_1.1-3                 DBI_1.1.2                    
##  [37] Rcpp_1.0.8.3                  xtable_1.8-4                 
##  [39] progress_1.2.2                gridGraphics_0.5-1           
##  [41] bit_4.0.4                     mclust_5.4.9                 
##  [43] httr_1.4.2                    RColorBrewer_1.1-3           
##  [45] speedglm_0.3-4                ellipsis_0.3.2               
##  [47] pkgconfig_2.0.3               XML_3.99-0.9                 
##  [49] farver_2.1.0                  sass_0.4.1                   
##  [51] utf8_1.2.2                    DNAcopy_1.70.0               
##  [53] ggplotify_0.1.0               tidyselect_1.1.2             
##  [55] labeling_0.4.2                rlang_1.0.2                  
##  [57] later_1.3.0                   munsell_0.5.0                
##  [59] BiocVersion_3.15.2            tools_4.2.0                  
##  [61] cachem_1.0.6                  cli_3.3.0                    
##  [63] generics_0.1.2                RSQLite_2.2.12               
##  [65] ggridges_0.5.3                evaluate_0.15                
##  [67] stringr_1.4.0                 fastmap_1.1.0                
##  [69] yaml_2.3.5                    knitr_1.38                   
##  [71] bit64_4.0.5                   purrr_0.3.4                  
##  [73] KEGGREST_1.36.0               mime_0.12                    
##  [75] pracma_2.3.8                  xml2_1.3.3                   
##  [77] biomaRt_2.52.0                compiler_4.2.0               
##  [79] filelock_1.0.2                curl_4.3.2                   
##  [81] png_0.1-7                     interactiveDisplayBase_1.34.0
##  [83] tibble_3.1.6                  bslib_0.3.1                  
##  [85] stringi_1.7.6                 highr_0.9                    
##  [87] lattice_0.20-45               ProtGenerics_1.28.0          
##  [89] Matrix_1.4-1                  vctrs_0.4.1                  
##  [91] pillar_1.7.0                  lifecycle_1.0.1              
##  [93] BiocManager_1.30.17           jquerylib_0.1.4              
##  [95] data.table_1.14.2             bitops_1.0-7                 
##  [97] httpuv_1.6.5                  rtracklayer_1.56.0           
##  [99] R6_2.5.1                      BiocIO_1.6.0                 
## [101] promises_1.2.0.1              KernSmooth_2.23-20           
## [103] codetools_0.2-18              MASS_7.3-57                  
## [105] assertthat_0.2.1              rjson_0.2.21                 
## [107] withr_2.5.0                   GenomicAlignments_1.32.0     
## [109] Rsamtools_2.12.0              multcomp_1.4-19              
## [111] GenomeInfoDbData_1.2.8        parallel_4.2.0               
## [113] hms_1.1.1                     rmarkdown_2.14               
## [115] shiny_1.7.1                   restfulr_0.0.13