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1 Getting started

This document gives an overview of the R package tweeDEseq, which provides statistical proce-
dures for testing differential expression in RNA-seq count data. In fact, these procedures could
be applied, in principle, to any kind of count data, other than RNA-seq. The tweeDEseq package
offers a function for normalizing count data which actually calls other functions for that purpose
from the edgeR package. For this reason, it is necessary to have installed the edgeR package as
well, although it is not necessary to explicitly load it onto the session. Another package necessary
for running this vignette is the tweeDEseqCountData package which contains data to illustrate
the analyses and which is employed in the article introducing tweeDEseq by Esnaola et al. (2013).
Therefore, we should start the R session with loading these libraries as follows:

> library(tweeDEseq)
> library(tweeDEseqCountData)

We will start loading into the workspace the data corresponding to the initial table of raw counts
of the RNA-seq experiment from Pickrell et al. (2010) on lymphoblastoid cell lines derived from
69 unrelated nigerian individuals as well as a vector of gender labels for each sample matching
the sample order in the table of counts:

> data(pickrell)
> countsNigerian <- exprs(pickrell.eset)
> dim(countsNigerian)

[1] 52580 69

> countsNigerian[1:5, 1:5]
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NA18486 NA18498 NA18499 NA18501 NA18502

ENSGO0000000003 0 0 0 0 0
ENSGO0000000005 0 0 0 0 0
ENSG00000000419 22 105 40 55 67
ENSG00000000457 22 100 107 53 72
ENSG00000000460 5 23 10 18 15

> genderNigerian <- pData(pickrell.eset) [, "gender"]
> head(genderNigerian)

[1] male male female male female male
Levels: female male

> table(genderNigerian)

genderNigerian
female male
40 29

2 Normalization and filtering

We proceed to normalize this initial table of raw counts in order to try to remove any technical bi-
ases that might be affecting the data. The tweeDEseq package relies for this purpose on part of the
functionality provided by the edgeR package (comprising RNA composition adjustment by TMM
(Robinson and Oshlack, 2010) and quantile-to-quantile count adjustment (Robinson et al., 2007)
produced by the equalizeLibSizes() from edgeR) and offers one function (normalizeCounts())
that makes the appropriate calls to edgeR to normalize these data.

> countsNigerianNorm <- normalizeCounts(countsNigerian, genderNigerian)
> dim(countsNigerianNorm)
[1] 10231 69

If more control is needed in this step, the user should directly employ the corresponding edgeR
functions. Next, we can filter out genes with very low expression using the function filter-
Counts() whose default parameters remove those genes with less than 5 counts per million in all
samples but one.

> countsNigerianNorm <- filterCounts (countsNigerianNorm)
> dim(countsNigerianNorm)

[1] 10231 69

3 The Poisson-Tweedie family of distributions to model RNA-seq
count data
The package tweeDEseq uses the Poisson-Tweedie (PT) family of distributions as the statistical

model for count data. PT distributions have been studied by several authors(Hougaard et al.,
1997; Gupta and Ong, 2004; Puig and Valero, 2006; El-Shaarawi et al., 2011) and unify several



count data distributions (see Fig. 1 in El-Shaarawi et al., 2011) such as Poisson, negative
binomial, Poisson-Inverse Gaussian, Pélya-Aeppli or Neyman type A. These distributions can
model different scenarios as, for instance, a RNA-seq expression profile with a wide dynamic
range leading to a heavy tail in the distribution.

Following El-Shaarawi et al. (2011), let ¥ ~ PT(a,b,c) be a PT random variable with vector
of parameters 8 = (a,b,c)” defined in the domain

© = (—o0, 1] x (0,40) x [0, 1). (1)

For the sake of interpretability, we reparametrize 6 = (a,b,c) to 0 = (U, ¢,a), where u denotes
the mean, ¢ = 62/ is the dispersion index (62 is the variance), and a the shape parameter that is
employed to define some count data distributions that are particular cases of PT such as Poisson
or Negative Binomial. The relationship between both parameterizations is the following:

-1 p(l-a)
“oma T o-nd-a

Under this parametrization, the shape parameter determines the specific count data distri-
bution being employed. For instance a =1 corresponds to Poisson and a = 0 corresponds to
negative binomial. We can estimate the parameter vector 8 by maximum likelihood through the
function mlePoissonTweedie() as follows:

(2)

> set.seed(123)

> y <- rnbinom(1000, mu=8, size=1/0.2)
> thetahat <- mlePoissonTweedie (y)

> getParam(thetahat)

mu D a
8.0680000 2.6620193 0.0405573

where here we have simulated 1000 random observations from a negative binomial distribution
and the last call to getParam() allows us to extract the 6 vector from the object return by
mlePoissonTweedie().

4 Goodness of fit to a count data distribution

The PT distribution allows one to test for the goodness of fit to a particular count data distri-
bution defined by a specific value of the PT shape parameter a. For this purpose, the function
testShapePT() allows us to test the goodness of fit to, for instance, the widely used negative
binomial distribution (i.e., Ho : @ = 0) as illustrated here with the previously estimated vector 8:

> testShapePT (thetahat, a=0)

$statistic
[1] 0.01471032

$pvalue
[1] 0.9034644



These functions are called from another one called gofTest () which can perform for us a goodness-
of-fit for every gene in the rows of a given matrix of counts, and will return the corresponding X]z
statistics. Since calculating this for the entire gene set would take too long for building quickly
this vignette we are going to work on a subset of genes formed by human genes with documented
sex-specific expression, a sampled subset of 25 human housekeeping genes and the secretin (SCT)
gene which encodes for an endocrine hormone peptide in chromosome 11 that controls secretions
in the duodenum. The gender-related and housekeeping gene lists form part from the previously
loaded experimental data package tweeDEseqCountData and can be loaded as follows:

> data(genderGenes)
> data(hkGenes)
> length(XiEgenes)

[1] 63
> length(msYgenes)
[1] 32
> length (hkGenes)
[1] 669

The list of genes with documented sex-specific expression was built by first selecting genes in
chromosome X that escape X-inactivation (Carrel and Willard, 2005) and genes in the male-
specific region of the Y chrosomome (Skaletsky et al., 2003), and then filtering out those that
do not occur in the initial table of counts with 52580 Ensembl genes. The list of housekeeping
genes was retrieved from the literature(Eisenberg and Levanon, 2003) and then also filtered to
keep only those genes that form part of the initial table of counts. The selection is finally done
as follows:

set.seed(123)
someHKgenes <- sample(hkGenes, size=25)
geneSubset <- unique (c("ENSG00000070031",
intersect (rownames (countsNigerianNorm),
c(someHKgenes, msYgenes, XiEgenes))))

vV + + VvV VvV

length(geneSubset)
[1] 41

Now, we calculate the goodness of fit to a negative binomial distribution for each of these 41
genes using the function gofTest ():

> chi2gof <- gofTest(countsNigerianNorm[geneSubset, ], a=0)

and we can examine the result by means of the quantile-quantile plots produced with the function
qqchisq() and shown in Figure 1, which indicates that more than a 50% of the genes show a
substantial discrepancy with the respect to the negative binomial distribution.

> par(mfrow=c(1,2), mar=c(4, 5, 3, 4))
> qq <- qqchisq(chi2gof, main="Chi2 Q-Q Plot", ylim = c(0, 60))
> qq <- qqchisq(chi2gof, normal=TRUE, ylim = c(-5, 7))
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Figure 1. Goodness of fit to a binomial distribution. On the left a quantile-quantile plot of the x?
statistic employed to assess the goodness-of-fit of the RNA-seq data to a negative binomial distribution
is shown. More than a 50% of the genes have expression profiles that depart substantially from the
negative binomial distribution. On the right we have the same data but y? statistics are transformed
into standard normal z-scores to improve visibility of the lower quantiles.

This indicates that different genes may require different count data distributions but, in fact,
this can be also observed for different sample groups within the same gene. Figure 2 illustrates
such a case with the secretin (SCT) gene (Ensembl ID ENSG00000070031) when looking sepa-
rately to male and female samples. This figure is produced with the following code that calls
the function compareCountDist() which helps in comparing an empirical distribution of counts
against the Poisson, the negative binomial and the corresponding estimated PT distribution.

> par(mfrow=c(1,2), mar=c(4, 5, 3, 2))

> xf <- unlist(countsNigerianNorm["ENSGO0000070031", genderNigerian=="female"])
> compareCountDist (xf, main="Female samples")

> xm <- unlist(countsNigerianNorm["ENSGO0O000070031", genderNigerian=="male"])
> compareCountDist (xm, main="Male samples")

What Figure 2 reflects can be also easily seen by just looking to the actual counts and
identifying the female sample that produces the heavy tail on the distribution

> sort(xf)

NA19137 NA18855 NA19127 NA19159 NA19225 NA19257 NA18508 NA18511 NA18858 NA18912
1 2 2 2 2 2 3 3 3 3
NA19102 NA19114 NA19116 NA18505 NA18909 NA19099 NA19140 NA19222 NA18517 NA18520
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Figure 2. Empirical cumulative distribution function (CDF) of counts (black dots), calculated sep-
arately from male and female samples, for the secretin gene (SCT) and estimated CDF (solid lines)
of Poisson-Tweedie distributions with shape parameter fixed to a = 1 corresponding to a Poisson
(green), a =0 corresponding to a negative binomial (blue) and with the value of a estimated from
data too (red). The legend shows the values of the a parameter and the P value of the likelihood
ratio test on whether the expression profile follows a negative binomial distribution (Hp : a = 0). We
can observe that for both, male and female samples, the Poisson distribution is not adequate and
that the negative binomial distribution is not adequate for female samples.

3 3 3 4 4 4 4 4 5 5
NA19131 NA19143 NA18523 NA18861 NA18870 NA19108 NA19152 NA19201 NA18499 NA19093
5 5 6 6 6 6 6 6 8 9
NA19147 NA18852 NA19209 NA18502 NA19238 NA19190 NA19204 NA18916 NA19172 NA19193
9 11 11 12 12 16 17 21 37 196

> sort(xm)

NA18507 NA19128 NA19138 NA19160 NA19210 NA18510 NA19192 NA18498 NA18519 NA18522

1 1 1 1 1 2 2 3 3 3
NA18856 NA18862 NA18871 NA19239 NA18486 NA18853 NA18913 NA19153 NA19171 NA19098

3 3 3 3 4 4 4 4 4 6
NA18516 NA19101 NA18501 NA19130 NA18504 NA19200 NA19203 NA19119 NA19144

7 7 8 8 9 11 15 18 30

and realize that by just removing that sample, the large overexpression in females just vanishes:

> xf[which.max (xf)]



NA19193
196

> 27{log2(mean(xf))-log2(mean(xm))}

[1] 2.003402

> 2°{log2(mean (xf[-which.max(xf)])) - log2(mean(xm))}
[1] 1.192384

This illustrates a case in which Poisson and negative binomial distributions may be too restrictive
to account for the biological variability that extensively-replicated RNA-seq experiments can
reveal in count data.

5 Testing for differential expression

In order to illustrate the accuracy of tweeDEseq for detecting DE genes in a extensively-replicated
RNA-seq experiment we have compared the expression profiles between males and females from
the population of 69 unrelated Nigerian individuals(Pickrell et al., 2010).

The tweeDEseq package contains a function to test for differential expression between two
different conditions using a score based test: the tweeDE() function. This function takes as input
a matrix of counts with genes on the rows and samples on the columns.

An important feature of the tweeDE() function is that it allows to use multiple processors in
the computing process. This is done by loading first the multicore package and specifying the
number of cores to be used with the mc.cores argument in the call to tweeDE().

> resPT <- tweeDE(countsNigerianNorm[geneSubset, ], group = genderNigerian)

The function tweeDE() returns a data.frame object of class tweeDE which can be examined with
the print():

> print (resPT)

Comparison of groups: male - female
Showing top 6 genes ranked by P-value
Minimum absolute log2 fold-change of 0O
Maximum adjusted P-value of 1

overallMean female male log2fc stat pval
ENSG00000129824 186.942  3.275 440.276 7.070769 16.006051 1.159385e-57
ENSG00000154620 16.043 2.900 34.172 3.558707 11.319513 1.050535e-29
ENSG00000099749 31.464 3.550 69.966 4.300753 10.664342 1.494538e-26
ENSG00000198692 18.561  3.775 38.931 3.366372 9.717809 2.531693e-22
ENSG00000157828 7.507 1.875 15.276 3.026291 7.968633 1.604387e-15
ENSG0O0000006757 152.101 196.175 91.310 -1.103291 6.820705 9.059494e-12
pval.adjust
ENSG00000129824 4.753479e-56
ENSG00000154620 2.153598e-28
ENSG00000099749 2.042535e-25
ENSG00000198692 2.594986e-21
ENSG00000157828 1.315597e-14
ENSGO0000006757 6.190654e-11



which will show us by default the top 6 genes ranked by P-value including information on
the magnitude of the fold-change in log2 scale (log2fc), overall mean expression in counts
(overallMean), mean expression in counts for each sample group, raw P-value (pval) and the
Benjamini-Hochberg (FDR) adjusted P-value (pval.adjust).

The same print () function allows us to call differentially expressed a subset of gene meeting
cutoffs on the minimum magnitude of the fold-change and maximum FDR and store that subset
in a data.frame object by using the appropriate arguments as follows:

> deGenes <- print(resPT, n=Inf, log2fc=log2(1.5), pval.adjust=0.05, print=FALSE)
> dim(deGenes)

[11 97

We can further enrich the output with information like the symbol and description of the gene
by using the annotation information stored as a data.frame in the experimental data package
tweeDEseqCountData as follows:

> data(annotEnsembl63)
> head(annotEnsembl63)

Symbol Chr Start End EntrezID
ENSG00000252775 U7 5 133913821 133913880 <NA>
ENSG00000207459 U6 5 133970529 133970635 <NA>
ENSG00000252899 ur 5 133997420 133997479 <NA>
ENSG00000201298 U6 5 134036862 134036968 <NA>
ENSG00000222266 U6 5 134051173 134051272 <NA>
ENSG00000222924 U6 5 137405044 137405147 <NA>
Description Length
ENSG00000252775 U7 small nuclear RNA [Source:RFAM;Acc:RF00066] NA
ENSG00000207459 U6 spliceosomal RNA [Source:RFAM;Acc:RF00026] NA
ENSG00000252899 U7 small nuclear RNA [Source:RFAM;Acc:RF00066] NA
ENSG00000201298 U6 spliceosomal RNA [Source:RFAM;Acc:RF00026] NA
ENSG00000222266 U6 spliceosomal RNA [Source:RFAM;Acc:RF00026] NA
ENSG00000222924 U6 spliceosomal RNA [Source:RFAM;Acc:RF00026] NA
GCcontent
ENSG00000252775 NA
ENSG00000207459 NA
ENSG00000252899 NA
ENSG00000201298 NA
ENSG00000222266 NA
ENSG00000222924 NA

> deGenes <- merge(deGenes, annotEnsembl63, by="row.names", sort=FALSE)

and select certain columns to build Table 1 using the xtable package (code not shown but available
in the source of the vignette).

6 Visualizing the results

An informative way to visualize the results of a differential expression analysis is by means of
MA and Volcano plots, which we can easily obtain through the tweeDEseq package functions
MAPlot () and Vplot(), respectively as follows. Their result is shown in Figure 3.



Table 1. Differentially expressed genes between female and male Nigerian individuals found by
tweeDEseq.

Symbol | Chr | log2fc | pval.adjust | Description
RPS4Y1 Y 7.07 | 4.75E-56 ribosomal protein S4, Y-linked 1
TMSB4Y | Y 3.56 | 2.15E-28 thymosin beta 4, Y-linked
CYorfl5A | Y 4.30 | 2.04E-25 chromosome Y open reading frame 15A
EIF1AY Y 3.37 | 2.59E-21 eukaryotic translation initiation factor 1A, Y-
linked
RPS4Y2 Y 3.03 | 1.32E-14 ribosomal protein S4, Y-linked 2
PNPLA4 X -1.10 | 6.19E-11 patatin-like phospholipase domain containing
4
STS X -0.99 | 1.15E-04 steroid sulfatase (microsomal), isozyme S
HDHD1 X -0.77 | 4.35E-04 haloacid dehalogenase-like hydrolase domain
containing 1
UTY Y 0.63 | 4.60E-02 ubiquitously transcribed tetratricopeptide re-
peat gene, Y-linked

> deGenes <- rownames (print (resPT, n=Inf, log2fc=log2(1.5), pval.adjust=0.05, print=FALSE))
> length(deGenes)

[11 9

> hl <- list(list(genes=msYgenes, pch=21, col="blue", bg="blue", cex=0.7),

+ list (genes=XiEgenes, pch=21, col="skyblue", bg="skyblue", cex=0.7),
+ list (genes=deGenes, pch=1, col="red", lwd=2, cex=1.5)

+ )

> par(mfrow=c(1,2), mar=c(4, 5, 3, 2))

> MAplot (resPT, cex=0.7, log2fc.cutoff=1og2(1.5), highlight=hl, main="MA-plot")
> Vplot(resPT, cex=0.7, highlight=hl, log2fc.cutoff=1log2(1.5),

+ pval.adjust.cutoff=0.05, main="Volcano plot")

7 Assessing differential expression calling accuracy

Finally, the accuracy of the differential expression analysis illustrated here can be assessed by
comparing our list of differentially expressed genes with the list of genes with documented sex-
specific expression by means of a Fisher’s exact test.

> genderGenes <- c(msYgenes|[msYgenes Jinj, rownames (resPT)],
+ XiEgenes[XiEgenes Jinj, rownames (resPT)])
> N <- nrow(resPT)
> m <- length(genderGenes)
> n <- length(deGenes)
> k <- length(intersect(deGenes, genderGenes))
> t <- array(c(k,n-k,m-k,N+k-n-m), dim=c(2,2), dimnames=1ist (SEX=c("in","out"),DE=c("yes","no")))
>t
DE
SEX  yes no
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Figure 3. Differential expression analysis for a subset of genes between male and female lymphoblas-
toid cell lines. On the left a MA-plot shows the magnitude of the fold-change of every gene as function
of its average normalized expression level. No expression-level dependent biases can be observed in
the data. On the right a volcano plot shows the raw P value of every gene for the null hypothesis
of no differential expression, calculated by tweeDEseq, as function of its fold-change. In both plots,
red circles indicate differentially expressed genes defined by the cutoffs depicted with horizontal and
vertical dashed lines. Light blue dots denote genes from the male-specific region (Skaletsky et al.,
2003) of chromosome Y (MSY) and dark blue dots denote genes from Xi that escape chromosome
inactivation (XiE) in female samples (Carrel and Willard, 2005).

> fisher.test(t, alternative='greater")

Fisher's Exact Test for Count Data

data: t
p-value = 0.01338
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:

1.632421 Inf
sample estimates:
odds ratio

Inf

10



8 Fitting generalized linear models (GLM)

The tweeDEseq package also allows to fit generalized linear models for a response variable follow-
ing the Poisson-Tweedie family of distributions and several covariates. This can be done using
the glmPT() function. For instance, we can fit a model taking the secretin (SCT') gene as response
and gender as covariate:

> mod <- glmPT(countsNigerianNorm["ENSGO0000070031",] ~ genderNigerian)
> mod

Call: glmPT(formula = countsNigerianNorm["ENSG0O0000070031", ] ~ genderNigerian)

Coefficients:
(Intercept) genderNigerianmale
2.2544 -0.2412

Poisson-Tweedie parameters:
c a
0.997 0.8253

> summary (mod)

Call:
glmPT (formula = countsNigerianNorm["ENSGO0000070031", ] ~ genderNigerian)

Coefficients:

Estimate Std.Error t value Pr(>|t]|)
(Intercept) 2.2544 0.1918 11.75563 < 2e-16 ***
genderNigerianmale -0.2412 0.1622 -1.4874 0.93154

Signif. codes: O 'xxx' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Poisson-Tweedie parameters
Estimate Std.Error

c 0.997 0.0019

a 0.8253 0.0427

The resulting model can also be used to test differential expression. This can be done using
the anova() method, which tests whether the model is significantly better than the null one.

> anova (mod)
[1] 0.1435284

The tweeDEglm() allows testing several genes at the same time. This function also allows
using multiple processors in the computing process. Following with the example in section 5, we
apply it to the same subset of genes and use the gender as covariate:

> resPTglm <- tweeDEglm( ~ genderNigerian, counts = countsNigerianNorm[geneSubset,])

tweeDEglm() returns a data.frame with the AIC (Akaike Information Criterion) for the fitted
and null models as well as the original and adjusted p-values resulting from the test between
both models. In order to visualize the top significant genes we run the following command.

11



> head(resPTglm[sort (resPTglm$pval.adjust, index.return = TRUE)$ix,])

AICfull AICnull pval pval.adjust
ENSG00000129824 553.0737 759.2850 3.373761e-47 1.383242e-45
ENSG00000198692 412.7887 537.5054 2.142780e-29 4.392700e-28
ENSG00000154620 402.8749 518.1261 2.529103e-27 3.456440e-26
ENSGO0000099749 481.4012 591.2299 3.895576e-26 3.992965e-25
ENSG00000157828 358.1338 421.8267 5.269581e-16 4.321056e-15
ENSGO0000006757 764.8961 801.0417 6.565935e-10 4.486722e-09

If we compare these results with those obtained by the tweeDE() function we observe that
both methods place the same genes at the top of the most significant list. This is not surprising
as, though the statistical tests are not identical, the underlying distributional assumptions are
the same. In fact, tweeDEglm() detects all the genes captured by tweeDE().

8.1 Incorporating CQN offsets

Package cqn (Hansen et al. (2012), available at Bioconductor) performs conditional quantile
normalization in order to remove possibly existing bias arising from differences in GC content or
gene lengths. The method returns a series of offsets which can be incorporated into tweeDEseq
via the tweeDEglm or glmPT function.

For instance, suppose the result of the cqn normalization is stored in an object called cqn.subset?.
The normalizing offsets are stored as a matrix at cqn.subset$offset. They can be incorporated
into the model using the ’offset’ argument.

> tweeDEglm(~ genderNigerian, counts = countsNigerianNorm[geneSubset,],
+ offset = cqn.subset$offset)

9 Session info
> sessionInfo()

R version 4.1.1 (2021-08-10)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows Server x64 (build 17763)

Matrix products: default

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C

[6] LC_TIME=English_United States.1252

attached base packages:
[1] stats graphics grDevices utils datasets methods base

1For more information about how to normalize RNA-seq count data using the cqn package, please refer to the
package vignette available at http://www.bioconductor.org/packages/release/bioc/html/cqn.html

12
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other attached packages:

[1] xtable_1.8-4 tweeDEseqCountData_1.31.0
[3] Biobase_2.54.0 BiocGenerics_0.40.0

[5] tweeDEseq_1.40.0

loaded via a namespace (and not attached):

[1] locfit_1.5-9.4 Rcpp_1.0.7 edgeR_3.36.0 lattice_0.20-45
[5] MASS_7.3-54 grid_4.1.1 limma_3.50.0 norimix_1.3-0
[9] splines_4.1.1 tools_4.1.1 parallel_4.1.1 compiler_4.1.1

[13] cqn_1.40.0
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