
Introduction to GeneBreak

Evert van den Broek*

& Stef van Lieshout

October 26, 2021

Department of Pathology
VU University Medical Center
The Netherlands, Amsterdam

Contents

1 Running GeneBreak 2
1.1 Detect breakpoints from copy-number data 2

1.1.1 Loading cghCall object 2
1.1.2 Loading data from a dataframe 3

1.2 Breakpoint selection by filtering 4
1.3 Identification of genes affected by breakpoints 4

1.3.1 Loading gene annotation data 4
1.3.2 Feature-to-gene mapping 5
1.3.3 Detection of gene-associated breakpoints 6

1.4 Cohort-based breakpoint statistics 6
1.4.1 Detection of recurrent breakpoint genes 7
1.4.2 Detection of recurrent breakpoint locations 7

1.5 Visualization of breakpoint frequencies 8

2 Storage of R objects 10

3 Downloading Gene Annotations 10

4 Session Information 12

*Correspondence to: Christian Rausch (c.rausch@vumc.nl) or Sanne Abeln (s.abeln@vu.nl)

1

1 Running GeneBreak

The GeneBreak package aims to systematically identify genes recurrently af-
fected by copy number aberration-associated breakpoint locations that indicate
underlying DNA breaks and thereby genes involved in structural variants. This
is a short tutorial on how to use the GeneBreak package. It describes an ex-
ample workflow which uses copy number aberration (CNA) data obtained by
analysis of 200 array-CGH (Agilent 180k) samples from advanced colorectal
cancers. We used the CGHcall package that can be obtained via Bioconductor
(www.bioconductor.org). First, we will start with loading the package.

> library(GeneBreak)

1.1 Detect breakpoints from copy-number data

Copy number data can be loaded in two ways. We recommend the usage of Bio-
conductor packages CGHcall or QDNAseq to process CNA data from array-CGH
or sequencing data respectively. The obtained cghCall/QDNAseq object can
directly serve as input for the GeneBreak pipeline. Alternatively, a data.frame
with exactly these five columns: ”Chromosome”, ”Start”, ”End” and ”Feature-
Name” (usually probe or bin identifier) followed by columns with sample data
can be provided. In this tutorial we will use a built-in dataset that contains
CNA data from chromosome 20:

1.1.1 Loading cghCall object

To load and run the example dataset, which is an object of class CGHcall, the
CGHcall package needs to be installed.

> # Install the "CGHcall" package from Bioconductor:

> # if (!requireNamespace("BiocManager", quietly=TRUE))

> # install.packages("BiocManager")

> # BiocManager::install("CGHcall")

Load the example dataset from GeneBreak:

> library(CGHcall)

> data("copynumber.data.chr20")

Inspection of the loaded data shows an R object of class cghCall that con-
tains CNA data from 3653 features (array-CGH probes in this case) and 200
samples.

> copynumber.data.chr20

cghCall (storageMode: lockedEnvironment)

assayData: 3653 features, 200 samples

element names: calls, copynumber, probamp, probgain, probloss, probnorm, segmented

2

protocolData: none

phenoData

sampleNames: sample_1 sample_2 ... sample_200 (200 total)

varLabels: Cellularity

varMetadata: labelDescription

featureData

featureNames: A_16_P03469195 A_14_P136138 ... A_18_P13856091

(3653 total)

fvarLabels: Chromosome Start End

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation:

To generate an object of class CopyNumberBreakpoints with breakpoint lo-
cations, run getBreakpoints(). This will obtain the required information from
the cghCall object and determine the breakpoint locations.

> breakpoints <- getBreakpoints(data = copynumber.data.chr20)

Breakpoint detection started...

> breakpoints

--- Object Info ---

This is an object of class "CopyNumberBreakPoints"

3653 features by 200 samples

A total of 1035 breakpoints

See accessOptions(object) for how to access data in this object

Inspection of the generated object shows that we have copy number data of
3653 features from 200 samples. A total of 1035 individual breakpoint locations
were identified.

1.1.2 Loading data from a dataframe

If the CNA data has not been generated by CGHcall or QDNAseq, there is a pos-
sibilty of using a data.frame() as input for GeneBreak. This allows breakpoint
analysis of data from any copy number detection pipeline by importing a text
file into getBreakpoints().

Here we show how to use two data.frames() with segment and (optionally)
call values as input for getBreakpoints instead of a cghCall/QDNAseq object.

> library(CGHcall)

> cgh <- copynumber.data.chr20

> segmented <- data.frame(Chromosome=chromosomes(cgh), Start=bpstart(cgh),

+ End=bpend(cgh), FeatureName=rownames(cgh), segmented(cgh))

> called <- data.frame(Chromosome=chromosomes(cgh), Start=bpstart(cgh),

+ End=bpend(cgh), FeatureName=rownames(cgh), calls(cgh))

> breakpoints <- getBreakpoints(data = segmented, data2 = called)

3

Note: the first five column names of the data.frame must exactly be ”Chro-
mosome”, ”Start”, ”End” and ”FeatureName”.

1.2 Breakpoint selection by filtering

Next, breakpoints can be filtered by stringent criteria. Different filters can be set
(see ?bpFilter for more details). Default setting is ”CNA-ass”which means that
breakpoints flanked by copy number neutral segments will be filtered out. Note:
you need discrete copy number calls (loss,neutral, gain, etc) for this option.

> breakpointsFiltered <- bpFilter(breakpoints, filter = "CNA-ass")

Applying BP selection...

> breakpointsFiltered

--- Object Info ---

This is an object of class "CopyNumberBreakPoints"

3653 features by 200 samples

A total of 985 breakpoints

See accessOptions(object) for how to access data in this object

Inspection of the output shows that 985 CNA-associated breakpoint loca-
tions remain following the filter step.

1.3 Identification of genes affected by breakpoints

Identification of genes affected by breakpoints requires execution of the following
three steps.

1.3.1 Loading gene annotation data

We need to load gene annotations to be able to identify genes affected by break-
points in the next step. Gene annotation for human reference genome hg18
(and hg19, hg38) are built-in, but also user-defined annotations can be used.
The required columns for this data.frame are ”Gene”, ”Chromosome”, ”Start”
and ”End”.

> data("ens.gene.ann.hg18")

This shows the content of the first six rows of the hg18 gene annotation
dataframe:

> head(ens.gene.ann.hg18)

Gene EnsID Chromosome Start End band strand

21297 MIRN1302-2 ENSG00000221311 1 20229 20366 p36.33 1

21 FAM138E ENSG00000222027 1 24417 25944 p36.33 -1

827 FAM138E ENSG00000222003 1 24417 25944 p36.33 -1

828 FAM138A ENSG00000222003 1 24417 25944 p36.33 -1

829 OR4F5 ENSG00000177693 1 58954 59871 p36.33 1

830 OR4F29 ENSG00000177799 1 357522 358460 p36.33 1

4

1.3.2 Feature-to-gene mapping

Here, the loaded gene annotation information will be added to the GeneBreak
object and feature-to-gene mapping will be performed.

> breakpointsAnnotated <- addGeneAnnotation(breakpointsFiltered, ens.gene.ann.hg18)

Adding of gene annotation started on 659 genes by 200 samples

0% ... 25% ... 50% ... 75% ... Adding gene annotation DONE

Tho show the names of associated features of e.g. the ”PCMTD2” gene, give:

> featuresPerGene (breakpointsAnnotated , geneName = "PCMTD2")

Gene chosen: PCMTD2

[1] "A_14_P125849" "A_16_P21189265" "A_16_P21189294" "A_16_P34766035"

Gene-associated feature information has been added to breakpointsAnno-

tated. Visualisation shows:

> geneFeatures <- geneInfo(breakpointsAnnotated)

> head(geneFeatures[,

+ c("Gene", "Chromosome", "Start", "End", "featureTotal",

+ "featureNames", "remarks")])

Gene Chromosome Start End featureTotal

1366 DEFB125 20 16351 25296 2

1376 DEFB126 20 71231 74391 2

1383 DEFB127 20 86122 87804 2

1393 DEFB128 20 116527 118264 1

1396 DEFB129 20 155899 158523 2

1402 DEFB132 20 186377 189735 2

featureNames remarks

1366 A_14_P136138,A_16_P03469215 D

1376 A_14_P122034,A_14_P106962 D

1383 A_14_P106962,A_16_P41238845 D

1393 A_16_P41238870 C

1396 A_14_P113156,A_16_P03469327 D

1402 A_14_P200562,A_16_P41239011 D

Possible ”remarks” that describe gene position with respect to feature po-
sitions are: ”A”: genes located upstream of the first chromosomal feature (no
gene-associated features) ”B”: genes located downstream of the last chromoso-
mal feature (no gene-associated features) ”C”: in case of array-CGH probes, the
whole gene is located between two features ”C”: in case of sequencing data, the
whole gene is located between start and end of one bin ”D”: gene represented
by one or multiple features ”E”: gene represented by one or multiple features,
but the end of the gene is not covered by any feature ”X”: no feature covers the
chromosome of the gene

5

1.3.3 Detection of gene-associated breakpoints

In the next step, gene-associated breakpoints will be identified by using bp-

Genes().

> breakpointGenes <- bpGenes(breakpointsAnnotated)

Running bpGenes: 659 genes and 200 samples

0% ... 25% ... 50% ... 75% ... bpGenes DONE

A total of 1029 gene breaks in 241 genes detected

This is an example of the output when selected for broken genes:

> result_BreakpointGenes <- geneInfo (breakpointGenes)

> head(result_BreakpointGenes[which (result_BreakpointGenes$sampleCount > 0) ,

+ c("Gene", "Chromosome", "Start", "End", "featureTotal", "nrOfBreakLocations",

+ "sampleCount", "sampleNamesWithBreakpoints")])

Gene Chromosome Start End featureTotal nrOfBreakLocations

1414 C20orf96 20 199504 219390 3 1

1633 SRXN1 20 575270 581890 2 1

1643 SCRT2 20 590241 604823 2 1

1683 RSPO4 20 887098 930904 4 1

1694 PSMF1 20 1041906 1097022 5 3

1808 NSFL1C 20 1370807 1396417 3 1

sampleCount sampleNamesWithBreakpoints

1414 1 sample_60

1633 1 sample_128

1643 1 sample_128

1683 1 sample_1

1694 5 sample_16,sample_42,sample_105,sample_180,sample_195

1808 1 sample_64

This table shows the genes (rows) and the number of gene-associated features
in ”featureTotal”. The column ”nrOfBreakLocations” indicates the number of
identified breakpoint locations in the gene across all samples. As a consequence,
this is a subset of, and limited by, the total number of gene-associated features.
The total of samples that harbor a breakpoint in the gene is given in the column
”sampleCount”.

1.4 Cohort-based breakpoint statistics

Following identification of (gene) breakpoints per profile, breakpoint events that
are significantly recurring across samples will be determined by dedicated sta-
tistical analysis. This can be performed at ”gene” (breakpoint gene) and/or
”feature” (breakpoint location) level. Two different methods of FDR-type cor-
rection for multiple testing can be used, the standard Benjamini-Hochberg FDR-
type correction (”BH”) or dedicated Benjamini-Hochberg FDR-type correction
(”Gilbert”).

6

1.4.1 Detection of recurrent breakpoint genes

The gene-based statistical analysis includes correction for covariates that may
influence the probability to be a breakpoint gene including number of break-
points in a profile, number of gene-associated features and gene length by gene-
associated feature coverage. Multiple testing can be applied by the powerful ded-
icated Benjamini-Hochberg FDR-type correction (”Gilbert”) that accounts for
the discreteness of the null-distribution. (Reference: Gilbert PB, Appl Statist.
2005;54:143-58) NOTE: when running bpStats() warnings can be generated by
a function (glm.fit) of a dependancy package, this does not harm the analysis.

> breakpointStatistics <- bpStats(breakpointGenes,

+ level = "gene", method = "Gilbert")

Applying statistical test over 200 samples for: gene breakpoints: Gilbert test...

This will return an object of class CopyNumberBreakPointGenes. By using
recurrentGenes() we can observe the recurrent affected genes with associated
P-value and FDR.

> head(recurrentGenes(breakpointStatistics))

A total of 19 recurrent breakpoint genes (at FDR < 0.1)

Gene sampleCount featureTotal pvalue FDR

13886 PCMTD2 64 4 1.350385e-103 1.848343e-101

13898 C20orf69 33 3 5.522293e-44 3.860197e-42

4268 BFSP1 8 5 3.941447e-07 3.148759e-05

5473 ABHD12 10 9 5.756361e-05 3.687639e-03

4780 C20orf26 7 18 2.748743e-04 1.204846e-02

4102 KIF16B 7 19 4.054266e-04 1.322722e-02

1.4.2 Detection of recurrent breakpoint locations

With this step, statistics at breakpoint location (feature) level will be added
to the object of class CopyNumberBreakPointGenes. Here, we recommend to
use the less computationally intensive standard Benjamini-Hochberg FDR-type
correction for multiple testing, because the breakpoint probability is equal across
features per profile, which means that all positions correspond to the same null-
distribution.

> breakpointStatistics <- bpStats(

+ breakpointStatistics, level = "feature", method = "BH")

Applying statistical test over 200 samples for feature breakpoints: BH test...

> breakpointStatistics

7

--- Object Info ---

This is an object of class "CopyNumberBreakPointGenes"

3653 features by 200 samples

A total of 985 breakpoints

A total of 1029 gene breaks in 241 genes

A total of 19 recurrent breakpoint genes (FDR < 0.1)

A total of 29 recurrent breakpoints (FDR < 0.1)

See accessOptions(object) for how to access data in this object

By using featureInfo() we can observe the features and whether they were
identified as breakpoints including the calculated FDR values:

> head(featureInfo(breakpointStatistics))

Chromosome Start End featureInterval sampleCount

A_16_P03469195 20 8747 8793 0 0

A_14_P136138 20 18580 18639 9833 0

A_16_P03469215 20 25530 25589 6950 0

A_16_P21047338 20 32699 32743 7169 0

A_16_P41238750 20 39125 39184 6426 0

A_16_P03469235 20 50422 50481 11297 0

sampleNamesWithBreakpoints nrOfBreakLocations pvalue FDR

A_16_P03469195 0 1 1

A_14_P136138 0 1 1

A_16_P03469215 0 1 1

A_16_P21047338 0 1 1

A_16_P41238750 0 1 1

A_16_P03469235 0 1 1

1.5 Visualization of breakpoint frequencies

Breakpoint locations and frequencies can be visualized using bpPlot():

> bpPlot(breakpointStatistics, fdr.threshold = 0.1)

Plotting breakpoint frequencies ...

Plotting Chromosome: 20

8

BreakPoint frequencyPlot
chromosome 20

chromosomal position (Mb)

br
ea

kp
oi

nt
 fr

eq
ue

nc
ie

s
(%

)

recurrent breakpoint genes are labeled with gene name (FDR<0.1)

0 10 20 30 40 50 60

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

> 15

PSMF1C20orf194 HAO1

KIF16B
BFSP1

OVOL2

SLC24A3

C20orf26C20orf74
C20orf39

ABHD12

NANP EFCAB8
MMP9

SLC13A3
CASS4SPO11

MACROD2 (41)* ZNF337 (20)*FAM182B (20)*FAM182A (20)*C20orf191 (20)*MIRN663 (20)*FRG1B (20)*MLLT10L (20)* PCMTD2 (32)C20orf69 (16.5)

* not significant

Figure 1: Graphical representation of CNA-associated chromosomal breakpoint
frequencies and their distribution over chromosomes 20. The X-axis depicts
the genomic position in Mb. The Y-axis depicts the chromosomal breakpoint
frequencies across the series of 200 CRC samples. Breakpoint frequencies are
indicated on array-CGH probe-level (vertical black bars) and on gene-level (hor-
izontal red bars). Recurrent breakpoint genes (FDR<0.1) are named. When
the gene breakpoint frequency exceeded 15% (horizontal dashed line), the break-
point frequency (%) follows the gene name.

9

2 Storage of R objects

At any time during the analysis, the GeneBreak objects (and any R objects for
that matter) can be saved to disk with: saveRDS, and in the future be read from
the local file with loadRDS

3 Downloading Gene Annotations

This section describes the steps taken to create the gene annotations used in this
package. It may serve as a start for creating your own if required for whatever
reason.

> # gene annotations obtained via Biomart.

> # HUGO gene names (HGNC symbol), Ensembl_ID and chromosomal location

>

> # Used (and most) recent releases:

> # HG18: release54

> # HG19: release75

> # HG38: release80 (date: 150629)

>

> library(biomaRt)

> ensembl54 = useMart(

+ host = 'may2009.archive.ensembl.org',

+ biomart = 'ENSEMBL_MART_ENSEMBL',

+ dataset = "hsapiens_gene_ensembl"

+)

> ensembl75 = useMart(

+ host = 'feb2014.archive.ensembl.org',

+ biomart = 'ENSEMBL_MART_ENSEMBL',

+ dataset = "hsapiens_gene_ensembl"

+)

> ensembl80 = useMart(

+ "ensembl",

+ dataset = "hsapiens_gene_ensembl"

+)

> createAnnotationFile <- function(biomartVersion) {

+ biomart_result <- getBM(

+ attributes = c(

+ "hgnc_symbol", "ensembl_gene_id", "chromosome_name",

+ "start_position", "end_position", "band", "strand"

+),

+ mart = biomartVersion

+)

+

+ biomart_result[,3] <- as.vector(biomart_result[,3])

+ idx_x <- biomart_result$chromosome_name == "X"

10

+ idx_y <- biomart_result$chromosome_name == "Y"

+ biomart_result$chromosome_name[idx_x] <- "23"

+ biomart_result$chromosome_name[idx_y] <- "24"

+

+ biomart_genes <- biomart_result[which(biomart_result[,1] != "" &

+ biomart_result[,3] %in% c(1:24)) ,]

+ colnames(biomart_genes)[1:5] <- c("Gene","EnsID","Chromosome","Start","End")

+

+ cat(

+ c("Biomart version:", biomartVersion@host,

+ "including:", dim(biomart_genes)[1], "genes\n"

+)

+)

+

+ return(biomart_genes)

+ }

> ens.gene.ann.hg18 <- createAnnotationFile(ensembl54)

> ens.gene.ann.hg19 <- createAnnotationFile(ensembl75)

> ens.gene.ann.hg38 <- createAnnotationFile(ensembl80)

>

11

4 Session Information

The version number of R and packages loaded for generating the vignette were:

R version 4.1.1 (2021-08-10)

Platform: x86_64-w64-mingw32/x64 (64-bit)

Running under: Windows Server x64 (build 17763)

Matrix products: default

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] stats4 stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] GeneBreak_1.24.0 GenomicRanges_1.46.0 GenomeInfoDb_1.30.0

[4] IRanges_2.28.0 S4Vectors_0.32.0 CGHcall_2.56.0

[7] snowfall_1.84-6.1 snow_0.4-3 CGHbase_1.54.0

[10] marray_1.72.0 limma_3.50.0 Biobase_2.54.0

[13] BiocGenerics_0.40.0 DNAcopy_1.68.0 impute_1.68.0

[16] QDNAseq_1.30.0

loaded via a namespace (and not attached):

[1] parallelly_1.28.1 rstudioapi_0.13 XVector_0.34.0

[4] zlibbioc_1.40.0 BiocParallel_1.28.0 globals_0.14.0

[7] tools_4.1.1 parallel_4.1.1 R.oo_1.24.0

[10] matrixStats_0.61.0 digest_0.6.28 crayon_1.4.1

[13] GenomeInfoDbData_1.2.7 codetools_0.2-18 R.utils_2.11.0

[16] bitops_1.0-7 RCurl_1.98-1.5 future.apply_1.8.1

[19] compiler_4.1.1 R.methodsS3_1.8.1 Rsamtools_2.10.0

[22] Biostrings_2.62.0 future_1.22.1 listenv_0.8.0

12

	Running GeneBreak
	Detect breakpoints from copy-number data
	Loading cghCall object
	Loading data from a dataframe

	Breakpoint selection by filtering
	Identification of genes affected by breakpoints
	Loading gene annotation data
	Feature-to-gene mapping
	Detection of gene-associated breakpoints

	Cohort-based breakpoint statistics
	Detection of recurrent breakpoint genes
	Detection of recurrent breakpoint locations

	Visualization of breakpoint frequencies

	Storage of R objects
	Downloading Gene Annotations
	Session Information

