
1link for homo sapi-
ens, release 66:
ftp://ftp.ensembl.
org/pub/release-66/
fasta/homo_sapiens/
cdna/Homo_sapiens.
GRCh37.66.cdna.all.fa.
gz

BitSeq User Guide

Peter Glaus, Antti Honkela and Magnus Rattray

October 26, 2021

1 Abstract
The BitSeq package is targeted for transcript expression analysis and differential expression
analysis of RNA-seq data in two stage process. In the first stage it uses Bayesian inference
methodology to infer expression of individual transcripts from individual RNA-seq experi-
ments. The second stage of BitSeq embraces the differential expression analysis of transcript
expression. Providing expression estimates from replicates of multiple conditions, Log-Normal
model of the estimates is used for inferring the condition mean transcript expression and rank-
ing the transcripts based on the likelihood of differential expression.

2 Citing BitSeq
The BitSeq package is based on probabilistic models and inference methods described in the
manuscript [1]. For citing BitSeq in publications please refer to the manuscript above and
to the source of the software.

3 Installing the BitSeq package
The recommended way to install BitSeq is from Bioconductor:

> if (!requireNamespace("BiocManager", quietly=TRUE))

+ install.packages("BiocManager")

> BiocManager::install("BitSeq")

To load the package start R and run

> library(BitSeq)

4 Preparing data
The size of data normally analysed by BitSeq and results represented by samples from poste-
rior distribution usually ranges in Gigabytes. Keeping this kind of datasets in memory within
R environment would be rather inefficient and in most cases unnecessary, thus most of the
data used within BitSeq is loaded and saved directly to the local hard drive.

The input for BitSeq package can be either SAM or BAM file containing aligned reads,
as well as reference Fasta file. These files do not need to be loaded into the environment
as BitSeq will read the data from disk space. The transcriptome Fasta file can be either
downloaded from Ensembl website 1 or constructed by UCSC genome browser at http://

ftp://ftp.ensembl.org/pub/release-66/fasta/homo_sapiens/cdna/Homo_sapiens.GRCh37.66.cdna.all.fa.gz
ftp://ftp.ensembl.org/pub/release-66/fasta/homo_sapiens/cdna/Homo_sapiens.GRCh37.66.cdna.all.fa.gz
ftp://ftp.ensembl.org/pub/release-66/fasta/homo_sapiens/cdna/Homo_sapiens.GRCh37.66.cdna.all.fa.gz
ftp://ftp.ensembl.org/pub/release-66/fasta/homo_sapiens/cdna/Homo_sapiens.GRCh37.66.cdna.all.fa.gz
ftp://ftp.ensembl.org/pub/release-66/fasta/homo_sapiens/cdna/Homo_sapiens.GRCh37.66.cdna.all.fa.gz
ftp://ftp.ensembl.org/pub/release-66/fasta/homo_sapiens/cdna/Homo_sapiens.GRCh37.66.cdna.all.fa.gz
http://bioconductor.org/packages/BitSeq
http://bioconductor.org/packages/BitSeq
http://bioconductor.org/packages/BitSeq
http://bioconductor.org/packages/BitSeq
http://bioconductor.org/packages/BitSeq
http://bioconductor.org/packages/BitSeq
http://bioconductor.org/packages/BitSeq
http://bioconductor.org/packages/BitSeq
http://bioconductor.org/packages/BitSeq
http://bioconductor.org/packages/BitSeq
http://bioconductor.org/packages/BitSeq
http://genome.ucsc.edu/cgi-bin/hgTables

BitSeq User Guide

genome.ucsc.edu/cgi-bin/hgTables. In this example we will use file ensSelect1.fasta which
contains sequence of all transcripts for five genes from the Ensembl homo sapiens, release 65
annotation.

For the alignment of reads to transcriptome we recommend using software bowtie, which is
able to report all valid alignments for all the reads. The following bash commands can be
used to create the SAM file with alignments:

create bowtie reference index for the annotation

$ bowtie-build -f --ntoa ensSelect1.fasta ensSelect1-index

align reads in data-c0b0.fastq against index

$ bowtie -q -v 3 -3 0 -p 4 -a -m 100 --sam ensSelect1-index \

data-c0b0.fastq data-c0b0.sam

In the following examples we will be using the data-c0b0.sam file provided with the package.
To make the life easier we set our current directory to the extdata directory.

> # save the current directory

> # (we move back to old_directory at the end of vignette)

> old_directory = getwd();

> on.exit(setwd(old_directory))

> # move to directory with the data

> setwd(system.file("extdata",package="BitSeq"));

5 Basic use

5.1 Estimating expression
To estimate expression we use the function getExpression, which takes as an input the SAM
file with alignments as well as reference Fasta file that was used for the alignment. The
function returns a list in which the first item exp is a DataFrame with expression mean and
standard deviation of each transcript. The second item fn is a file name of a file containing
all the expression samples, which are used in the later DE analysis. The last two items are
counts, vector containing estimated read counts per transcript, and trInfo, DataFrame with
information about transcripts.

The log option tells the function to return mean and standard deviation of logged samples
and the last three options, which are parameters for the sampling algorithm, are passed to
the estimateExpression function used for expression inference.

> res1 <- getExpression("data-c0b0.sam",

+ "ensSelect1.fasta",

+ log = TRUE,

+ MCMC_burnIn=200,

+ MCMC_samplesN=200,

+ MCMC_samplesSave=50,

+ seed=47)

[time: +0.00 m]

Reads: all(Ntotal): 4817 mapped(Nmap): 4663

[time: +0.00 m]

[time: +0.00 m]

2

http://genome.ucsc.edu/cgi-bin/hgTables
http://genome.ucsc.edu/cgi-bin/hgTables

BitSeq User Guide

Alignments: 21259.

[time: +0.00 m]

N mapped: 4663

N total: 4817

All alignments: 25910

Isoforms: 56

Burn in: 200 DONE. [time: +0.02 m]

Sampling DONE. [time: +0.00 m]

rHat (for 200 samples)

rHat (rH theta| tid | mean theta)

1.2451 (1.2527 | 15 | 0.08371)

1.2394 (1.2936 | 14 | 0.02992)

1.1827 (1.1530 | 31 | 0.00660)

Mean rHat of worst 10 transcripts: 1.137175

Mean C0: (0 0 0 0). Nunmap: 154

Producing 915 final samples from each chain.

Sampling DONE. [time: +0.02 m]

rHat (for 915 samples)

rHat (rH theta| tid | mean theta)

1.0312 (1.0183 | 2 | 0.01813)

1.0220 (1.0216 | 32 | 0.00756)

1.0211 (1.0119 | 43 | 0.01082)

Mean rHat of worst 10 transcripts: 1.013715

Mean C0: (0 0 0 0). Nunmap: 154

Total samples: 5260

DONE. [time: +0.05 m]

The data being processed in this vignette is a small, example dataset, thus it is safe to use
lower values for MCMC_burnIn, MCMC_samplesN, MCMC_samplesSave. For normal sized dataset,
you can use default values of these parameters (all three parameters have default value 1000).

To view histogram of log RPKM expression use:

> hist(res1expmean)

We can load the expression samples using function loadSamples, which returns DataFrame

containing all expression samples.

> samples1 <- loadSamples(res1$fn)

Following command produces plot showing correlation between two transcript expression
estimates:

> plot(unlist(s2["ENST00000436661",]), unlist(s2["ENST00000373501",]))

3

BitSeq User Guide

The getExpression function first computes probabilities for every alignment and then uses
this data in Markov chain Monte Carlo algorithm which samples from the posterior distribution
of transcript expression. Both these steps are computationally very expensive and can take
several hours to finish. In case of MCMC sampling, which has to converge to the correct
posterior distribution this can take more than day for extensive data.

5.2 Identifying differentially expressed transcripts
In the differential expression analysis we will use the expression samples produced in first
step as well as expression samples from other experiments provided with the package. It
is essential to use biological replicates in both conditions in order to account for biological
variation which could otherwise cause false positive DE calls.

> cond1Files = c(res1$fn,"data-c0b1.rpkm")

> cond2Files = c("data-c1b1.rpkm","data-c1b1.rpkm")

We use the function getDE to infer the Probability of Positive Log Ratio for each transcript.
The function again returns list with first item pplr containing DataFrame with PPLR and
other information. The second item fn contains list of filenames with the names of produced
files. Using the optionsamples=TRUE, the function creates also files containing the condition
mean expression samples.

> de1 <- getDE(list(cond1Files, cond2Files), samples=TRUE)

[time: +0.00 s]

5 done. [time: +0.00 s]

10 done. [time: +0.00 s]

15 done. [time: +0.00 s]

20 done. [time: +0.00 s]

25 done. [time: +1.00 s]

30 done. [time: +0.00 s]

35 done. [time: +0.00 s]

40 done. [time: +0.00 s]

45 done. [time: +1.00 s]

50 done. [time: +0.00 s]

> print(de1$fn)

$pplr

[1] "D:\\biocbuild\\bbs-3.14-bioc\\tmpdir\\RtmpOWgYh0\\dataBS-DE-3840205633c5.pplr"

$samplesFiles

[1] "D:\\biocbuild\\bbs-3.14-bioc\\tmpdir\\RtmpOWgYh0\\dataBS-DE-3840205633c5-C0.est"

[2] "D:\\biocbuild\\bbs-3.14-bioc\\tmpdir\\RtmpOWgYh0\\dataBS-DE-3840205633c5-C1.est"

Now we can rank the transcripts based on the PPLR value to identify the ones with the
highest probability of being differentially expressed:

> head(de1$pplr[order(abs(0.5-de1$pplr$pplr), decreasing=TRUE),], 5)

DataFrame with 0 rows and 6 columns

4

BitSeq User Guide

6 Advanced use
Both expression estimation and identification of differentially expressed transcripts involves
multiple steps which are independent. Computing these steps independently might be useful
for keeping intermediate results in case of crash or error. As BitSeq makes extensive use
of local files, it is essential to set path to working directory containing alignment files and
which will be used for storing results of individual steps. In this example we use the extdata
directory provided with the package:

> setwd(system.file("extdata",package="BitSeq"))

6.1 Stage 1 - Transcript expression analysis

6.1.1 Pre-processing alignments

In the pre-processing step, the parseAlignment function reads the SAM file and assigns a
probability to every valid alignment. These probabilities are saved into .prob file and are the
direct input for the expression estimation. We have to specify the reference file which is used
for identifying base mismatches and we use uniform model for the read distribution along
transcript:

> parseAlignment("data-c0b0.sam",

+ outFile = "data-c0b0.prob",

+ trSeqFile = "ensSelect1.fasta",

+ trInfoFile = "data.tr",

+ verbose = TRUE)

Assuming alignment file in 'sam' format.

Using alignments' header for transcript information.

Initializing fasta sequence reader.

Found gene names in sequence file, updating transcript information.

[time: +0.00 m]

Using uniform read distribution.

Reads: all(Ntotal): 4817 mapped(Nmap): 4663

491 reads were used to estimate empirical distributions.

[time: +0.00 m]

Writing alignment probabilities.

481 done. [time: +0.00 m]

962 done. [time: +0.00 m]

1443 done. [time: +0.00 m]

1924 done. [time: +0.00 m]

2405 done. [time: +0.00 m]

2886 done. [time: +0.00 m]

3367 done. [time: +0.00 m]

3848 done. [time: +0.00 m]

4329 done. [time: +0.00 m]

4810 done. [time: +0.00 m]

[time: +0.00 m]

Analyzed 4817 reads:

154 had no alignments

The rest had 21259 alignments:

21259 single-read alignments

5

BitSeq User Guide

Computing effective lengths.

Transcript information saved into data.tr.

[time: +0.00 m]

DONE. [time: +0.00 m]

The program passes the SAM file twice and produces the data-c0b0.prob file with the align-
ment probabilities as well as transcript information file data.tr which contains transcript
names and lengths extracted from the SAM file.

6.1.2 Estimating transcript expression

The estimateExpression function implements a generative model of RNA-seq data and infers
the transcript expression using Markov chain Monte Carlo algorithm. The default MCMC
algorithm is the Collapsed Gibbs sampling which converges faster than regular Gibbs sampling
(selectable by option gibbs=TRUE. It is the most time consuming part of the BitSeq analysis
process as it uses multiple independent chains to sample the expression values and it iterates
until the chains converge to the same distribution.

The following example runs the sampler using the .prob file from previous step, produces
expression in RPKM measure and produces files with the prefix data-c0b0 . It will produce
two files, file data-c0b0.rpkm will contain a row for each transcript with MCMC_samplesSave

RPKM expression samples. The second file data-c0b0.thetaMeans will contain the mean
relative expression values for every transcript.

> estimateExpression("data-c0b0.prob", outFile = "data-c0b0",

+ outputType = "RPKM", trInfoFile = "data.tr",

+ MCMC_burnIn = 200, MCMC_samplesN = 200, MCMC_samplesSave = 100,

+ MCMC_chainsN = 2)

N mapped: 4663

N total: 4817

All alignments: 25910

Isoforms: 56

Burn in: 200 DONE. [time: +0.00 m]

Sampling DONE. [time: +0.00 m]

rHat (for 200 samples)

rHat (rH theta| tid | mean theta)

1.1886 (1.2219 | 43 | 0.00933)

1.1551 (1.1520 | 54 | 0.01022)

1.0956 (1.0767 | 9 | 0.00217)

Mean rHat of worst 10 transcripts: 1.081015

Mean C0: (0 0). Nunmap: 154

Producing 2542 final samples from each chain.

Sampling DONE. [time: +0.02 m]

rHat (for 2542 samples)

rHat (rH theta| tid | mean theta)

1.0161 (1.0094 | 2 | 0.01684)

1.0053 (1.0056 | 12 | 0.00204)

1.0049 (1.0067 | 40 | 0.00178)

6

http://bioconductor.org/packages/BitSeq

BitSeq User Guide

Mean rHat of worst 10 transcripts: 1.004459

Mean C0: (0 0). Nunmap: 154

Total samples: 5884

DONE. [time: +0.05 m]

The behavior of the sampling algorithm can be adjusted by optional arguments, such as
MCMC_chainsN which selects the number of chains. After producing MCMC_burnIn burn-in sam-
ples, the algorithm produces first MCMC_samplesN samples from each chain in the first iteration.
These are used to estimate the number of samples needed for recording MCMC_samplesSave

effective samples, in the second, final, iteration.

6.1.3 Convergence checking via possible scale reduction estimation

The estimateExpressionLegacy uses different convergence checking mechanism which mostly
results in multiple iterations, producing more samples in total. After each iteration, the
possible scale reduction of marginal posterior variance R̂ is computed for each transcript
expression and the ten highest values are reported. If the average of ten highest possible
scale reductions is less than the MCMC_scaleReduction parameter, then the sampler produces
one last iteration during which subset of MCMC_samplesSave samples is recorded. Otherwise
the program continues with next iteration in which it produces twice as many samples. The
program terminates either after reaching the target scale reduction or after iteration which
produces MCMC_samplesNmax samples. All these parameters can be set also within a param-
eters file specified by the option parFile with the advantage that the parameters such as
MCMC_scaleReduction or MCMC_samplesNmax can be adjusted while the sampler is running,
example of the parameters file parameters1.txt is provided in the extdata directory.

> estimateExpressionLegacy("data-c0b0.prob", outFile = "data-c0b0",

+ outputType = "RPKM", trInfoFile = "data.tr",

+ MCMC_burnIn = 200, MCMC_samplesN = 200, MCMC_samplesSave = 100,

+ MCMC_scaleReduction = 1.1, MCMC_chainsN = 2)

N mapped: 4663

N total: 4817

All alignments: 25910

Isoforms: 56

Burn in: 200 DONE. [time: +0.00 m]

Sampling DONE. [time: +0.00 m]

rHat (for 200 samples)

rHat (rH theta| tid | mean theta)

1.1519 (1.0490 | 2 | 0.01641)

1.1367 (1.1131 | 54 | 0.01186)

1.1035 (1.1195 | 14 | 0.02511)

Mean rHat of worst 10 transcripts: 1.078713

(target: 1.100)

Mean C0: (0 0). Nunmap: 154

Producing 200 final samples from each chain.

Sampling DONE. [time: +0.00 m]

rHat (for 200 samples)

7

BitSeq User Guide

rHat (rH theta| tid | mean theta)

1.1695 (1.1762 | 43 | 0.01293)

1.1443 (1.1903 | 14 | 0.02466)

1.1418 (1.2350 | 2 | 0.01918)

Mean rHat of worst 10 transcripts: 1.096190

(target: 1.100)

Mean C0: (0 0). Nunmap: 154

WARNING: Following transcripts failed to converge entirely

(however the estimates might still be usable):

6 transcripts (full list is in the output file)

Total samples: 1200

DONE. [time: +0.03 m]

6.1.4 Examining the samples

Again, we can view the resulting file (data-c0b0.rpkm in this case) using the function load

Samples.

> loadSamples("data-c0b0.rpkm")

6.1.5 Estimating transcript expression with Variational Bayes algorithm

Variational Bayes is an alternative inference algorithm for estimating transcript expression.
While it accurately estimates mean expression, it underestimates the variance. The algorithm
is implemented in the function estimateVBExpression which takes the same input as esti

mateExpression, the .prob file and optionally the .tr file.

The default output is the mean θ and parameters of Dirichlet distribution reported in data-
c0b0-vb.m_alphas. The θ can be multiplied by total number of reads to produce the esti-
mated read counts per transcript. The first row of the data corresponds to noise transcript
and should be discarded.

> estimateVBExpression("data-c0b0.prob", outFile = "data-c0b0-vb",

+ outputType = "RPKM", trInfoFile = "data.tr")

N mapped: 4663

N total: 4817

All alignments: 25910

Isoforms: 56

End: bound decrease

iter(s): 38 bound: -58549.121 grad: 0.0001709 beta: 0.8975449

The function can also produce also samples from the posterior distribution in form of RPKM,
θ or counts when option samples is used.

8

BitSeq User Guide

6.2 Stage 2 - Differential expression analysis

6.2.1 Preparing for Differential Expression analysis

In the differential expression analysis we are comparing samples from two different conditions.
Also in order to estimate biological variance of transcript expression, we have to use data
from at least one extra biological replicates. We first specify the files containing expression
samples from the Stage 1, using file data-c0b0.rpkm computed in previous example and three
other files provided with the package:

> allConditions = list(c("data-c0b0.rpkm","data-c0b1.rpkm"),

+ c("data-c1b1.rpkm","data-c1b1.rpkm"))

The estimation of expression specific hyperparameters for the DE model requires pre com-
puting joint mean expression over all experiments using the getMeanVariance function. As
the DE model uses logged expression samples, we have to compute the mean and variance
of logged expression samples:

> getMeanVariance(allConditions, outFile = "data.means", log = TRUE)

6.2.2 Estimating model hyperparameters

The hyperparameters for the model are estimated from the entire data using Metropolis-
Hastings MCMC algorithm. The values are smoothed afterwards using the non-parametric
Lowess smoothing algorithm:

> estimateHyperPar(outFile = "data.par",

+ conditions = allConditions,

+ meanFile = "data.means",

+ verbose = TRUE)

Transcripts in expression file: 55

Samples are not logged. (will log for you)

Using -100 as minimum instead of log(0).

Files with samples loaded.

Number of all replicates: 4

seed: 1635294223

Expression step: 0.0434373

[time: +0.00 s]

Running sampler.

.....

Sampling done.

Have 10 parameters to smooth.

alphaSmooth f: 0.2 nSteps: 5

betaSmooth f: 0.2 nSteps: 5

DONE.

[time: +0.08 m]

9

BitSeq User Guide

6.2.3 Inferring condition mean expression and calculating Probability of Positive
Log Ratio

The model for Differential Expression analysis uses the posterior samples from expression
analysis to infer samples of the mean expression for each transcript in every condition. Func-
tion estimateDE computes the samples and uses them to compute the Probability of Positive
Log Ratio, which is the probability of a transcript being up-regulated in the first condition
as well as inverse probability of transcript being down-regulated in the first condition. The
PPLR, mean log2 fold change with confidence intervals and mean condition mean expression
are saved into the final output file with extension .pplr and prefix specified by the option
outFile:

> estimateDE(allConditions, outFile = "data", parFile = "data.par")

5 done. [time: +0.00 s]

10 done. [time: +1.00 s]

15 done. [time: +0.00 s]

20 done. [time: +0.00 s]

25 done. [time: +0.00 s]

30 done. [time: +0.00 s]

35 done. [time: +1.00 s]

40 done. [time: +0.00 s]

45 done. [time: +0.00 s]

50 done. [time: +0.00 s]

> ##

> ## pretend run with three conditions and normalization constants

> ##

> cond3Files = c("data-c2b0.rpkm","data-c2b1.rpkm", "data-c2b2.rpkm")

> estimateDE(list(allConditions[[1]], allConditions[[2]], cond3Files),

+ outFile="mydata",

+ parFile="mydata.par",

+ norm=c(1.0, 0.999, 1.0017, 0.9998, 1.0, 0.99, 0.97),

+ pretend=TRUE)

estimateDE data-c0b0.rpkm data-c0b1.rpkm C data-c1b1.rpkm data-c1b1.rpkm C\

data-c2b0.rpkm data-c2b1.rpkm data-c2b2.rpkm --outPrefix mydata\

--parameters mydata.par --norm 1,0.999,1.0017,0.9998,1,0.99,0.97

In case one is interested in the condition mean expression samples as well, they can be
obtained by using the samples flag:

> estimateDE(allConditions, outFile = "data", parFile = "data.par",

+ samples = TRUE)

5 done. [time: +0.00 s]

10 done. [time: +0.00 s]

15 done. [time: +0.00 s]

20 done. [time: +0.00 s]

25 done. [time: +1.00 s]

30 done. [time: +0.00 s]

35 done. [time: +0.00 s]

40 done. [time: +0.00 s]

45 done. [time: +1.00 s]

10

BitSeq User Guide

50 done. [time: +0.00 s]

This produces three extra files, the first two data-C0.est, data-C1.est containing the condition
means for each condition and the third file data.estVar containing samples of inferred variance
for the first condition.

7 External use of BitSeq
All major computation in BitSeq is executed by running C++ libraries, and there is also a
C++ only implementation of BitSeq package available at https://github.com/BitSeq/BitSeq.
The standalone package can be particularly useful for clusters without support for R or
Bioconductor.

In order to facilitate the use of C++ version of the package, the relevant functions in R interface
provide pretend option. Using this option, the computation will not be executed, instead the
function will print out one or more command line commands which can be directly used with
the C++ implementation.

> res1 <- getExpression("data-c0b0.sam",

+ "ensSelect1.fasta",

+ outPrefix="localDir/data-c0b0",

+ log = TRUE,

+ MCMC_burnIn=200,

+ MCMC_samplesN=200,

+ pretend=TRUE)

parseAlignment data-c0b0.sam --outFile localDir/data-c0b0.prob --trSeqFile\

ensSelect1.fasta --trInfoFile localDir/data-c0b0.tr --uniform

estimateExpression localDir/data-c0b0.prob --outPrefix localDir/data-c0b0\

--outType rpkm --trInfoFile localDir/data-c0b0.tr --MCMC_burnIn 200\

--MCMC_samplesN 200

getVariance localDir/data-c0b0.rpkm --outFile localDir/data-c0b0.mean --log

8 Session Info

> sessionInfo()

R version 4.1.1 (2021-08-10)

Platform: x86_64-w64-mingw32/x64 (64-bit)

Running under: Windows Server x64 (build 17763)

Matrix products: default

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

11

http://bioconductor.org/packages/BitSeq
http://bioconductor.org/packages/BitSeq
http://bioconductor.org/packages/BitSeq
https://github.com/BitSeq/BitSeq

BitSeq User Guide

attached base packages:

[1] stats4 stats graphics grDevices utils

[6] datasets methods base

other attached packages:

[1] BitSeq_1.38.0 Rsamtools_2.10.0

[3] Biostrings_2.62.0 XVector_0.34.0

[5] GenomicRanges_1.46.0 GenomeInfoDb_1.30.0

[7] IRanges_2.28.0 S4Vectors_0.32.0

[9] BiocGenerics_0.40.0

loaded via a namespace (and not attached):

[1] rstudioapi_0.13 knitr_1.36

[3] zlibbioc_1.40.0 BiocParallel_1.28.0

[5] rlang_0.4.12 fastmap_1.1.0

[7] tools_4.1.1 parallel_4.1.1

[9] xfun_0.27 htmltools_0.5.2

[11] yaml_2.2.1 digest_0.6.28

[13] crayon_1.4.1 GenomeInfoDbData_1.2.7

[15] BiocManager_1.30.16 bitops_1.0-7

[17] RCurl_1.98-1.5 evaluate_0.14

[19] rmarkdown_2.11 compiler_4.1.1

[21] BiocStyle_2.22.0

References
[1] Glaus, P., Honkela, A. and Rattray, M. (2012). Identifying differentially expressed

transcripts from RNA-seq data with biological variation. Bioinformatics, 28(13),
1721-1728.

12

	1 Abstract
	2 Citing BitSeq
	3 Installing the BitSeq package
	4 Preparing data
	5 Basic use
	5.1 Estimating expression
	5.2 Identifying differentially expressed transcripts

	6 Advanced use
	6.1 Stage 1 - Transcript expression analysis
	6.1.1 Pre-processing alignments
	6.1.2 Estimating transcript expression
	6.1.3 Convergence checking via possible scale reduction estimation
	6.1.4 Examining the samples
	6.1.5 Estimating transcript expression with Variational Bayes algorithm

	6.2 Stage 2 - Differential expression analysis
	6.2.1 Preparing for Differential Expression analysis
	6.2.2 Estimating model hyperparameters
	6.2.3 Inferring condition mean expression and calculating Probability of Positive Log Ratio

	7 External use of BitSeq
	8 Session Info

