if (!require("BiocManager"))
  install.packages("BiocManager")
BiocManager::install("glmSparseNet")library(dplyr)
library(ggplot2)
library(survival)
library(loose.rock)
library(futile.logger)
library(curatedTCGAData)
library(TCGAutils)
#
library(glmSparseNet)
#
# Some general options for futile.logger the debugging package
.Last.value <- flog.layout(layout.format('[~l] ~m'))
.Last.value <- loose.rock::show.message(FALSE)
# Setting ggplot2 default theme as minimal
theme_set(ggplot2::theme_minimal())The data is loaded from an online curated dataset downloaded from TCGA using
curatedTCGAData bioconductor package and processed.
To accelerate the process we use a very reduced dataset down to around 100 variables only (genes), which is stored as a data object in this package. However, the procedure to obtain the data manually is described in the following chunk.
prad <- curatedTCGAData(diseaseCode = "PRAD", assays = "RNASeq2GeneNorm",
                        version = '1.1.38', dry.run = FALSE))Build the survival data from the clinical columns.
xdata and ydata# keep only solid tumour (code: 01)
prad.primary.solid.tumor <- TCGAutils::splitAssays(prad, '01')
xdata.raw <- t(assay(prad.primary.solid.tumor[[1]]))
# Get survival information
ydata.raw <- colData(prad.primary.solid.tumor) %>% as.data.frame %>% 
  # Find max time between all days (ignoring missings)
  rowwise %>%
  mutate(time = max(days_to_last_followup, days_to_death, na.rm = TRUE)) %>%
  # Keep only survival variables and codes
  select(patientID, status = vital_status, time) %>% 
  # Discard individuals with survival time less or equal to 0
  filter(!is.na(time) & time > 0) %>% as.data.frame
# Set index as the patientID
rownames(ydata.raw) <- ydata.raw$patientID
# keep only features that have standard deviation > 0
xdata.raw  <- xdata.raw[TCGAbarcode(rownames(xdata.raw)) %in% 
                          rownames(ydata.raw),]
xdata.raw  <- xdata.raw %>% 
  { (apply(., 2, sd) != 0) } %>% 
  { xdata.raw[, .] } %>% 
  scale
# Order ydata the same as assay
ydata.raw    <- ydata.raw[TCGAbarcode(rownames(xdata.raw)), ]
set.seed(params$seed)
small.subset <- c(geneNames(c('ENSG00000103091', 'ENSG00000064787', 
                              'ENSG00000119915', 'ENSG00000120158', 
                              'ENSG00000114491', 'ENSG00000204176', 
                              'ENSG00000138399'))$external_gene_name, 
                  sample(colnames(xdata.raw), 100)) %>% unique %>% sort
xdata <- xdata.raw[, small.subset[small.subset %in% colnames(xdata.raw)]]
ydata <- ydata.raw %>% select(time, status)Fit model model penalizing by the hubs using the cross-validation function by
cv.glmHub.
set.seed(params$seed)
fitted <- cv.glmHub(xdata, Surv(ydata$time, ydata$status),
                    family  = 'cox',
                    nlambda = 1000,
                    network = 'correlation', 
                    network.options = networkOptions(cutoff = .6, 
                                                     min.degree = .2))Shows the results of 100 different parameters used to find the optimal value
in 10-fold cross-validation. The two vertical dotted lines represent the best
model and a model with less variables selected (genes), but within a standard
error distance from the best.
plot(fitted)Taking the best model described by lambda.min
coefs.v <- coef(fitted, s = 'lambda.min')[,1] %>% { .[. != 0]}
coefs.v %>% { 
  data.frame(ensembl.id  = names(.), 
             gene.name   = geneNames(names(.))$external_gene_name, 
             coefficient = .,
             stringsAsFactors = FALSE)
  } %>%
  arrange(gene.name) %>%
  knitr::kable()| ensembl.id | gene.name | coefficient | |
|---|---|---|---|
| AKAP9 | AKAP9 | AKAP9 | 0.2616307 | 
| ALPK2 | ALPK2 | ALPK2 | -0.0714527 | 
| ATP5G2 | ATP5G2 | ATP5G2 | -0.2575987 | 
| C22orf32 | C22orf32 | C22orf32 | -0.2119992 | 
| CSNK2A1P | CSNK2A1P | CSNK2A1P | -1.4875518 | 
| MYST3 | MYST3 | MYST3 | -1.6177076 | 
| NBPF10 | NBPF10 | NBPF10 | 0.4507147 | 
| PFN1 | PFN1 | PFN1 | 0.4161846 | 
| SCGB2A2 | SCGB2A2 | SCGB2A2 | 0.0749064 | 
| SLC25A1 | SLC25A1 | SLC25A1 | -0.8484827 | 
| STX4 | STX4 | STX4 | -0.1690185 | 
| SYP | SYP | SYP | 0.2425939 | 
| TMEM141 | TMEM141 | TMEM141 | -0.8273147 | 
| UMPS | UMPS | UMPS | 0.2214068 | 
| ZBTB26 | ZBTB26 | ZBTB26 | 0.3696515 | 
geneNames(names(coefs.v)) %>% { hallmarks(.$external_gene_name)$heatmap }separate2GroupsCox(as.vector(coefs.v), 
                   xdata[, names(coefs.v)], 
                   ydata, 
                   plot.title = 'Full dataset', legend.outside = FALSE)## $pvalue
## [1] 0.001155155
## 
## $plot## 
## $km
## Call: survfit(formula = survival::Surv(time, status) ~ group, data = prognostic.index.df)
## 
##             n events median 0.95LCL 0.95UCL
## Low risk  249      0     NA      NA      NA
## High risk 248     10   3502    3467      NA