VariantExperiment 1.6.0
This package includes 2 vignettes. This One is about the class
definitions, basic methods and operations of VariantExperiment that
are defined or directly inherited from SummarizedExperiment. For
users who want to apply VariantExperiment directly to their analysis
high-throughput genotyping or DNA-seq data sets, please refer to the
other vignette.
As the sequencing data (DNA-seq, RNA-seq, single cell RNA-seq…) gets increasingly larger-profile, the memory space in R has been an obstable for fast and efficient data processing, because most available R or Bioconductor packages are developed based on in-memory data manipulation. SingleCellExperiment has achieved efficient on-disk saving/reading of the large-scale count data as HDF5Array objects. However, there was still no such light-weight containers available for high-throughput DNA-seq / genotyping data.
We have developed VariantExperiment, a Bioconductor package for
saving the VCF/GDS format data into RangedSummarizedExperiment
object. The high-throughput genetic/genomic data are saved in
GDSArray objects, a direct extension of DelayedArray with GDS
back-end. In addition to the light-weight Assay data, We have also
realized the on-disk saving of annotation data for both
features/samples (corresponding to rowData/colData) by implementing
the DelayedDataFrame data structure. The on-disk representation
of both assay data and annotation data realizes on-disk reading and
processing and saves R memory space significantly. The interface of
RangedSummarizedExperiment data format enables easy and common
manipulations for high-throughput genetic/genomic data with common
SummarizedExperiment metaphor in R and Bioconductor.
if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")
BiocManager::install("VariantExperiment")Or install the development version of the package from Github.
BiocManager::install(“Bioconductor/VariantExperiment”) library(VariantExperiment)GDSArray is a Bioconductor package that represents GDS files as
objects derived from the DelayedArray package and DelayedArray
class. It converts GDS nodes into a DelayedArray-derived data
structure. The rich common methods and data operations defined on
GDSArray makes it more R-user-friendly than working with the GDS
file directly. The array data from GDS files are always returned with
the first dimension being features (genes/variants/snps) and the
second dimension being samples. This feature is consistent with the
assay data saved in SummarizedExperiment, and makes the GDSArray
package more interoperable with other established Bioconductor data
infrastructure.
The GDSArray() constructor takes 2 arguments: the file path and the
GDS node name inside the GDS file.
file <- SeqArray::seqExampleFileName("gds")
GDSArray(file, "genotype")## <1348 x 90 x 2> array of class GDSArray and type "integer":
## ,,1
##      NA06984 NA06985 NA06986 NA06989 ... NA12889 NA12890 NA12891 NA12892
##    1      NA      NA       0      NA   .       0       0       0       0
##    2      NA      NA       0      NA   .       0       0       0       0
##  ...       .       .       .       .   .       .       .       .       .
## 1347       0       0       0       0   .       0       0       0       0
## 1348      NA      NA       0      NA   .      NA      NA      NA      NA
## 
## ,,2
##      NA06984 NA06985 NA06986 NA06989 ... NA12889 NA12890 NA12891 NA12892
##    1      NA      NA       0      NA   .       0       0       0       0
##    2      NA      NA       0      NA   .       0       0       0       0
##  ...       .       .       .       .   .       .       .       .       .
## 1347       0       0       0       0   .       0       0       0       0
## 1348      NA      NA       1      NA   .      NA      NA      NA      NAGDSArray(file, "sample.id")## <90> array of class GDSArray and type "character":
##   NA06984   NA06985   NA06986   .         NA12891   NA12892 
## "NA06984" "NA06985" "NA06986"         . "NA12891" "NA12892"More details about GDS or GDSArray format can be found in the
vignettes of the gdsfmt, SNPRelate, SeqArray, GDSArray
and DelayedArray packages.
DelayedDataFrame is a Bioconductor package that implements
delayed operations on DataFrame objects using standard DataFrame
metaphor. Each column of data inside DelayedDataFrame is represented
as 1-dimensional GDSArray with on-disk GDS file. Methods like
show,validity check, [, [[ subsetting, rbind, cbind are implemented for
DelayedDataFrame. The DelayedDataFrame stays lazy until an
explicit realization call like DataFrame() constructor or
as.list() incurred. More details about DelayedDataFrame data
structure could be found in the vignette of DelayedDataFrame
package.
VariantExperiment classVariantExperiment classVariantExperiment class is defined to extend
RangedSummarizedExperiment. The difference would be that the assay
data are saved as GDSArray, and the annotation data are saved by
default as DelayedDataFrame (with option to save as ordinary
DataFrame), both of which are representing the data on-disk with GDS
back-end. There are coercion methods defined for VCF and GDS files into
VariantExperiment objects (Check the method vignette for more details).
Here we take an example for illustration.
ve <- makeVariantExperimentFromGDS(file)
ve## class: VariantExperiment 
## dim: 1348 90 
## metadata(0):
## assays(2): genotype annotation/format/DP
## rownames(1348): 1 2 ... 1347 1348
## rowData names(14): ID ALT ... info_GP info_BN
## colnames(90): NA06984 NA06985 ... NA12891 NA12892
## colData names(1): familyassay data are in GDSArray format, and could be retrieve by the
assays()/assay() function.
assays(ve)## List of length 2
## names(2): genotype annotation/format/DPassay(ve, 1)## <1348 x 90 x 2> array of class GDSArray and type "integer":
## ,,1
##      NA06984 NA06985 NA06986 NA06989 ... NA12889 NA12890 NA12891 NA12892
##    1      NA      NA       0      NA   .       0       0       0       0
##    2      NA      NA       0      NA   .       0       0       0       0
##  ...       .       .       .       .   .       .       .       .       .
## 1347       0       0       0       0   .       0       0       0       0
## 1348      NA      NA       0      NA   .      NA      NA      NA      NA
## 
## ,,2
##      NA06984 NA06985 NA06986 NA06989 ... NA12889 NA12890 NA12891 NA12892
##    1      NA      NA       0      NA   .       0       0       0       0
##    2      NA      NA       0      NA   .       0       0       0       0
##  ...       .       .       .       .   .       .       .       .       .
## 1347       0       0       0       0   .       0       0       0       0
## 1348      NA      NA       1      NA   .      NA      NA      NA      NAThe rowData() of the VariantExperiment is saved in
DelayedDataFrame format. We can use rowRanges() / rowData() to
retrieve the feature-related annotation file, with/without a
GenomicRange format.
rowRanges(ve)## GRanges object with 1348 ranges and 14 metadata columns:
##        seqnames    ranges strand |          ID            ALT            REF
##           <Rle> <IRanges>  <Rle> |  <GDSArray> <DelayedArray> <DelayedArray>
##      1        1   1105366      * | rs111751804              C              T
##      2        1   1105411      * | rs114390380              A              G
##      3        1   1110294      * |   rs1320571              A              G
##    ...      ...       ...    ... .         ...            ...            ...
##   1346       22  43691009      * |   rs8135982              T              C
##   1347       22  43691073      * | rs116581756              A              G
##   1348       22  48958933      * |   rs5771206              G              A
##              QUAL     FILTER    info_AA    info_AC    info_AN    info_DP
##        <GDSArray> <GDSArray> <GDSArray> <GDSArray> <GDSArray> <GDSArray>
##      1        NaN       PASS          T          4        114       3251
##      2        NaN       PASS          G          1        106       2676
##      3        NaN       PASS          A          6        154       7610
##    ...        ...        ...        ...        ...        ...        ...
##   1346        NaN       PASS          C         11        142        823
##   1347        NaN       PASS          G          1        152       1257
##   1348        NaN       PASS          G          1          6         48
##          info_HM2   info_HM3    info_OR     info_GP    info_BN
##        <GDSArray> <GDSArray> <GDSArray>  <GDSArray> <GDSArray>
##      1      FALSE      FALSE              1:1115503        132
##      2      FALSE      FALSE              1:1115548        132
##      3       TRUE       TRUE              1:1120431         88
##    ...        ...        ...        ...         ...        ...
##   1346      FALSE      FALSE            22:45312345        116
##   1347      FALSE      FALSE            22:45312409        132
##   1348      FALSE      FALSE            22:50616806        114
##   -------
##   seqinfo: 22 sequences from an unspecified genome; no seqlengthsrowData(ve)## DelayedDataFrame with 1348 rows and 14 columns
##               ID            ALT            REF       QUAL     FILTER    info_AA
##       <GDSArray> <DelayedArray> <DelayedArray> <GDSArray> <GDSArray> <GDSArray>
## 1    rs111751804              C              T        NaN       PASS          T
## 2    rs114390380              A              G        NaN       PASS          G
## 3      rs1320571              A              G        NaN       PASS          A
## ...          ...            ...            ...        ...        ...        ...
## 1346   rs8135982              T              C        NaN       PASS          C
## 1347 rs116581756              A              G        NaN       PASS          G
## 1348   rs5771206              G              A        NaN       PASS          G
##         info_AC    info_AN    info_DP   info_HM2   info_HM3    info_OR
##      <GDSArray> <GDSArray> <GDSArray> <GDSArray> <GDSArray> <GDSArray>
## 1             4        114       3251      FALSE      FALSE           
## 2             1        106       2676      FALSE      FALSE           
## 3             6        154       7610       TRUE       TRUE           
## ...         ...        ...        ...        ...        ...        ...
## 1346         11        142        823      FALSE      FALSE           
## 1347          1        152       1257      FALSE      FALSE           
## 1348          1          6         48      FALSE      FALSE           
##          info_GP    info_BN
##       <GDSArray> <GDSArray>
## 1      1:1115503        132
## 2      1:1115548        132
## 3      1:1120431         88
## ...          ...        ...
## 1346 22:45312345        116
## 1347 22:45312409        132
## 1348 22:50616806        114sample-related annotation is in DelayedDataFrame format, and could
be retrieved by colData().
colData(ve)## DelayedDataFrame with 90 rows and 1 column
##             family
##         <GDSArray>
## NA06984       1328
## NA06985           
## NA06986      13291
## ...            ...
## NA12890       1463
## NA12891           
## NA12892The gdsfile() will retrieve the gds file path associated with the
VariantExperiment object.
gdsfile(ve)## [1] "/home/biocbuild/bbs-3.13-bioc/R/library/SeqArray/extdata/CEU_Exon.gds"Some other getter function like metadata() will return any metadata
that we have saved inside the VariantExperiment object.
metadata(ve)## list()The VariantExperiment object supports subsetting methods with [,
$ and subsetByOverlap etc. as in SummarizedExperiment.
ve[1:10, 1:5]## class: VariantExperiment 
## dim: 10 5 
## metadata(0):
## assays(2): genotype annotation/format/DP
## rownames(10): 1 2 ... 9 10
## rowData names(14): ID ALT ... info_GP info_BN
## colnames(5): NA06984 NA06985 NA06986 NA06989 NA06994
## colData names(1): family$ subsettingThe $ subsetting could be operated directly on colData() columns,
for easy sample extraction. Note that the colData/rowData are in the
DelayedDataFrame format, with each column saved as GDSArray. So
when doing subsetting, we need to use as.logical() to convert the
1-dimensional GDSArray into ordinary vector.
colData(ve)## DelayedDataFrame with 90 rows and 1 column
##             family
##         <GDSArray>
## NA06984       1328
## NA06985           
## NA06986      13291
## ...            ...
## NA12890       1463
## NA12891           
## NA12892ve[, as.logical(ve$family == "1328")]## class: VariantExperiment 
## dim: 1348 2 
## metadata(0):
## assays(2): genotype annotation/format/DP
## rownames(1348): 1 2 ... 1347 1348
## rowData names(14): ID ALT ... info_GP info_BN
## colnames(2): NA06984 NA06989
## colData names(1): familysubsetting by rowData() columns.
rowData(ve)## DelayedDataFrame with 1348 rows and 14 columns
##               ID            ALT            REF       QUAL     FILTER    info_AA
##       <GDSArray> <DelayedArray> <DelayedArray> <GDSArray> <GDSArray> <GDSArray>
## 1    rs111751804              C              T        NaN       PASS          T
## 2    rs114390380              A              G        NaN       PASS          G
## 3      rs1320571              A              G        NaN       PASS          A
## ...          ...            ...            ...        ...        ...        ...
## 1346   rs8135982              T              C        NaN       PASS          C
## 1347 rs116581756              A              G        NaN       PASS          G
## 1348   rs5771206              G              A        NaN       PASS          G
##         info_AC    info_AN    info_DP   info_HM2   info_HM3    info_OR
##      <GDSArray> <GDSArray> <GDSArray> <GDSArray> <GDSArray> <GDSArray>
## 1             4        114       3251      FALSE      FALSE           
## 2             1        106       2676      FALSE      FALSE           
## 3             6        154       7610       TRUE       TRUE           
## ...         ...        ...        ...        ...        ...        ...
## 1346         11        142        823      FALSE      FALSE           
## 1347          1        152       1257      FALSE      FALSE           
## 1348          1          6         48      FALSE      FALSE           
##          info_GP    info_BN
##       <GDSArray> <GDSArray>
## 1      1:1115503        132
## 2      1:1115548        132
## 3      1:1120431         88
## ...          ...        ...
## 1346 22:45312345        116
## 1347 22:45312409        132
## 1348 22:50616806        114ve[as.logical(rowData(ve)$REF == "T"),]## class: VariantExperiment 
## dim: 214 90 
## metadata(0):
## assays(2): genotype annotation/format/DP
## rownames(214): 1 4 ... 1320 1328
## rowData names(14): ID ALT ... info_GP info_BN
## colnames(90): NA06984 NA06985 ... NA12891 NA12892
## colData names(1): familyVariantExperiment objects support all of the findOverlaps()
methods and associated functions. This includes subsetByOverlaps(),
which makes it easy to subset a VariantExperiment object by an
interval.
ve1 <- subsetByOverlaps(ve, GRanges("22:1-48958933"))
ve1## class: VariantExperiment 
## dim: 23 90 
## metadata(0):
## assays(2): genotype annotation/format/DP
## rownames(23): 1326 1327 ... 1347 1348
## rowData names(14): ID ALT ... info_GP info_BN
## colnames(90): NA06984 NA06985 ... NA12891 NA12892
## colData names(1): familyVariantExperiment objectNote that after the subsetting by [, $ or Ranged-based operations, and you feel satisfied with the data for downstream
analysis, you need to save that VariantExperiment object to
synchronize the gds file (on-disk) associated with the subset of data
(in-memory representation) before any statistical analysis. Otherwise,
an error will be returned.
For example, after we subset the ve by GRanges("22:1-48958933"),
and we want to calculate the hwe based on the 23 variants, an error
will be generated indicating that we need to sync the on-disk and
in-memory representations.
hwe(ve1)
## Error in .saveGDSMaybe(gdsfile) : use
##   'saveVariantExperiment()' to synchronize on-disk and
##   in-memory representationsVariantExperiment objectUse the function saveVariantExperiment to synchronize the on-disk
and in-memory representation. This function writes the processed data
as ve.gds, and save the R object (which lazily represent the
backend data set) as ve.rds under the specified directory. It
finally returns a new VariantExperiment object into current R
session generated from the newly saved data.
a <- tempfile()
ve2 <- saveVariantExperiment(ve1, dir=a, replace=TRUE)VariantExperiment objectYou can alternatively use loadVariantExperiment to load the
synchronized data into R session, by providing only the file
directory. It reads the VariantExperiment object saved as ve.rds, as lazy
representation of the backend ve.gds file under the specific
directory.
ve3 <- loadVariantExperiment(dir=a)
gdsfile(ve3)## [1] "/tmp/RtmpcPzm15/file12a01e77f10826/ve.gds"all.equal(ve2, ve3)## [1] TRUENow we are all set for any downstream analysis as needed.
head(hwe(ve2))##   variant.id nAA nAa naa     afreq         p            f
## 1       1326  88   1   0 0.9943820 1.0000000 -0.005649718
## 2       1327  41  35  13 0.6573034 0.2421774  0.127084209
## 3       1328  39  27   8 0.7094595 0.3951190  0.114950166
## 4       1329  89   1   0 0.9944444 1.0000000 -0.005586592
## 5       1330  69   3   0 0.9791667 1.0000000 -0.021276596
## 6       1331  69   5   0 0.9662162 1.0000000 -0.034965035sessionInfo()## R version 4.1.0 (2021-05-18)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.2 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.13-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.13-bioc/R/lib/libRlapack.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB              LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] parallel  stats4    stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] VariantExperiment_1.6.0     DelayedDataFrame_1.8.0     
##  [3] GDSArray_1.12.0             DelayedArray_0.18.0        
##  [5] Matrix_1.3-3                gdsfmt_1.28.0              
##  [7] SummarizedExperiment_1.22.0 Biobase_2.52.0             
##  [9] GenomicRanges_1.44.0        GenomeInfoDb_1.28.0        
## [11] IRanges_2.26.0              MatrixGenerics_1.4.0       
## [13] matrixStats_0.58.0          S4Vectors_0.30.0           
## [15] BiocGenerics_0.38.0         BiocStyle_2.20.0           
## 
## loaded via a namespace (and not attached):
##  [1] Rcpp_1.0.6             lattice_0.20-44        tidyr_1.1.3           
##  [4] formula.tools_1.7.1    Biostrings_2.60.0      assertthat_0.2.1      
##  [7] digest_0.6.27          utf8_1.2.1             R6_2.5.0              
## [10] backports_1.2.1        evaluate_0.14          pillar_1.6.1          
## [13] zlibbioc_1.38.0        rlang_0.4.11           data.table_1.14.0     
## [16] jquerylib_0.1.4        rmarkdown_2.8          splines_4.1.0         
## [19] stringr_1.4.0          GWASExactHW_1.01       RCurl_1.98-1.3        
## [22] broom_0.7.6            compiler_4.1.0         xfun_0.23             
## [25] pkgconfig_2.0.3        mgcv_1.8-35            htmltools_0.5.1.1     
## [28] tidyselect_1.1.1       tibble_3.1.2           GenomeInfoDbData_1.2.6
## [31] bookdown_0.22          fansi_0.4.2            crayon_1.4.1          
## [34] dplyr_1.0.6            bitops_1.0-7           grid_4.1.0            
## [37] DBI_1.1.1              nlme_3.1-152           jsonlite_1.7.2        
## [40] lifecycle_1.0.0        magrittr_2.0.1         SeqVarTools_1.30.0    
## [43] stringi_1.6.2          XVector_0.32.0         SNPRelate_1.26.0      
## [46] mice_3.13.0            bslib_0.2.5.1          ellipsis_0.3.2        
## [49] vctrs_0.3.8            generics_0.1.0         tools_4.1.0           
## [52] glue_1.4.2             purrr_0.3.4            yaml_2.2.1            
## [55] SeqArray_1.32.0        BiocManager_1.30.15    operator.tools_1.6.3  
## [58] logistf_1.24           knitr_1.33             sass_0.4.0