
Efficient genome searching with Biostrings and the BSgenome data

packages

Hervé Pagès

May 19, 2021

Contents

1 The Biostrings-based genome data packages 1

2 Finding an arbitrary nucleotide pattern in a chromosome 2

3 Finding an arbitrary nucleotide pattern in an entire genome 6

4 Some precautions when using matchPattern 10

5 Masking the chromosome sequences 10

6 Hard masking 15

7 Injecting known SNPs in the chromosome sequences 15

8 Finding all the patterns of a constant width dictionary in an entire genome 15

9 Session info 17

1 The Biostrings-based genome data packages

The Bioconductor project provides data packages that contain the full genome sequences of a given organism.
These packages are called Biostrings-based genome data packages because the sequences they contain are
stored in some of the basic containers defined in the Biostrings package, like the DNAString, the DNAStringSet
or the MaskedDNAString containers. Regardless of the particular sequence data that they contain, all the
Biostrings-based genome data packages are very similar and can be manipulated in a consistent and easy way.
They all require the BSgenome package in order to work properly. This package, unlike the Biostrings-based
genome data packages, is a software package that provides the infrastructure needed to support them (this
is why the Biostrings-based genome data packages are also called BSgenome data packages). The BSgenome
package itself requires the Biostrings package.

See the man page for the available.genomes function (?available.genomes) for more information
about how to get the list of all the BSgenome data packages currently available in your version of Biocon-
ductor (you need an internet connection so that available.genomes can query the Bioconductor package
repositories).

More genomes can be added if necessary. Note that the process of making a BSgenome data package is not
yet documented but you are welcome to ask for help on the bioc-devel mailing list (http://bioconductor.
org/docs/mailList.html) if you need a genome that is not yet available.

1

http://bioconductor.org/docs/mailList.html
http://bioconductor.org/docs/mailList.html

2 Finding an arbitrary nucleotide pattern in a chromosome

In this section we show how to find (or just count) the occurences of some arbitrary nucleotide pattern in a
chromosome. The basic tool for this is the matchPattern (or countPattern) function from the Biostrings
package.

First we need to install and load the BSgenome data package for the organism that we want to look at.
In our case, we want to search chromosome I of Caenorhabditis elegans.

UCSC provides several versions of the C. elegans genome: ce1, ce2 and ce4. These versions correspond
to different releases from WormBase, which are the WS100, WS120 and WS170 releases, respectively. See
http://genome.ucsc.edu/FAQ/FAQreleases#release1 for the list of all UCSC genome releases and for the
correspondance between UCSC versions and release names.

The BSgenome data package for the ce2 genome is BSgenome.Celegans.UCSC.ce2. Note that ce1 and ce4
are not available in Bioconductor but they could be added if there is demand for them.

See ?available.genomes for how to install BSgenome.Celegans.UCSC.ce2. Then load the package and
display the single object defined in it:

> library(BSgenome.Celegans.UCSC.ce2)

> ls("package:BSgenome.Celegans.UCSC.ce2")

[1] "BSgenome.Celegans.UCSC.ce2" "Celegans"

> genome <- BSgenome.Celegans.UCSC.ce2

> genome

Worm genome:

organism: Caenorhabditis elegans (Worm)

genome: ce2

provider: UCSC

release date: Mar. 2004

7 sequences:

chrI chrII chrIII chrIV chrV chrX chrM

(use 'seqnames()' to see all the sequence names, use the '$' or '[[' operator

to access a given sequence)

genome is a BSgenome object:

> class(genome)

[1] "BSgenome"

attr(,"package")

[1] "BSgenome"

When displayed, some basic information about the origin of the genome is shown (organism, genome,
provider, etc...) followed by the index of single sequences and eventually an additional index of multiple
sequences. Methods (adequately called accessor methods) are defined for individual access to this information:

> metadata(genome)

$organism

[1] "Caenorhabditis elegans"

$common_name

[1] "Worm"

2

http://genome.ucsc.edu/FAQ/FAQreleases#release1

$genome

[1] "ce2"

$provider

[1] "UCSC"

$release_date

[1] "Mar. 2004"

$source_url

[1] "http://hgdownload.cse.ucsc.edu/goldenPath/ce2/bigZips/"

> seqnames(genome)

[1] "chrI" "chrII" "chrIII" "chrIV" "chrV" "chrX" "chrM"

> seqinfo(genome)

Seqinfo object with 7 sequences (1 circular) from ce2 genome:

seqnames seqlengths isCircular genome

chrI 15080483 FALSE ce2

chrII 15279308 FALSE ce2

chrIII 13783313 FALSE ce2

chrIV 17493791 FALSE ce2

chrV 20922231 FALSE ce2

chrX 17718849 FALSE ce2

chrM 13794 TRUE ce2

See the man page for the BSgenome class (?BSgenome) for a complete list of accessor methods and their
descriptions.

Now we are ready to display chromosome I:

> genome$chrI

15080483-letter DNAString object

seq: GCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCTAA...TTAGGCTTAGGCTTAGGCTTAGGTTTAGGCTTAGGC

Note that this chrI sequence corresponds to the forward strand (aka direct or sense or positive or plus
strand) of chromosome I. UCSC, and genome providers in general, don’t provide files containing the nu-
cleotide sequence of the reverse strand (aka indirect or antisense or negative or minus or opposite strand)
of the chromosomes because these sequences can be deduced from the forward sequences by taking their
reverse complements. The BSgenome data packages are no exceptions: they only provide the forward strand
sequence of every chromosome. See ?reverseComplement for more details about the reverse complement of
a DNAString object. It is important to remember that, in practice, the reverse strand sequence is almost
never needed. The reason is that, in fact, a reverse strand analysis can (and should) always be transposed
into a forward strand analysis. Therefore trying to compute the reverse strand sequence of an entire chro-
mosome by applying reverseComplement to its forward strand sequence is almost always a bad idea. See
the Finding an arbitrary nucleotide pattern in an entire genome section of this document for how to find
arbitrary patterns in the reverse strand of a chromosome.

The number of bases in this sequence can be retrieved with:

> chrI <- genome$chrI

> length(chrI)

3

[1] 15080483

Some basic stats:

> afI <- alphabetFrequency(chrI)

> afI

A C G T M R W S Y K

4838561 2697177 2693544 4851201 0 0 0 0 0 0

V H D B N - + .

0 0 0 0 0 0 0 0

> sum(afI) == length(chrI)

[1] TRUE

Count all exact matches of pattern "ACCCAGGGC":

> p1 <- "ACCCAGGGC"

> countPattern(p1, chrI)

[1] 0

Like most pattern matching functions in Biostrings, the countPattern and matchPattern functions
support inexact matching. One form of inexact matching is to allow a few mismatching letters per match.
Here we allow at most one:

> countPattern(p1, chrI, max.mismatch=1)

[1] 235

With the matchPattern function, the locations of the matches are stored in an XStringViews object:

> m1 <- matchPattern(p1, chrI, max.mismatch=1)

> m1[4:6]

Views on a 15080483-letter DNAString subject

subject: GCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCT...AGGCTTAGGCTTAGGCTTAGGTTTAGGCTTAGGC

views:

start end width

[1] 187350 187358 9 [ACCCAAGGC]

[2] 213236 213244 9 [ACCCAGGGG]

[3] 424133 424141 9 [ACCCAGGAC]

> class(m1)

[1] "XStringViews"

attr(,"package")

[1] "Biostrings"

The mismatch function (new in Biostrings 2) returns the positions of the mismatching letters for each
match:

> mismatch(p1, m1[4:6])

4

[[1]]

[1] 6

[[2]]

[1] 9

[[3]]

[1] 8

Note: The mismatch method is in fact a particular case of a (vectorized) alignment function where only
“replacements” are allowed. Current implementation is slow but this will be addressed.

It may happen that a match is out of limits like in this example:

> p2 <- DNAString("AAGCCTAAGCCTAAGCCTAA")

> m2 <- matchPattern(p2, chrI, max.mismatch=2)

> m2[1:4]

Views on a 15080483-letter DNAString subject

subject: GCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCT...AGGCTTAGGCTTAGGCTTAGGTTTAGGCTTAGGC

views:

start end width

[1] -1 18 20 [GCCTAAGCCTAAGCCTAA]

[2] 5 24 20 [AAGCCTAAGCCTAAGCCTAA]

[3] 11 30 20 [AAGCCTAAGCCTAAGCCTAA]

[4] 17 36 20 [AAGCCTAAGCCTAAGCCTAA]

> p2 == m2[1:4]

[1] FALSE TRUE TRUE TRUE

> mismatch(p2, m2[1:4])

[[1]]

[1] 1 2

[[2]]

integer(0)

[[3]]

integer(0)

[[4]]

integer(0)

The list of exact matches and the list of inexact matches can both be obtained with:

> m2[p2 == m2]

> m2[p2 != m2]

Note that the length of m2[p2 == m2] should be equal to countPattern(p2, chrI, max.mismatch=0).

5

3 Finding an arbitrary nucleotide pattern in an entire genome

Now we want to extend our analysis to the forward and reverse strands of all the C. elegans chromosomes.
More precisely, here is the analysis we want to perform:

� The input dictionary: Our input is a dictionary of 50 patterns. Each pattern is a short nucleotide
sequence of 15 to 25 bases (As, Cs, Gs and Ts only, no Ns). It is stored in a FASTA file called
"ce2dict0.fa". See the Finding all the patterns of a constant width dictionary in an entire genome
section of this document for a very efficient way to deal with the special case where all the patterns in
the input dictionary have the same length.

� The target: Our target (or subject) is the forward and reverse strands of the seven C. elegans
chromosomes (14 sequences in total). We want to find and report all occurences (or hits) of every
pattern in the target. Note that a given pattern can have 0, 1 or several hits in 0, 1 or 2 strands of 0,
1 or several chromosomes.

� Exact or inexact matching? We are interested in exact matches only (for now).

� The output: We want to put the results of this analysis in a file so we can send it to our collaborators
for some post analysis work. Our collaborators are not necessarily familiar with R or Bioconductor
so dumping a high-level R object (like a list or a data frame) into an .rda file is not an option. For
maximum portability (one of our collaborators wants to use Microsoft Excel for the post analysis) we
choose to put our results in a tabulated file where one line describes one hit. The columns (or fields)
of this file will be (in this order):

– seqname: the name of the chromosome where the hit occurs.

– start: an integer giving the starting position of the hit.

– end: an integer giving the ending position of the hit.

– strand: a plus (+) for a hit in the positive strand or a minus (-) for a hit in the negative strand.

– patternID: we use the unique ID provided for every pattern in the "ce2dict0.fa" file.

Let’s start by loading the input dictionary with:

> ce2dict0_file <- system.file("extdata", "ce2dict0.fa", package="BSgenome")

> ce2dict0 <- readDNAStringSet(ce2dict0_file, "fasta")

> ce2dict0

DNAStringSet object of length 50:

width seq names

[1] 18 GCGAAACTAGGAGAGGCT pattern01

[2] 25 CTGTTAGCTAATTTTAAAAATAAAT pattern02

[3] 24 ACTACCACCCAAATTTAGATATTC pattern03

[4] 24 AAATTTTTTTTGTTGCAAATTTGA pattern04

[5] 25 TCTTCTTGGCTTTGGTGGTACTTTT pattern05

...

[46] 24 TTTTGAACAAAGCATGTCTAACTA pattern46

[47] 20 TAAACGAATTTAGGATATAT pattern47

[48] 19 AAGGACCAGGATTGGCACG pattern48

[49] 24 AAATAACTGCGTAAAAACACAATA pattern49

[50] 22 AAAATGCCGGAGCATTTTAAAG pattern50

Here is how we can write the functions that will perform our analysis:

6

> writeHits <- function(seqname, matches, strand, file="", append=FALSE)

+ {

+ if (file.exists(file) && !append)

+ warning("existing file ", file, " will be overwritten with 'append=FALSE'")

+ if (!file.exists(file) && append)

+ warning("new file ", file, " will have no header with 'append=TRUE'")

+ hits <- data.frame(seqname=rep.int(seqname, length(matches)),

+ start=start(matches),

+ end=end(matches),

+ strand=rep.int(strand, length(matches)),

+ patternID=names(matches),

+ check.names=FALSE)

+ write.table(hits, file=file, append=append, quote=FALSE, sep="\t",

+ row.names=FALSE, col.names=!append)

+ }

> runAnalysis1 <- function(dict0, outfile="")

+ {

+ library(BSgenome.Celegans.UCSC.ce2)

+ genome <- BSgenome.Celegans.UCSC.ce2

+ seqnames <- seqnames(genome)

+ seqnames_in1string <- paste(seqnames, collapse=", ")

+ cat("Target:", metadata(genome)$genome,

+ "chromosomes", seqnames_in1string, "\n")

+ append <- FALSE

+ for (seqname in seqnames) {

+ subject <- genome[[seqname]]

+ cat(">>> Finding all hits in chromosome", seqname, "...\n")

+ for (i in seq_len(length(dict0))) {

+ patternID <- names(dict0)[i]

+ pattern <- dict0[[i]]

+ plus_matches <- matchPattern(pattern, subject)

+ names(plus_matches) <- rep.int(patternID, length(plus_matches))

+ writeHits(seqname, plus_matches, "+", file=outfile, append=append)

+ append <- TRUE

+ rcpattern <- reverseComplement(pattern)

+ minus_matches <- matchPattern(rcpattern, subject)

+ names(minus_matches) <- rep.int(patternID, length(minus_matches))

+ writeHits(seqname, minus_matches, "-", file=outfile, append=append)

+ }

+ cat(">>> DONE\n")

+ }

+ }

Some important notes about the implementation of the runAnalysis1 function:

� subject <- genome[[seqname]] is the code that actually loads a chromosome sequence into memory.
Using only one sequence at a time is a good practice to avoid memory allocation problems on a
machine with a limited amount of memory. For example, loading all the human chromosome sequences
in memory would require more than 3GB of memory!

� We have 2 nested for loops: the outer loop walks thru the target (7 chromosomes) and the inner loop
walks thru the set of patterns. Doing the other way around would be very inefficient, especially with a

7

bigger number of patterns because this would require to load each chromosome sequence into memory
as many times as the number of patterns. runAnalysis1 loads each sequence only once.

� We find the matches in the minus strand (minus_matches) by first taking the reverse complement
of the current pattern (with rcpattern <- reverseComplement(pattern)) and NOT by taking the
reverse complement of the current subject.

Now we are ready to run the analysis and put the results in the "ce2dict0_ana1.txt" file:

> runAnalysis1(ce2dict0, outfile="ce2dict0_ana1.txt")

Target: ce2 chromosomes chrI, chrII, chrIII, chrIV, chrV, chrX, chrM

>>> Finding all hits in chromosome chrI ...

>>> DONE

>>> Finding all hits in chromosome chrII ...

>>> DONE

>>> Finding all hits in chromosome chrIII ...

>>> DONE

>>> Finding all hits in chromosome chrIV ...

>>> DONE

>>> Finding all hits in chromosome chrV ...

>>> DONE

>>> Finding all hits in chromosome chrX ...

>>> DONE

>>> Finding all hits in chromosome chrM ...

>>> DONE

Here is some very simple example of post analysis:

� Get the total number of hits:

> hits1 <- read.table("ce2dict0_ana1.txt", header=TRUE)

> nrow(hits1)

[1] 79

� Get the number of hits per chromosome:

> table(hits1$seqname)

chrI chrII chrIII chrIV chrM chrV chrX

11 5 16 8 8 15 16

� Get the number of hits per pattern:

> hits1_table <- table(hits1$patternID)

> hits1_table

pattern01 pattern02 pattern03 pattern04 pattern06 pattern07 pattern08 pattern09

1 1 1 1 2 1 1 1

pattern10 pattern11 pattern12 pattern13 pattern14 pattern15 pattern16 pattern17

1 1 1 1 1 1 1 1

pattern18 pattern19 pattern20 pattern21 pattern22 pattern23 pattern24 pattern25

1 9 1 10 2 1 1 1

pattern26 pattern27 pattern28 pattern29 pattern30 pattern31 pattern32 pattern33

8

1 1 1 1 1 1 1 1

pattern34 pattern35 pattern36 pattern37 pattern38 pattern39 pattern40 pattern41

2 1 1 7 1 1 1 1

pattern42 pattern43 pattern44 pattern45 pattern46 pattern47 pattern48 pattern49

1 5 1 1 1 1 1 1

pattern50

1

� Get the pattern(s) with the higher number of hits:

> hits1_table[hits1_table == max(hits1_table)] # pattern(s) with more hits

pattern21

10

� Get the pattern(s) with no hits:

> setdiff(names(ce2dict0), hits1$patternID) # pattern(s) with no hits

[1] "pattern05"

� And finally a function that can be used to plot the hits:

> plotGenomeHits <- function(bsgenome, seqnames, hits)

+ {

+ chrlengths <- seqlengths(bsgenome)[seqnames]

+ XMAX <- max(chrlengths)

+ YMAX <- length(seqnames)

+ plot.new()

+ plot.window(c(1, XMAX), c(0, YMAX))

+ axis(1)

+ axis(2, at=seq_len(length(seqnames)), labels=rev(seqnames), tick=FALSE, las=1)

+ ## Plot the chromosomes

+ for (i in seq_len(length(seqnames)))

+ lines(c(1, chrlengths[i]), c(YMAX + 1 - i, YMAX + 1 - i), type="l")

+ ## Plot the hits

+ for (i in seq_len(nrow(hits))) {

+ seqname <- hits$seqname[i]

+ y0 <- YMAX + 1 - match(seqname, seqnames)

+ if (hits$strand[i] == "+") {

+ y <- y0 + 0.05

+ col <- "red"

+ } else {

+ y <- y0 - 0.05

+ col <- "blue"

+ }

+ lines(c(hits$start[i], hits$end[i]), c(y, y), type="l", col=col, lwd=3)

+ }

+ }

Plot the hits found by runAnalysis1 with:

> plotGenomeHits(genome, seqnames(genome), hits1)

9

4 Some precautions when using matchPattern

Improper use of matchPattern (or countPattern) can affect performance.
If needed, the matchPattern and countPattern methods convert their first argument (the pattern) to an

object of the same class than their second argument (the subject) before they pass it to the subroutine that
actually implements the fast search algorithm.

So if you need to reuse the same pattern a high number of times, it’s a good idea to convert it before to
pass it to the matchPattern or countPattern method. This way the conversion is done only once:

> library(hgu95av2probe)

> tmpseq <- DNAStringSet(hgu95av2probe$sequence)

> someStats <- function(v)

+ {

+ GC <- DNAString("GC")

+ CG <- DNAString("CG")

+ sapply(seq_len(length(v)),

+ function(i) {

+ y <- v[[i]]

+ c(alphabetFrequency(y)[1:4],

+ GC=countPattern(GC, y),

+ CG=countPattern(CG, y))

+ }

+)

+ }

> someStats(tmpseq[1:10])

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

A 1 5 6 4 4 2 4 5 9 2

C 10 5 4 7 5 7 10 8 7 10

G 6 5 3 8 8 6 4 5 4 4

T 8 10 12 6 8 10 7 7 5 9

GC 2 1 1 4 3 2 2 2 1 1

CG 0 0 0 2 1 1 0 0 0 0

5 Masking the chromosome sequences

Starting with Bioconductor 2.2, the chromosome sequences in a BSgenome data package can have built-in
masks. Starting with Bioconductor 2.3, there can be up to 4 built-in masks per sequence. These will always
be (in this order): (1) the mask of assembly gaps, (2) the mask of intra-contig ambiguities, (3) the mask of
repeat regions that were determined by the RepeatMasker software, and (4) the mask of repeat regions that
were determined by the Tandem Repeats Finder software (where only repeats with period less than or equal
to 12 were kept).

For a given package, all the sequences will always have the same number of masks.

> library(BSgenome.Hsapiens.UCSC.hg38.masked)

> genome <- BSgenome.Hsapiens.UCSC.hg38.masked

> chrY <- genome$chrY

> chrY

57227415-letter MaskedDNAString object (# for masking)

seq: ####################################...####################################

masks:

10

maskedwidth maskedratio active names desc

1 30812367 5.384197e-01 TRUE AGAPS assembly gaps

2 5 8.737071e-08 TRUE AMB intra-contig ambiguities

3 16525661 2.887718e-01 FALSE RM RepeatMasker

4 872171 1.524044e-02 FALSE TRF Tandem Repeats Finder [period<=12]

all masks together:

maskedwidth maskedratio

47464316 0.8293982

all active masks together:

maskedwidth maskedratio

30812372 0.5384198

> chrM <- genome$chrM

> chrM

16569-letter MaskedDNAString object (# for masking)

seq: GATCACAGGTCTATCACCCTATTAACCACTCACGGG...AGCCCACACGTTCCCCTTAAATAAGACATCACGATG

masks:

maskedwidth maskedratio active names desc

1 0 0.000000e+00 TRUE AGAPS assembly gaps (empty)

2 1 6.035367e-05 TRUE AMB intra-contig ambiguities

3 418 2.522784e-02 FALSE RM RepeatMasker

4 0 0.000000e+00 FALSE TRF Tandem Repeats Finder [period<=12]

all masks together:

maskedwidth maskedratio

419 0.02528819

all active masks together:

maskedwidth maskedratio

1 6.035367e-05

The built-in masks are named consistenly across all the BSgenome data packages available in Bioconduc-
tor:

Name Active by default Short description Long description
AGAPS yes assembly gaps Masks the big N-blocks that have been placed between the contigs during the assembly. This mask is consistent with the Gap track from UCSC Genome Browser.
AMB yes intra-contig ambiguities Masks any IUPAC ambiguity letter that was found in the contig regions of the original sequence. Note that only As, Cs, Gs and Ts remain unmasked when the AGAPS and AMB masks are both active (before SNPs are eventually injected, see below).
RM no RepeatMasker Masks the repeat regions determined by the RepeatMasker software. This mask is consistent with the RepeatMasker track from UCSC Genome Browser.
TRF no Tandem Repeats Finder Masks the tandem repeat regions that were determined by the Tandem Repeats Finder software (with period of 12 or less).

Table 1: The built-in masks provided by the BSgenome data packages.

When displaying a masked sequence (here a MaskedDNAString object), the masked width and masked
ratio are reported for each individual mask, as well as for all the masks together, and for all the active masks
together. The masked width is the total number of nucleotide positions that are masked and the masked
ratio is the masked width divided by the length of the sequence.

To activate a mask, use the active replacement method in conjonction with the masks method. For
example, to activate the RepeatMasker mask, do:

> active(masks(chrY))["RM"] <- TRUE

> chrY

57227415-letter MaskedDNAString object (# for masking)

seq: ####################################...####################################

11

masks:

maskedwidth maskedratio active names desc

1 30812367 5.384197e-01 TRUE AGAPS assembly gaps

2 5 8.737071e-08 TRUE AMB intra-contig ambiguities

3 16525661 2.887718e-01 TRUE RM RepeatMasker

4 872171 1.524044e-02 FALSE TRF Tandem Repeats Finder [period<=12]

all masks together:

maskedwidth maskedratio

47464316 0.8293982

all active masks together:

maskedwidth maskedratio

47337931 0.8271897

As you can see, the masked width for all the active masks together (i.e. the total number of nucleotide
positions that are masked by at least one active mask) is now the same as for the first mask. This represents
a masked ratio of about 83%.

Now when we use a function that is mask aware, like alphabetFrequency, the masked regions of the
input sequence are ignored:

> active(masks(chrY)) <- FALSE

> active(masks(chrY))["AGAPS"] <- TRUE

> alphabetFrequency(unmasked(chrY))

A C G T M R W S

7886192 5285789 5286894 7956168 0 0 0 0

Y K V H D B N -

0 0 0 0 0 0 30812372 0

+ .

0 0

> alphabetFrequency(chrY)

A C G T M R W S Y K

7886192 5285789 5286894 7956168 0 0 0 0 0 0

V H D B N - + .

0 0 0 0 5 0 0 0

This output indicates that, for this chromosome, the assembly gaps correspond exactly to the regions in
the sequence that were filled with the letter N. Note that this is not always the case: sometimes Ns, and
other IUPAC ambiguity letters, can be found inside the contigs.

When coercing a MaskedXString object to an XStringViews object, each non-masked region in the original
sequence is converted into a view on the sequence:

> as(chrY, "XStringViews")

Views on a 57227415-letter DNAString subject

subject: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN...NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

views:

start end width

[1] 10001 44821 34821 [CTAACCCTAACCCTAACCCTA...AGGTCTCATTGAGGACAGATA]

[2] 94822 133871 39050 [CCCTCTTCCTGTCACGGCCCG...GCCTAATGCAGACTCTAAAGG]

[3] 222347 226276 3930 [ACCCTAACCCTAACCCTAACC...CTCCTTCCCTCGGCGCCATCC]

[4] 226352 1949345 1722994 [CCCGCTCCTCCCCTCGGGACC...GTCATAACAAGAACCAAGATC]

12

[5] 2132995 2137388 4394 [TGTCTGTGTATGTATATATAT...CCTCTCCCATCATCATCATCA]

...

[51] 21748372 21750013 1642 [GAAGTAAGCATTCCTGTATTA...TCCAGCCAAGGTGACAGGGCA]

[52] 21750315 21789281 38967 [CTGTACTTTACAGTCTTGCTT...AGCAGCCAAATCTGCAGTCAT]

[53] 21805282 26673214 4867933 [AAGCTTTGGCTAATATATCTC...GAGTGGTGCAGAGTGGAATTC]

[54] 56673215 56771509 98295 [GAATTCATTGGAATGGAAGGG...GATTGGAATGGAATGGAATTC]

[55] 56821510 57217415 395906 [GAATTCAACATTATTCTTGTT...GGTGTGGTGTGTGGGTGTGGT]

This can be used in conjonction with the gaps method to see the gaps between the views i.e. the masked
regions themselves:

> gaps(as(chrY, "XStringViews"))

To extract the sizes of the assembly gaps:

> width(gaps(as(chrY, "XStringViews")))

[1] 10000 50000 88475 75 183649 100 8260 50000

[9] 847 2052 50000 50000 50000 12393 1432 995

[17] 2486 2727 329 50000 25 808 534 2235

[25] 679 1523 1659 582 1078 899 908 1590

[33] 628 25 783 518 255 892 818 780

[41] 50000 267 38 1807 20 140 20 328

[49] 50000 1899 508 301 16000 30000000 50000 10000

Note that, if applied directly to chrY, gaps returns a MaskedDNAString object with a single mask masking
the regions that are not masked in the original object:

> gaps(chrY)

57227415-letter MaskedDNAString object (# for masking)

seq: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN...NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

masks:

maskedwidth maskedratio active

1 26415048 0.4615803 TRUE

> alphabetFrequency(gaps(chrY))

A C G T M R W S

0 0 0 0 0 0 0 0

Y K V H D B N -

0 0 0 0 0 0 30812367 0

+ .

0 0

In fact, for any MaskedDNAString object, the following should always be TRUE, whatever the masks are:

> af0 <- alphabetFrequency(unmasked(chrY))

> af1 <- alphabetFrequency(chrY)

> af2 <- alphabetFrequency(gaps(chrY))

> all(af0 == af1 + af2)

[1] TRUE

With all chrY masks active:

13

> active(masks(chrY)) <- TRUE

> af1 <- alphabetFrequency(chrY)

> af1

A C G T M R W S Y K

2994088 1876822 1889305 3002884 0 0 0 0 0 0

V H D B N - + .

0 0 0 0 0 0 0 0

> gaps(chrY)

57227415-letter MaskedDNAString object (# for masking)

seq: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN...NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

masks:

maskedwidth maskedratio active

1 9763099 0.1706018 TRUE

> af2 <- alphabetFrequency(gaps(chrY))

> af2

A C G T M R W S

4892104 3408967 3397589 4953284 0 0 0 0

Y K V H D B N -

0 0 0 0 0 0 30812372 0

+ .

0 0

> all(af0 == af1 + af2)

[1] TRUE

Now let’s compare three different ways of finding all the occurences of the "CANNTG" consensus sequence
in chrY. The Ns in this pattern need to be treated as wildcards i.e. they must match any letter in the
subject.

Without the mask feature, the first way to do it would be to use the fixed=FALSE option in the call to
matchPattern (or countPattern):

> Ebox <- "CANNTG"

> active(masks(chrY)) <- FALSE

> countPattern(Ebox, chrY, fixed=FALSE)

[1] 30953762

The problem with this method is that the Ns in the subject are also treated as wildcards hence the
abnormally high number of matches. A better method is to specify the side of the matching problem (i.e.
pattern or subject) where the Ns should be treated as wildcards:

> countPattern(Ebox, chrY, fixed=c(pattern=FALSE,subject=TRUE))

[1] 141609

Finally, countPattern being mask aware, this can be achieved more efficiently by just masking the
assembly gaps and ambiguities:

> active(masks(chrY))[c("AGAPS", "AMB")] <- TRUE

> alphabetFrequency(chrY, baseOnly=TRUE) # no ambiguities

14

A C G T other

7886192 5285789 5286894 7956168 0

> countPattern(Ebox, chrY, fixed=FALSE)

[1] 141609

Note that some chromosomes can have Ns outside the assembly gaps:

> chr2 <- genome$chr2

> active(masks(chr2))[-2] <- FALSE

> alphabetFrequency(gaps(chr2))

A C G T M R W S Y K V H D B N -

0 0 0 0 0 0 0 0 0 0 0 0 0 0 2913 0

+ .

0 0

so it is recommended to always keep the AMB mask active (in addition to the AGAPS mask) whatever the
sequence is.

Note that not all functions that work with an XString input are mask aware but more will be added
in the near future. However, most of the times there is a alternate way to exclude some arbitrary regions
from an analysis without having to use mask aware functions. This is described below in the Hard masking
section.

6 Hard masking

coming soon...

7 Injecting known SNPs in the chromosome sequences

coming soon...

8 Finding all the patterns of a constant width dictionary in an entire
genome

The matchPDict function can be used instead of matchPattern for the kind of analysis described in the
Finding an arbitrary nucleotide pattern in an entire genome section but it will be much faster (between
100x and 10000x faster depending on the size of the input dictionary). Note that a current limitation of
matchPDict is that it only works with a dictionary of DNA patterns where all the patterns have the same
number of nucleotides (constant width dictionary). See ?matchPDict for more information.

Here is how our runAnalysis1 function can be modified in order to use matchPDict instead of match-

Pattern:

> runOneStrandAnalysis <- function(dict0, bsgenome, seqnames, strand,

+ outfile="", append=FALSE)

+ {

+ cat("\nTarget: strand", strand, "of", metadata(bsgenome)$genome,

+ "chromosomes", paste(seqnames, collapse=", "), "\n")

+ if (strand == "-")

+ dict0 <- reverseComplement(dict0)

15

+ pdict <- PDict(dict0)

+ for (seqname in seqnames) {

+ subject <- bsgenome[[seqname]]

+ cat(">>> Finding all hits in strand", strand, "of chromosome", seqname, "...\n")

+ mindex <- matchPDict(pdict, subject)

+ matches <- extractAllMatches(subject, mindex)

+ writeHits(seqname, matches, strand, file=outfile, append=append)

+ append <- TRUE

+ cat(">>> DONE\n")

+ }

+ }

> runAnalysis2 <- function(dict0, outfile="")

+ {

+ library(BSgenome.Celegans.UCSC.ce2)

+ genome <- BSgenome.Celegans.UCSC.ce2

+ seqnames <- seqnames(genome)

+ runOneStrandAnalysis(dict0, genome, seqnames, "+", outfile=outfile, append=FALSE)

+ runOneStrandAnalysis(dict0, genome, seqnames, "-", outfile=outfile, append=TRUE)

+ }

Remember that matchPDict only works if all the patterns in the input dictionary have the same length
so for this 2nd analysis, we will truncate the patterns in ce2dict0 to 15 nucleotides:

> ce2dict0cw15 <- DNAStringSet(ce2dict0, end=15)

Now we can run this 2nd analysis and put the results in the "ce2dict0cw15_ana2.txt" file:

> runAnalysis2(ce2dict0cw15, outfile="ce2dict0cw15_ana2.txt")

Target: strand + of ce2 chromosomes chrI, chrII, chrIII, chrIV, chrV, chrX, chrM

>>> Finding all hits in strand + of chromosome chrI ...

>>> DONE

>>> Finding all hits in strand + of chromosome chrII ...

>>> DONE

>>> Finding all hits in strand + of chromosome chrIII ...

>>> DONE

>>> Finding all hits in strand + of chromosome chrIV ...

>>> DONE

>>> Finding all hits in strand + of chromosome chrV ...

>>> DONE

>>> Finding all hits in strand + of chromosome chrX ...

>>> DONE

>>> Finding all hits in strand + of chromosome chrM ...

>>> DONE

Target: strand - of ce2 chromosomes chrI, chrII, chrIII, chrIV, chrV, chrX, chrM

>>> Finding all hits in strand - of chromosome chrI ...

>>> DONE

>>> Finding all hits in strand - of chromosome chrII ...

>>> DONE

>>> Finding all hits in strand - of chromosome chrIII ...

>>> DONE

>>> Finding all hits in strand - of chromosome chrIV ...

16

>>> DONE

>>> Finding all hits in strand - of chromosome chrV ...

>>> DONE

>>> Finding all hits in strand - of chromosome chrX ...

>>> DONE

>>> Finding all hits in strand - of chromosome chrM ...

>>> DONE

9 Session info

> sessionInfo()

R version 4.1.0 (2021-05-18)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 20.04.2 LTS

Matrix products: default

BLAS: /home/biocbuild/bbs-3.13-bioc/R/lib/libRblas.so

LAPACK: /home/biocbuild/bbs-3.13-bioc/R/lib/libRlapack.so

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_GB LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats4 parallel stats graphics grDevices utils datasets

[8] methods base

other attached packages:

[1] BSgenome.Hsapiens.UCSC.hg38.masked_1.3.993

[2] BSgenome.Hsapiens.UCSC.hg38_1.4.3

[3] hgu95av2probe_2.18.0

[4] AnnotationDbi_1.54.0

[5] Biobase_2.52.0

[6] BSgenome.Celegans.UCSC.ce2_1.4.0

[7] BSgenome_1.60.0

[8] rtracklayer_1.52.0

[9] GenomicRanges_1.44.0

[10] Biostrings_2.60.0

[11] GenomeInfoDb_1.28.0

[12] XVector_0.32.0

[13] IRanges_2.26.0

[14] S4Vectors_0.30.0

[15] BiocGenerics_0.38.0

loaded via a namespace (and not attached):

[1] Rcpp_1.0.6 compiler_4.1.0

17

[3] restfulr_0.0.13 MatrixGenerics_1.4.0

[5] bitops_1.0-7 tools_4.1.0

[7] zlibbioc_1.38.0 bit_4.0.4

[9] memoise_2.0.0 RSQLite_2.2.7

[11] lattice_0.20-44 png_0.1-7

[13] rlang_0.4.11 Matrix_1.3-3

[15] DelayedArray_0.18.0 DBI_1.1.1

[17] rstudioapi_0.13 yaml_2.2.1

[19] fastmap_1.1.0 GenomeInfoDbData_1.2.6

[21] httr_1.4.2 vctrs_0.3.8

[23] bit64_4.0.5 grid_4.1.0

[25] R6_2.5.0 XML_3.99-0.6

[27] BiocParallel_1.26.0 blob_1.2.1

[29] Rsamtools_2.8.0 matrixStats_0.58.0

[31] GenomicAlignments_1.28.0 KEGGREST_1.32.0

[33] SummarizedExperiment_1.22.0 RCurl_1.98-1.3

[35] cachem_1.0.5 crayon_1.4.1

[37] rjson_0.2.20 BiocIO_1.2.0

18

	The Biostrings-based genome data packages
	Finding an arbitrary nucleotide pattern in a chromosome
	Finding an arbitrary nucleotide pattern in an entire genome
	Some precautions when using matchPattern
	Masking the chromosome sequences
	Hard masking
	Injecting known SNPs in the chromosome sequences
	Finding all the patterns of a constant width dictionary in an entire genome
	Session info

