Kang_subset {distinct} | R Documentation |
muscData
package.Subset from the 'Kang18_8vs8()' object of the muscData
package.
Kang_subset |
contains a |
Simone Tiberi simone.tiberi@uzh.ch
#################### # Object 'Kang_subset' is generated as follows: #################### # library(muscData) # sce = Kang18_8vs8() # # library(scater) # sce = computeLibraryFactors(sce) # sce = logNormCounts(sce) # cpm(sce) <- calculateCPM(sce) # # Select genes with at least 1000 non-zero cells: # sce = sce[ rowSums(assays(sce)$counts > 0) >= 1000, ] # # randomly select 100 of these genes: # set.seed(61217) # sel = sample( rownames(sce), size = 100) # sce = sce[ rownames(sce) %in% sel, ] # # select 3 individuals only: # ind_selected = levels(factor(colData(sce)$ind))[1:3] # sce = sce[, sce$ind %in% ind_selected] # # make a sample_id column: # colData(sce)$sample_id = factor(paste(colData(sce)$stim, colData(sce)$ind, sep = "_")) # # create an experiment_info object containing sample-group information: # experiment_info = unique(data.frame(sample_id = colData(sce)$sample_id, # stim = colData(sce)$stim) ) # metadata(sce)$experiment_info = data.frame(experiment_info, row.names = NULL) # # remove unnecessary information to reduce storage space: # sce$cluster = NULL; # sce$multiplets = NULL; # rowData(sce) = NULL; # colnames(sce) = NULL; # reducedDim(sce) = NULL # sce$ind = NULL # sce$sizeFactor = NULL # rm assays counts # assays(sce) = assays(sce)[2:3] # # Kang_subset = sce # save(Kang_subset, file = "Kang_subset.RData")