get.consensus.subtypes {consensusOV} | R Documentation |
Get consensusOV ovarian cancer subtypes
get.consensus.subtypes(expression.matrix, entrez.ids, concordant.tumors.only = TRUE, remove.using.cutoff = FALSE, percentage.dataset.removed = 0.75, .training.dataset = consensus.training.dataset.full, .dataset.names.to.keep = names(esets.rescaled.classified.filteredgenes)) margin(rf.probs)
expression.matrix |
A matrix of gene expression values with rows as genes, columns as samples. |
entrez.ids |
A vector of Entrez Gene IDs, corresponding to the rows of
|
concordant.tumors.only |
Logical. Should the classifier trained only on tumors that are concordantly classified by Helland, Konecny, and Verhaak? Defaults to TRUE. |
remove.using.cutoff |
Specify whether to classify NA for samples that do not meet a margin cutoff |
percentage.dataset.removed |
If remove.using.cutoff is TRUE, then classify this percentage of samples to NA based on margin values |
.training.dataset |
ExpressionSet containing the training data. Defaults to the pooled dataset across selected MetaGxOvarian datasets. |
.dataset.names.to.keep |
Names of MetaGxOvarian datasets to use for training |
rf.probs |
random forest probabilities for each subtype as returned
by |
get.consensus.subtypes
returns a list with
first value consensusOV.subtypes
containing a
factor of subtype labels; and second value rf.probs
containing a matrix
of subtype probabilities.
margin
returns a numeric vector containing the classification margin
scores, i.e. the difference between the top two subtype scores for each tumor.
library(Biobase) data(GSE14764.eset) expression.matrix <- exprs(GSE14764.eset) entrez.ids <- as.character(fData(GSE14764.eset)$EntrezGene.ID) sts <- get.consensus.subtypes(expression.matrix, entrez.ids) margins <- margin(sts$rf.probs)