MDPlot-methods {EDASeq} | R Documentation |
MDPlot
in Package EDASeq MDPlot
produces a mean-difference smooth scatterplot of two lanes in an experiment.
MDPlot(x,y,...)
x |
Either a numeric matrix or a |
y |
A numeric vecor specifying the lanes to be compared. |
... |
See |
The mean-difference (MD) plot is a useful plot to visualize difference in two lanes of an experiment. From a MDPlot one can see if normalization is needed and if a linear scaling is sufficient or nonlinear normalization is more effective.
The MDPlot also plots a lowess fit (in red) underlying a possible trend in the bias related to the mean expression.
signature(x = "matrix", y = "numeric")
signature(x = "SeqExpressionSet", y = "numeric")
library(yeastRNASeq) data(geneLevelData) data(yeastGC) sub <- intersect(rownames(geneLevelData), names(yeastGC)) mat <- as.matrix(geneLevelData[sub,]) data <- newSeqExpressionSet(mat, phenoData=AnnotatedDataFrame( data.frame(conditions=factor(c("mut", "mut", "wt", "wt")), row.names=colnames(geneLevelData))), featureData=AnnotatedDataFrame(data.frame(gc=yeastGC[sub]))) MDPlot(data,c(1,3))