ansTransform {CSSQ} | R Documentation |
This function quantifies each each region for a sample and performs background correction and normalization as instructed. Returns a vector of count information for the input regions.
ansTransform(countData, noNeg = TRUE, plotDataToPDF = FALSE)
countData |
A
|
noNeg |
A Logical parameter indicating how to deal with negative values. When TRUE (default), all negative values will be moved to 0 before transforming. When FALSE, the signs will be maintained while the transformation will be applied to the absolute value. (default: TRUE) |
plotDataToPDF |
A logical parameter indicating whether to make plots of the data distribution to a separate PDF file for each sample. When TRUE, a histogram will be plotted for the data before and after transformation. When FALSE, no plots will be made. (default: FALSE) |
A
RangedSummarizedExperiment-class
object
containing the anscombe transformed count data as the assay.
exRange <- GRanges(seqnames=c("chr1","chr2","chr3","chr4"), ranges=IRanges(start=c(1000,2000,3000,4000),end=c(1500,2500,3500,4500))) sampleInfo <- read.table(system.file("extdata", "sample_info.txt", package="CSSQ",mustWork = TRUE),sep="\t",header=TRUE) exCount <- matrix(c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),nrow=4,ncol=4) exData <- SummarizedExperiment(assays = list(countData=exCount), rowRanges=exRange,colData=sampleInfo) ansExData <- ansTransform(exData) assays(ansExData)$ansCount