In the other package vignettes, usage of ceRNAnetsim is explained in details. But in this vignette, some of commands which facitate to use of other vignettes.
data("TCGA_E9_A1N5_tumor")
data("TCGA_E9_A1N5_normal")
data("mirtarbasegene")
data("TCGA_E9_A1N5_mirnanormal")TCGA_E9_A1N5_mirnanormal %>%
  inner_join(mirtarbasegene, by= "miRNA") %>%
  inner_join(TCGA_E9_A1N5_normal, 
             by = c("Target"= "external_gene_name")) %>%
  select(Target, miRNA, total_read, gene_expression) %>%
  distinct() -> TCGA_E9_A1N5_mirnageneTCGA_E9_A1N5_tumor%>%
  inner_join(TCGA_E9_A1N5_normal, by= "external_gene_name")%>%
  select(patient = patient.x, 
         external_gene_name, 
         tumor_exp = gene_expression.x, 
         normal_exp = gene_expression.y)%>%
  distinct()%>%
  inner_join(TCGA_E9_A1N5_mirnagene, by = c("external_gene_name"= "Target"))%>%
  filter(tumor_exp != 0, normal_exp != 0)%>%
  mutate(FC= tumor_exp/normal_exp)%>%
  filter(external_gene_name== "HIST1H3H")
#> # A tibble: 13 x 8
#>    patient external_gene_n… tumor_exp normal_exp miRNA total_read
#>    <chr>   <chr>                <dbl>      <dbl> <chr>      <int>
#>  1 TCGA-E… HIST1H3H               825         27 hsa-…        193
#>  2 TCGA-E… HIST1H3H               825         27 hsa-…          7
#>  3 TCGA-E… HIST1H3H               825         27 hsa-…          3
#>  4 TCGA-E… HIST1H3H               825         27 hsa-…        450
#>  5 TCGA-E… HIST1H3H               825         27 hsa-…       1345
#>  6 TCGA-E… HIST1H3H               825         27 hsa-…         14
#>  7 TCGA-E… HIST1H3H               825         27 hsa-…          3
#>  8 TCGA-E… HIST1H3H               825         27 hsa-…         35
#>  9 TCGA-E… HIST1H3H               825         27 hsa-…        205
#> 10 TCGA-E… HIST1H3H               825         27 hsa-…        270
#> 11 TCGA-E… HIST1H3H               825         27 hsa-…         38
#> 12 TCGA-E… HIST1H3H               825         27 hsa-…          1
#> 13 TCGA-E… HIST1H3H               825         27 hsa-…          4
#> # … with 2 more variables: gene_expression <dbl>, FC <dbl>
#HIST1H3H: interacts with various miRNA in dataset, so we can say that HIST1H3H is non-isolated competing element and increases to 30-fold.TCGA_E9_A1N5_tumor%>%
  inner_join(TCGA_E9_A1N5_normal, by= "external_gene_name") %>%
  select(patient = patient.x, 
         external_gene_name, 
         tumor_exp = gene_expression.x, 
         normal_exp = gene_expression.y) %>%
  distinct() %>%
  inner_join(TCGA_E9_A1N5_mirnagene, 
             by = c("external_gene_name"= "Target")) %>%
  filter(tumor_exp != 0, normal_exp != 0) %>%
  mutate(FC= tumor_exp/normal_exp) %>%
  filter(external_gene_name == "ACTB")
#> # A tibble: 46 x 8
#>    patient external_gene_n… tumor_exp normal_exp miRNA total_read
#>    <chr>   <chr>                <dbl>      <dbl> <chr>      <int>
#>  1 TCGA-E… ACTB                191469     101917 hsa-…      67599
#>  2 TCGA-E… ACTB                191469     101917 hsa-…      47266
#>  3 TCGA-E… ACTB                191469     101917 hsa-…      14554
#>  4 TCGA-E… ACTB                191469     101917 hsa-…        191
#>  5 TCGA-E… ACTB                191469     101917 hsa-…          5
#>  6 TCGA-E… ACTB                191469     101917 hsa-…      12625
#>  7 TCGA-E… ACTB                191469     101917 hsa-…       5297
#>  8 TCGA-E… ACTB                191469     101917 hsa-…       2379
#>  9 TCGA-E… ACTB                191469     101917 hsa-…       8041
#> 10 TCGA-E… ACTB                191469     101917 hsa-…       1522
#> # … with 36 more rows, and 2 more variables: gene_expression <dbl>, FC <dbl>
#ACTB: interacts with various miRNA in dataset, so ACTB is not isolated node in network and increases to 1.87-fold.Firstly, clean dataset as individual gene has one expression value. And then filter genes which have expression values greater than 10.
TCGA_E9_A1N5_mirnagene %>%    
  group_by(Target) %>%        
  mutate(gene_expression= max(gene_expression)) %>%
  distinct() %>%
  ungroup() -> TCGA_E9_A1N5_mirnagene
TCGA_E9_A1N5_mirnagene%>%
  filter(gene_expression > 10)->TCGA_E9_A1N5_mirnageneWe can determine perturbation efficiency of an element on entire network as following:
TCGA_E9_A1N5_mirnagene %>% 
  priming_graph(competing_count = gene_expression, 
                miRNA_count = total_read)%>%
  calc_perturbation(node_name= "ACTB", cycle=10, how= 1.87,limit = 0.1)On the other hand, the perturbation eficiency of ATCB gene is higher, when this gene is regulated with 30-fold upregulation like in HIST1H3H.
sessionInfo()
#> R version 4.0.3 (2020-10-10)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 18.04.5 LTS
#> 
#> Matrix products: default
#> BLAS:   /home/biocbuild/bbs-3.12-bioc/R/lib/libRblas.so
#> LAPACK: /home/biocbuild/bbs-3.12-bioc/R/lib/libRlapack.so
#> 
#> locale:
#>  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
#>  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=C              
#>  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
#>  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
#>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] ceRNAnetsim_1.2.1 tidygraph_1.2.0   dplyr_1.0.2      
#> 
#> loaded via a namespace (and not attached):
#>  [1] Rcpp_1.0.5         pillar_1.4.7       compiler_4.0.3     viridis_0.5.1     
#>  [5] tools_4.0.3        digest_0.6.27      viridisLite_0.3.0  evaluate_0.14     
#>  [9] lifecycle_0.2.0    tibble_3.0.4       gtable_0.3.0       pkgconfig_2.0.3   
#> [13] rlang_0.4.9        igraph_1.2.6       cli_2.2.0          ggrepel_0.8.2     
#> [17] yaml_2.2.1         parallel_4.0.3     xfun_0.19          gridExtra_2.3     
#> [21] furrr_0.2.1        stringr_1.4.0      knitr_1.30         graphlayouts_0.7.1
#> [25] generics_0.1.0     vctrs_0.3.5        globals_0.14.0     grid_4.0.3        
#> [29] tidyselect_1.1.0   glue_1.4.2         listenv_0.8.0      R6_2.5.0          
#> [33] ggraph_2.0.4       fansi_0.4.1        parallelly_1.21.0  rmarkdown_2.5     
#> [37] polyclip_1.10-0    farver_2.0.3       tweenr_1.0.1       tidyr_1.1.2       
#> [41] purrr_0.3.4        ggplot2_3.3.2      magrittr_2.0.1     MASS_7.3-53       
#> [45] scales_1.1.1       codetools_0.2-18   ellipsis_0.3.1     htmltools_0.5.0   
#> [49] assertthat_0.2.1   ggforce_0.3.2      colorspace_2.0-0   future_1.20.1     
#> [53] utf8_1.1.4         stringi_1.5.3      munsell_0.5.0      crayon_1.3.4