Computing and plotting agreement among ranked
vectors of features with matchBox.

Anuj Gupta! and Luigi Marchionni'

IThe Sidney Kimmel Comprehensive Cancer Center,

Johns Hopkins University School of Medicine

Modified: September 5, 2012. Compiled: October 27, 2020

Contents
1 Introduction
2 Preparing the Data

(914

2.1 Datastructure.
2.2 Removing redundancyo

2.3 Merging thedata L L

Correspondance at the Top Curves
3.1 Computing CAT curves without a reference ranking
3.2 Computing CAT curves using a reference ranking

3.3 Computing Probability Intervals

Plotting the results

4.1 CAT curves based on equal ranks using a reference.
4.2 CAT curves based on equal statistics using a reference.
4.3 CAT curves based on equal ranks without using a reference.

4.4 CAT curves based on equal ranks, unspecified expected proportion of corre-
sponding features.

System Information

S =~ w W

co N 3 O

11
11

6 Literature Cited 15

1 Introduction

The matchBox package allows to compare ranked vectors (i.e. by differential expression) of
features (i.e. genes, or probe sets), using Correspondence-At-the-Top (CAT) curves. A CAT
curve displays the overlapping proportion between two ranked vectors of identifiers against
the number of considered features. This techiques was originally envisaged for comparing
differential gene expression results obtained from distinct microarray platforms in different
laboratories (see Irizarry et al, Nat Methods (2005) [1]), and further used to compare differ-
ential gene expression across distinct studies (see Ross et al, Prostate (2011) [2], and Benassi
et al., Cancer Discovery (2012) [3]).

The matchBox package contains several utilities enabling the following:

1. To filter redundant features in a data.frame (i.e. filtering multiple probe sets pointing
to the same gene);

2. To merge multiple data sets together based on a common set of identifiers;
3. To compute the CAT curves probability intervals;

4. To nicely plot the CAT curves.

Briefly, CAT curves enable to compare the correspondence of two vectors ordered by a
predefined ranking statistics at their top. This is accomplished through:

1. Ordering the two vectors according to a desired statistics (i.e. differential gene ex-
pression, significance, probability, ...);

2. Computing the proportion of top ranking elements in common between the two vector
for a given vector size (i.e. top 5 features);

3. Reiterating the two steps above increasing the vector size up to all common elements
(i.e. the top 6 identifiers, then the top 7, 8, 9, ..., all features);

4. Plotting the proportion of common elements against the increasing vector size.

Since CAT curves evaluate agreement at the top of ranked vectors they are particularly
useful in gene expression analysis, where only a small fraction of genes is expected to be
differentially expressed over the large total number of analyzed genes.

2 Preparing the Data

2.1 Data structure
Download and install the package matchBox from Bioconductor.

> if (!requireNamespace ("BiocManager", quietly=TRUE))
install.packages ("BiocManager")

> BiocManager: :install ("matchBox")

Load the library.

> require(matchBox)

Load the example data contained in the matchBox package.

> data(matchBoxExpression)

The object matchBoxExpression is a list of data.frames containing differential gene ex-
pression analysis resulst from three distinct experiments. These data.frames will be used
to retrieve the identifiers and the ranking statistics for computing overlapping proportions
displayed by the CAT curves. Below is shown the structure of matchBoxExpression:

> sapply(matchBoxExpression, class)

dataSetA dataSetB
"data.frame" "data.frame" "data.frame"

dataSetC

> sapply(matchBoxExpression, dim)

dataSetA dataSetB dataSetC

[1,] 1375 2358 1800
[2,] 9 9 9
> str(matchBoxExpression)
List of 3
$ dataSetA:'data.frame': 1375 obs. of 9 variables:
..$ SYMBOL : chr [1:1375] "KLK11" "CDKN1B" "LPAR1" "JAKMIP2" ..

..$ GENENAME : chr
..$ ENTREZID : chr

[1:1375]
[1:1375]

"kallikrein-related peptidase 11" "cyclin-dependent kinase inhibitor 1B
"11012" "1027" "1902" "9832" ...

..$ logFC : num [1:1375] -1.99 0.974 -1.027 1.376 1.376 ...
..$ AveExpr : num [1:1375] 10.1 10.6 10.7 11.4 11.4 ...
et : num [1:1375] -8.13 6.96 -6.73 6.42 6.42 ...

..$ P.Value : num
..$ adj.P.Val: num
.$ B : num

[1:1375]
[1:1375]
[1:1375]

$ dataSetB:'data.frame':

..$ SYMBOL : chr
..$ GENENAME : chr

[1:2358]
[1:2358]

..$ ENTREZID : chr [1:2358]

8.44e-11 6.02e-09 1.37e-08 4.32e-08 4.32e-08 ...
1.36e-07 4.45e-06 7.02e-06 1.67e-05 1.67e-05 ...
15.53 11.71 10.96 9.92 9.92 ...
2358 obs. of 9 variables:
"KLK11" "CDKN1B" "LPAR1" "JAKMIP2" ...
"kallikrein-related peptidase 11" "cyclin-dependent kinase inhibitor 1B
"11012" "1027" "1902" "9832" ...

..$ logFC : num [1:2358] 0.885 1.532 0.599 0.714 0.408 ...

..$ AveExpr : num [1:2358] 8.72 8.49 12.29 7.37 10.79 ...

.8t : num [1:2358] 13.5 12.08 12.07 9.76 9.36 ...

..$ P.Value : num [1:2358] 1.88e-19 2.18e-17 2.23e-17 8.62e-14 3.81e-13 ...
..$ adj.P.Val: num [1:2358] 6.96e-16 4.06e-14 4.06e-14 6.12e-11 2.31e-10 ...

..$ B : num [1:2358] 33.7 29.5 28.6 22.2 20.8 ...
$ dataSetC: 'data.frame': 1800 obs. of 9 variables:
..$ SYMBOL : chr [1:1800] "CD38" "Ciborf61" "PECI" "PSMC2" ...

..$ GENENAME : chr [1:1800] "CD38 molecule" "chromosome 15 open reading frame 61" '"peroxisomal D3,D
..$ ENTREZID : chr [1:1800] "952" "145853" "10455" "5701" ...

..$ logFC : num [1:1800] -0.699 0.24 0.366 0.405 0.442 ...

..$ AveExpr : num [1:1800] 12.2 10.8 11.5 12.1 12.6 ...

Lt : num [1:1800] -10.77 10.11 9.13 9.09 8.82 ...

..$ P.Value : num [1:1800] 1.14e-13 7.96e-13 1.59e-11 1.79e-11 4.11e-11

..$ adj.P.Val: num [1:1800] 2.29e-10 1.05e-09 1.22e-08 1.33e-08 2.28e-08 ...

..$ B : num [1:1800] 22.1 20.4 17.6 17.5 16.7 ...

2.2 Removing redundancy

In order to compute the CAT curves, and then compare the results obtained from the three
experiments, it is necessary to identify the set of non-redundant features in common among
the three data sets. The filterRedundant function enables to remove the redundant features
within each data.frame prior computing the subset of of common identifiers across the three
data sets. The argument idCol specifies the index or the name of the column containing
redundant identifiers, while the other arguments enable to control the method used to remove
the redundancy, as explained in the help for this function.

By default the filterRedundant function will keep the feature with the largest absolute
ranking statistics, as defined by the byCol argument. The method argument enables to con-
trol which feature to keep and which to discard. Currently available methods are: maxORmin,
geoMean, random, mean, and median (see help for filterRedundant).

In the example below we are using an lapply call to remove the redundant features from all
the three data.frames at once. To this end we will use gene symbols to identify the redundant
features and the t-statistics to select which feature to keep.

> sapply(matchBoxExpression, function(x) any(duplicated(x[, 1])))

dataSetA dataSetB dataSetC
TRUE TRUE TRUE

> allDataBySymbolAndT <- lapply(matchBoxExpression, filterRedundant,
1dCol="SYMBOL", byCol="t", absolute=TRUE)

Each data.frame now contains only unique features.

> sapply(allDataBySymbolAndT, dim)

dataSetA dataSetB dataSetC
[1,] 1075 2058 1500
[2,1] 9 9 9
> sapply(allDataBySymbolAndT, function(x) any(duplicated(x[, 11)))

dataSetA dataSetB dataSetC
FALSE FALSE FALSE
In the example below we are removing the redundant features using FEnrez Gene identifiers
to select the redundant features and the signed log2 fold-change to select which feature to

keep.
> sapply(matchBoxExpression, function(x) any(duplicated(x[, 1])))
dataSetA dataSetB dataSetC
TRUE TRUE TRUE

> allDataByEGIDAndLogFC <- lapply(matchBoxExpression, filterRedundant,
1dCol="ENTREZID", byCol="logFC", absolute=FALSE)

Each of the data.frame now contains only unique features.

> sapply(allDataByEGIDAndLogFC, dim)

dataSetA dataSetB dataSetC
[1,] 1075 2058 1500

[2,] 9 9 9
> sapply(allDataByEGIDAndLogFC, function(x) any(duplicated(x[, 1])))

dataSetA dataSetB dataSetC
FALSE FALSE FALSE
In the example below we are removing the redundant features using Enrez Gene identifiers
to select the redundant features, and the median adjusted P-value will be used to summarize

the redundant features.

> sapply(matchBoxExpression, function(x) any(duplicated(x[, 1])))

dataSetA dataSetB dataSetC
TRUE TRUE TRUE

> allDataByEGIDAndMedianFDR <- lapply(matchBoxExpression, filterRedundant,
1dCol="ENTREZID", byCol="adj.P.Val", absolute=FALSE,

method="median")

Each of the data.frame now contains only unique features.

> sapply(allDataByEGIDAndMedianFDR, dim)
dataSetA dataSetB dataSetC

[1,] 1075 2058 1500

[2,] 9 9 9

> sapply(allDataByEGIDAndMedianFDR, function(x) any(duplicated(x[, 11)))

dataSetA dataSetB dataSetC
FALSE FALSE FALSE

2.3 Merging the data

After removing the redundant features it is now possible to obtain the common unique
features across all the data sets using the function mergeData. This function finds the
intersection across all the data.frames, and extract the desired ranking statistics from each
one.

> data <- mergeData(allDataBySymbolAndT, idCol="SYMBOL", byCol="t")

The object data is a data.frame containing only the common set of features across all three
data.frames and the ranking statistics values of choice collected from each data.frame.

> sapply(allDataBySymbolAndT, dim)

dataSetA dataSetB dataSetC
[1,] 1075 2058 1500
[2,] 9 9 9

> dim(data)
[1] 506 4
> str(data)

'data.frame': 506 obs. of 4 variables:

$ commonID : chr "A1CF" "AARS2" "ABCB1" "ABCG8" ...

$ dataSetA.t: num 2.82 1.91 -2.27 2.26 -1.93 ...

$ dataSetB.t: num -3.61 -2.8 -3.07 3.07 -2.81 ...

$ dataSetC.t: num -3.454 -0.319 1.324 -1.797 -4.777 ...

3 Correspondance at the Top Curves

The computeCat R function enables to compute the overlapping proportions of features
among ranked vectors of identifiers. Such proportions will be subsequently used to produce
the CAT curves. When computing CAT curves a number of paramenters must be specificied
to control the behaviour of the computeCat function. In particular the following information
will determine how the vectors of will be ordered, and which vectors will be compaired, and
therefore must be carefully considered:

e Whether or not the ranking statistics used to order the features is signed (i.e. t-
statistics or F-statistics like);

e Whether the ranking statistics should be used to order the features by decreasing or
increasing order. For instance in the case of differential gene expression between group
A and B:

— Ordering by decreasing signed t-statistics will compute the CAT curve for the
genes up-regulated in group A compared to group B;

— Ordering by increasing signed t-statistics will compute the CAT curve for the
genes down-regulated in group A compared to group B;

— Ordering by decreasing absolute t-statistics will compute the CAT curve for
the differentiallly expressed genes between the two groups;

— Ordering by increasing absolute t-statistics will compute the CAT curve for
the genes that are not differentially expressed between the two groups;

e Whether to compare all possible vector combinations, or to select one of the vectors
as the reference;

e Whether the overlapping proportion should be computed using equal ranks or equal
statistics;
3.1 Computing CAT curves without a reference ranking

The example below shows how to compute CAT curves without selecting one of the vectors
as the reference, using decreasing ranks (i.e. up-regulated genes are at the top of the list):

> catHigh2LowNoRefByEqualRanks <- computeCat (data = data, idCol = 1,
method="equalRank", decreasing=TRUE)

The example below shows to compute CAT curves without selecting a vector as the refer-
ence, using increasing ranks (i.e. down-regulated genes are at the top of the list):

> catLow2HighNoRefByEqualRanks <- computeCat (data = data, idCol = 1,
method="equalRank", decreasing=FALSE)

3.2 Computing CAT curves using a reference ranking

The example below shows how to compute CAT curves selecting one of the vectors as the
reference, using decreasing ranks:

> catHigh2LowWithRefByEqualRanks <- computeCat(data = data, idCol = 1,
ref="dataSetA.t", method="equalRank", decreasing=TRUE)

The catHigh2LowWithRefByEqualRanks contains the computed overlaps, for decreasing
ranks (i.e. up-regulated genes are at the top of the list):

> str(catHigh2LowWithRefByEqualRanks)

List of 2
$ dataSetA.t.vs.dataSetB.t:List of 1
..$ cat: num [1:506] 0 0.5 0.333 0.5 0.6 ...
$ dataSetA.t.vs.dataSetC.t:List of 1
..$ cat: num [1:506] 0 0 0 0 0 0 0 00O ...

The example below shows to compute CAT curves selecting one of the data set as reference,
using decreasing t-statistics:

> catHigh2LowWithRefByEqualStats <- computeCat(data = data, idCol = 1, ref="dataSetA.t",
method="equalStat", decreasing=TRUE)

The catHigh2LowWithRefByEqualStats contains the computed overlaps: for decreasing t-
statistics (i.e. down-regulated genes):

> str(catHigh2LowWithRefByEqualStats)

List of 2
$ dataSetA.t.vs.dataSetB.t:List of 2
..$ cat: num [1:506] 0 0 0 0 0 O O
..$ deg: num [1:506] 2222222
$ dataSetA.t.vs.dataSetC.t:List of 2
..$ cat: num [1:506] 0 0 0 0 0 O
..$ deg: num [1:506] 2 222 2 2

N O
N O
N O

N O
N O
N O
N O

3.3 Computing Probability Intervals

The calcHypPI R function enables to compute the probability intervals for the CAT curves
obtained using equal ranks. Such intervals are based on the hypergeometric distribution
(see Irizarry et al [1] and Ross et al. [2]). Briefly, the calcHypPI uses ghyper quantile
function to compute the expected proportions of common features between two ordered
vectors of identifiers for a set of specified quantiles of the hypergeometric distribution.

To understand the way such proportions are obtained we can use the analogy of drawing a
certain number of balls from an urn containing black and white balls, where black represents
a failure (the vectors are in different order, and therefore the features do not overlap), and
white represent a success (the vectors are in the same order, and hence the features overlap).
According to this analogy the calcHypPI function uses the total number of features in
common between the vectors as the total number of balls in the urn, and the size of the
vector being compared as the number of balls drawn from the urn. Thus increasing vectors
sizes (1, 2, 3, and so on until all features are used) correspond to an increasing number of
balls drawn from the urn at each attempt.

By default the calcHypPI function assumes that the top 10% of the features of the two
vectors are similarly ordered. In our analogy, therefore, the number of white balls in the urn

corresponds to 10% of the total common features between the vectors. This expectation can
be modified by the user with the expectedProp argument. When expectedProp is set equal
to NULL the number of white balls in the urn (i.e. the top ranking features in the correct
order) corresponds to the number of balls that are drawn at each attempt (i.e. the increasing
size of top features from each vector that are being compared).

The example below shows how to compute probability intervals for CAT curves, using the
default 0.1 expected proportion of top ranked features:

> PIbyRefEqualRanks <- calcHypPI (data=data)

The PIbyRefEqualRanks contains the computed probability intervals for the CAT curves:

> head (PIbyRefEqualRanks)

0.999999 0.000001 0.999000 0.001000 0.990000 0.010000 0.950000 0.050000

[1,] 0.01960784 0 0.01960784 0 0.01960784 0 0.01960784 0

[2,] 0.03921569 0 0.03921569 0 0.01960784 0 0.01960784 0

[3,] 0.05882353 0 0.03921569 0 0.03921569 0 0.01960784 0

[4,] 0.07843137 0 0.05882353 0 0.03921569 0 0.03921569 0

[5,] 0.09803922 0 0.05882353 0 0.03921569 0 0.03921569 0

[6,] 0.09803922 0 0.07843137 0 0.05882353 0 0.03921569 0
0.500000

[1,] 0

[2,1 0

[3,]1 0

[4,1 0

[5,1 0

[6,1 0

The example below shows how to compute probability intervals for CAT curves, setting the
expected proportion of top ranked features to 0.3:

> PIbyRefEqualRanks03 <- calcHypPI(data=data, expectedProp=0.3)

The PIbyRefEqualRanks03 contains the computed probability intervals for the CAT curves:

> head (PIbyRefEqualRanks03)

0.999999 0.000001 0.999000 0.001000 0.990000 0.010000 0.950000

[1,] 0.006578947 0 0.006578947 0 0.006578947 0 0.006578947
[2,] 0.013157895 0 0.013157895 0 0.013157895 0 0.013157895
[3,] 0.019736842 0 0.019736842 0 0.019736842 0 0.013157895
[4,] 0.026315789 0 0.026315789 0 0.019736842 0 0.019736842
[5,] 0.032894737 0 0.032894737 0 0.026315789 0 0.019736842
[6,] 0.039473684 0 0.032894737 0 0.032894737 0 0.026315789
0.050000 0.500000
[1,] 0 0.000000000

[2,] 0 0.006578947
[3,1 0 0.006578947
[4,1] 0 0.006578947
[5,1] 0 0.006578947
[6,1 0 0.013157895

The example below shows how to compute probability intervals for CAT curves, using the
default 0.1 expected proportion of top ranked features, for a set of specific hypergeometric
distribution quantiles:

> PIbyRefEqualRanksQuant <- calcHypPI(data=data, prob=c(0.75, 0.9, 0.95, 0.99))

The PIbyRefEqualRanksQuant contains the computed probability intervals for the CAT
curves:

> head (PIbyRefEqualRanks@uant)

0.75 0.25 0.90 0.10 0.95 0.05 0.99 0.01 0.50
[1,] 0.00000000 0 0.01960784 0 0.01960784 0 0.01960784 0 0
[2,] 0.00000000 0 0.01960784 0 0.01960784 0 0.01960784 0 0
[3,] 0.01960784 0 0.01960784 0 0.01960784 0 0.03921569 0 0
[4,] 0.01960784 0 0.01960784 0 0.03921569 0 0.03921569 0 0
[5,] 0.01960784 0 0.01960784 0 0.03921569 0 0.03921569 0 0
[6,] 0.01960784 0 0.03921569 0 0.03921569 0 0.05882353 0 0

The example below shows how to compute probability intervals for CAT curves, without
specifying a proportion of expected top ranked features:

> PIbyRefEqualRanksNoExpectedProp <- calcHypPI(data=data, expectedProp=NULL)

The PIbyRefEqualRanksNoExpectedProp contains the computed probability intervals for
the CAT curves:

> head (PIbyRefEqualRanksNoExpectedProp)

0.999999 0.000001 0.999000 0.001000 0.990000 0.010000 0.950000 0.050000

[1,] 1.0000000 0 1.0000000 0 0.0000000 0 0.0000000 0

[2,] 1.0000000 0 0.5000000 0 0.0000000 0 0.0000000 0

[3,] 0.6666667 0 0.3333333 0 0.3333333 0 0.0000000 0

[4,] 0.5000000 0 0.2500000 0 0.2500000 0 0.0000000 0

[5,] 0.6000000 0 0.2000000 0 0.2000000 0 0.0000000 0

[6,] 0.5000000 0 0.3333333 0 0.1666667 0 0.1666667 0
0.500000

[1,] 0

[2,1 0

[3,1 0

[4,1 0

[5,1 0

[6,1 0

10

4 Plotting the results

The plotCat function can be used to plot the CAT curves along with probability intervals,
as derived using the calcHypPI function (see Figures 1 and 2, for CAT curves computed
using a reference ranking, Figure 3 for examples in which the reference was not used, and
Figure 4 for CAT curves for which the proportion of expected top ranked features was not
specified).

4.1 CAT curves based on equal ranks using a reference.

The example below shows how to plot CAT curves based on equal ranks, along with prob-
ability intervals based on a fixed expected proportion of similarly ranked features of 30%,
using the data set A as the reference.

> plotCat(catData = catHigh2LowWithRefByEqualRanks,
preComputedPI=PIbyRefEqualRanks03,
cex=1.2, 1lwd=1.2, cexPts=1.2, spacePts=30, col=c("red", "blue"),
main="CAT curves for decreasing t-statistics",
where="center", legend=TRUE, legCex=1, ncol=1,
plotLayout = layout (matrix(1:2, ncol = 2), widths = c(2,1)))

[1] "Recycling colors"

CAT curves for decreasing t-statistics

o

S -

@ |

o
c
.8
€ o |
o o
8 Cat plot
né —A— dataSetA.t.vs.dataSetB.t
o <« -B- dataSetA.t.vs.dataSetC.t
€ o
£
)
¢

N

(=]

o |

o

T T T T T T
0 100 200 300 400 500
List Size

Figure 1: CAT-plot for curves based on equal ranks, using data set A as the reference. Lighter
to darker grey shades represent probability intervals for distinct quantiles of the hypergeometric
distribution (0.999999, 0.999, 0.99, 0.95), assuming 30% of the features to be similarly ranked.

11

4.2 CAT curves based on equal statistics using a reference.

The example below shows how to plot CAT curves based on equal statistics, using the data
set A as the reference. When equal ranks are used each CAT curve has its own probability
intervals, which therefore cannot be shown on the plot.

> plotCat(catData = catHigh2LowWithRefByEqualStats,
cex=1.2, 1lwd=1.2, cexPts=1.2, spacePts=30, col=c("red", "blue"),
main="CAT curves for decreasing t-statistics",
where="center", legend=TRUE, legCex=1, ncol=1,
plotLayout = layout (matrix(1:2, ncol = 2), widths = c(2,1)))

[1] "Recycling colors"

CAT curves for decreasing t-statistics

o

S -

@ |

o
<
S
£ o |
S o
8 Cat plot
% —A— dataSetA.t.vs.dataSetB.t
o < -B- dataSetA.t.vs.dataSetC.t
€ o
£
)
¢

N

(=]

e

o

T T T T T T
0 100 200 300 400 500
List Size

Figure 2: CAT-plot for curves based on equal t-statistics, using data set A as the reference.

12

4.3 CAT curves based on equal ranks without using a reference.

The example below shows how to plot CAT curves based on equal ranks, along with prob-
ability intervals based on a fixed expected proportion of similarly ranked features of 10%,
without using any data set as the reference (all pair combinations are shown).

> plotCat(catData = catHigh2LowNoRefByEqualRanks,
preComputedPI=PIbyRefEqualRanks,
cex=1.2, lwd=1.2, cexPts=1.2, spacePts=30,
main="CAT curves for decreasing t-statistics',
where="center", legend=TRUE, legCex=1, ncol=1,
plotLayout = layout (matrix(1:2, ncol = 2), widths = c(2,1)))

CAT curves for decreasing t-statistics

o

-

© |

o
c
2
£ o |
§-° Cat plot
o —A— dataSetA.t.vs.dataSetB.t
g - B dataSetA.t.vs.dataSetC.t
= g = C- dataSetB.t.vs.dataSetC.t
£
)
@]

N

(=]

e |

o

T T T T T T
0 100 200 300 400 500
List Size

Figure 3: CAT-plot for curves based on equal ranks for all possible combinations of vectors. Lighter
to darker grey shades represent probability intervals for the distinct quantiles of the hypergeometric
distribution (0.999999, 0.999, 0.99, 0.95), assuming 10% of the features to be similarly ranked.

13

4.4 CAT curves based on equal ranks, unspecified expected pro-
portion of corresponding features.

The example below shows how to plot CAT curves based on equal ranks, along with prob-
ability intervals based on an unspecified expected proportion of similarly ranked features,
without using any data set as the reference (all pair combinations are shown).

> plotCat(catData = catHigh2LowNoRefByEqualRanks,
preComputedPI=PIbyRefEqualRanksNoExpectedProp,
cex=1.2, lwd=1.2, cexPts=1.2, spacePts=30,
main="CAT curves for decreasing t-statistics',
where="center", legend=TRUE, legCex=1, ncol=1,
plotLayout = layout (matrix(1:2, ncol = 2), widths = c(2,1)))

CAT curves for decreasing t-statistics

o |

—

@ |

o
c
2
€ o |
gko Cat plot
a —A— dataSetA.t.vs.dataSetB.t
IS - B dataSetA.t.vs.dataSetC.t
1= g - C- dataSetB.t.vs.dataSetC.t
£
)
¢

N

o

o |

o

T T T T T T
0 100 200 300 400 500
List Size

Figure 4: CAT-plot for curves based on equal ranks for all possible combinations of vectors. Lighter
to darker grey shades represent probability intervals for distinct quantiles of the hypergeometric
distribution (0.999999, 0.999, 0.99, 0.95). No expected proportion of similarly ranked features is
specified.

14

5

System Information

Session information:

6

> toLatex(sessionInfo())

e R version 4.0.3 (2020-10-10), x86_64-w64-mingw32

e [ocale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,
LC_MONETARY=English_United States.1252, LC_NUMERIC=C,
LC_TIME=English_United States.1252

e Running under: Windows Server 2012 R2 x64 (build 9600)

e Matrix products: default

e Base packages: base, datasets, grDevices, graphics, methods, stats, utils
e Other packages: matchBox 1.32.0

e Loaded via a namespace (and not attached): compiler 4.0.3, tools 4.0.3

Literature Cited

References

1]

Rafael A Irizarry, Daniel Warren, Forrest Spencer, Irene F Kim, Shyam Biswal, Bryan C
Frank, Edward Gabrielson, Joe G N Garcia, Joel Geoghegan, Gregory Germino, Con-
stance Griffin, Sara C Hilmer, Eric Hoffman, Anne E Jedlicka, Ernest Kawasaki, Francisco
Martinez-Murillo, Laura Morsberger, Hannah Lee, David Petersen, John Quackenbush,
Alan Scott, Michael Wilson, Yanqin Yang, Shui Qing Ye, and Wayne Yu. Multiple-
laboratory comparison of microarray platforms. Nat Methods, 2(5):345-350, May 2005.

Ashley E Ross, Luigi Marchionni, Milena Vuica-Ross, Chris Cheadle, Jinshui Fan,
David M Berman, and Edward M Schaeffer. Gene expression pathways of high grade
localized prostate cancer. The Prostate, February 2011.

B Benassi, R Flavin, L Marchionni, S Zanata, Y Pan, D Chowdhury, M Marani, S Strano,
P Muti, and G Blandino. c-Myc is activated via USP2a-mediated modulation of microR-
NAs in prostate cancer. Cancer Discovery, 2012.

15

	 Introduction
	 Preparing the Data
	Data structure
	Removing redundancy
	Merging the data

	 Correspondance at the Top Curves
	Computing CAT curves without a reference ranking
	Computing CAT curves using a reference ranking
	Computing Probability Intervals

	 Plotting the results
	CAT curves based on equal ranks using a reference.
	CAT curves based on equal statistics using a reference.
	CAT curves based on equal ranks without using a reference.
	CAT curves based on equal ranks, unspecified expected proportion of corresponding features.

	 System Information
	 Literature Cited

