Package 'dpeak'

October 17, 2020

Type Package

Title dPeak (Deconvolution of Peaks in ChIP-seq Analysis)

Version 1.0.0

Depends R (>= 4.0.0), methods, stats, utils, graphics, Rcpp

Imports MASS, IRanges, BSgenome, grDevices, parallel

Suggests BSgenome.Ecoli.NCBI.20080805

LinkingTo Rcpp

SystemRequirements GNU make, meme, fimo

Date 2020-02-25

Author Dongjun Chung, Carter Allen

Maintainer Dongjun Chung <dongjun.chung@gmail.com>

Description dPeak is a statistical framework for the high resolution identification of protein-DNA interaction sites using PET and SET ChIP-Seq and ChIP-exo data. It provides computationally efficient and user friendly interface to process ChIP-seq and ChIP-exo data, implement exploratory analysis, fit dPeak model, and export list of predicted binding sites for downstream analysis.

License GPL (>= 2)

LazyData FALSE

NeedsCompilation yes

biocViews ChIPSeq, Genetics, Sequencing, Software, Transcription

BugReports https://github.com/dongjunchung/dpeak/issues

git_url https://git.bioconductor.org/packages/dpeak

git_branch RELEASE_3_11

git_last_commit 698813c

git_last_commit_date 2020-04-27

Date/Publication 2020-10-16

R topics documented:

dpeak-package .		•										•			•											•	•	•					2
DpeakData-class																												•					3
dpeakFit	•	•	•	•	•	•	•	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4

dpeak-package

DpeakFit-class	6
dpeakMotif	8
DpeakMotif-class	9
dpeakRead	10
exampleData	11
exportPeakList	11
exportPlot	12
printEmpty	13
	15

Index

dpeak-package

dPeak (Deconvolution of Peaks in ChIP-seq Analysis)

Description

This package provides functions for fitting dPeak, a statistical framework to deconvolve ChIP-seq peaks.

Details

Package:	dpeak
Type:	Package
Version:	2.0.1
Date:	2014-09-15
License:	GPL (>= 2)
LazyLoad:	yes

This package contains two main classes, DpeakData and DpeakFit, which represent dPeak data and deconvolution model fit, respectively. This package contains two main methods, dpeakRead and dpeakFit. dpeakRead method imports peak list and aligned read file and construct DpeakData class object. dpeakFit method fits deconvolution model using DpeakData class object and constructs DpeakFit class object. DpeakFit class object can be exported as text files and can be used for the downstream analysis.

Author(s)

Dongjun Chung

Maintainer: Dongjun Chung <chungdon@stat.wisc.edu>

See Also

dpeakRead, dpeakFit, exportPeakList, DpeakData, DpeakFit.

Examples

```
## Not run:
# work flow for PET data
dataPET <- dpeakRead( peakfile="examplePeak.txt", readfile="examplePETRead.txt",
    fileFormat="eland_result", PET=TRUE )
```

2

DpeakData-class

```
dataPET
exportPlot( dataPET, filename="exPETplot.pdf" )
fitPET <- dpeakFit( dataPET )</pre>
fitPET
exportPlot( fitPET, filename="exPETResult.pdf", plotType="fit" )
exportPlot( fitPET, filename="exPETGOF.pdf", plotType="GOF" )
# work flow for SET data
dataSET <- dpeakRead( peakfile="examplePeak.txt", readfile="exampleSETRead.txt",</pre>
    fileFormat="eland_result", PET=FALSE, fragLen=150 )
dataSET
exportPlot( dataSET, filename="exSETplot_combined.pdf", strand=FALSE )
exportPlot( dataSET, filename="exSETplot_strand_1.pdf",
    strand=TRUE, extension=1, smoothing=TRUE )
exportPlot( dataSET, filename="exSETplot_strand_150.pdf",
    strand=TRUE, extension=150, smoothing=FALSE )
fitSET <- dpeakFit( dataSET )</pre>
fitSET
exportPlot( fitSET, filename="exSETResult_combined.pdf",
plotType="fit", strand=FALSE )
exportPlot( fitSET, filename="exSETResult_strand_1.pdf",
    plotType="fit", strand=TRUE, extension=1, smoothing=TRUE )
exportPlot( fitSET, filename="exSETResult_strand_150.pdf",
    plotType="fit", strand=TRUE, extension=150, smoothing=FALSE )
exportPlot( fitSET, filename="exSETGOF.pdf", plotType="GOF" )
# (common for both PET and SET data)
exportPeakList( fitSET, type="txt", filename="result.txt" )
exportPeakList( fitSET, type="bed", filename="result.bed" )
exportPeakList( fitSET, type="gff", filename="result.gff" )
## End(Not run)
```

DpeakData-class Class "DpeakData"

Description

This class represents dPeak data.

Objects from the Class

Objects can be created by calls of the form new("DpeakData",...).

Slots

fragSet: Object of class "list", representing list of fragments for each peak.

PET: Object of class "logical", representing whether it is paired-end tag (PET) or single-end tag (SET) data.

fragLenTable: Object of class "table", representing distribution of fragment length when PET=TRUE.

aveFragLen: Object of class "numeric", representing average fragment length when PET=FALSE.

Fratio: Object of class "numeric", representing proportion of forward reads when PET=FALSE.

stackedFragment: Object of class "list", representing number of fragments aligning to each
genomic position.

peakChr: Object of class "character", representing a vector of chromosome of each peak.

peakStart: Object of class "numeric", representing a vector of start position of each peak.

peakEnd: Object of class "numeric", representing a vector of end position of each peak.

emptyList: Object of class "character", representing a vector of peak regions without reads.

Methods

dpeakFit signature(object = "DpeakData"): fit the deconvolution model.

exportPlot signature(x = "BinData",y = "missing",filename=NULL,strand=FALSE,extension=1,smoothing=F
): provide exploratory plots of fragments or reads in each peak region. Plots are exported to a
PDF file (its file name is specified in filename). Options strand, extension, and smoothing
are supported only for SET data. If strand=TRUE, reads are plotted in a strand-specific manner, where reads are extended to extension from its 5' end. If smoothing=TRUE, a smoothed
plot (using the smoothing spline) is provided. If strand=FALSE, strand information is ignored.

printEmpty signature(x = "DpeakData"): provide the data frame of peak regions without reads.

show signature(object = "DpeakData"): provide brief summary of the object.

Author(s)

Dongjun Chung

See Also

dpeakRead, dpeakFit.

Examples

data(exampleData) exampleData

dpeakFit

Fit dPeak model

Description

Fit a deconvolution model.

Usage

```
dpeakFit( object, ... )
## S4 method for signature 'DpeakData'
dpeakFit( object,
objectMotif=NULL, estDeltaSigma="common", init="localmax",
nTop=100, lbDelta = 25, lbSigma = 25,
    psize=21, maxComp=5, pConst=0.2, nCore=1, verbose=FALSE, iterInit=50, iterMain=25, epsilon=1e-6
```

dpeakFit

Arguments

object	Object of class DpeakData, dPeak data imported using method dpeakRead.
objectMotif	Object of class DpeakMotif, motif data generated using method dpeakMotif. If incorporated, locations of binding events are initialized using motif information.
estDeltaSigma	Approach to estimate delta and sigma parameters for SET data. Possible values are either "common" (estimate single delta and sigma parameters that are used for all peaks) or "separate" (estimate delta and sigma parameters for each peak separately). Default is "common". Not relevant when PET data is used.
init	Approach to initialize locations of binding events. Possible values are "localmax" and "uniform". Default is "localmax".
nTop	Number of candidate regions used to estimate common delta and sigma esti- mates. Relevant only when estDeltaSigma="common".
lbDelta	Lower bound for delta parameter.
lbSigma	Lower bound for sigma parameter.
psize	Approximate size of the binding protein of interest.
maxComp	Maximum possible number of binding events in each peak region.
pConst	Value to determine the plateau in the BIC curve. Should be a value larger than zero and smaller than one.
nCore	Number of CPUs to be used when parallel computing is utilized.
verbose	Use verbose mode? Possible values are either TRUE (use) or FALSE (do not use).
iterInit	Iteration number for initial estimation of binding sites.
iterMain	Iteration number for main estimation of binding sites.
epsilon	Criterion to stop iteration for binding site estimation.
	Other parameters to be passed through to generic dpeakFit.

Details

Parallel computing can be utilized for faster computation if parallel package is installed. Users can change the number of CPUs to be used by changing the argument nCore.

Value

Construct DpeakFit class object.

Author(s)

Dongjun Chung

See Also

dpeakRead, DpeakFit.

```
data(exampleData)
exampleFit <- dpeakFit(exampleData, maxComp = 5)</pre>
```

DpeakFit-class Class "DpeakFit"

Description

This class represents deconvolution model fit.

Objects from the Class

Objects can be created by calls of the form new("DpeakFit",...).

Slots

- fits: Object of class "list", representing list of deconvolution fits of all possible models for each peak.
- optFit: Object of class "list", representing list of fits of the optimal model for each peak.
- optMu: Object of class "list", representing list of binding sites of the optimal model for each peak.
- optPi: Object of class "list", representing list of relative strengths of the optimal model for each peak.
- optPi0: Object of class "list", representing list of background strengths of the optimal model for each peak.
- optGamma: Object of class "list", representing list of background proportion of the optimal model for each peak.
- optDelta: Object of class "list", representing list of read shift of the optimal model for each peak when PET=FALSE.
- optSigma: Object of class "list", representing list of read standard deviation of the optimal model for each peak when PET=FALSE.
- bicVec: Object of class "list", representing list of BIC values for each peak.
- aicVec: Object of class "list", representing list of AIC values for each peak.
- fragSet: Object of class "list", representing list of fragments for each peak.
- PET: Object of class "logical", representing whether it is paired-end tag (PET) or single-end tag (SET) data.
- fragLenTable: Object of class "table", representing distribution of fragment length when PET=TRUE.
- aveFragLen: Object of class "numeric", representing average fragment length when PET=FALSE.
- Fratio: Object of class "numeric", representing proportion of forward reads when PET=FALSE.
- stackedFragment: Object of class "list", representing number of fragments aligning to each
 genomic position.
- peakChr: Object of class "character", representing a vector of chromosome of each peak.
- peakStart: Object of class "numeric", representing a vector of start position of each peak.
- peakEnd: Object of class "numeric", representing a vector of end position of each peak.
- estDeltaSigma: Object of class "character", representing the approach to estimate delta and sigma parameters for SET data.
- nTop: Object of class "numeric", representing the number of candidate regions used to estimate common delta and sigma estimates.

DpeakFit-class

lbDelta: Object of class "numeric", representing a lower bound for the delta parameter.

lbSigma: Object of class "numeric", representing a lower bound for the sigma parameter.

psize: Object of class "numeric", representing approximate size of the binding protein of interest.

- maxComp: Object of class "numeric", representing maximum possible number of binding events in each peak region.
- pConst: Object of class "numeric", representing value to determine the plateau in the BIC curve.
- iterInit: Object of class "numeric", representing iteration number for initial estimation of binding sites.
- iterMain: Object of class "numeric", representing iteration number for main estimation of binding sites.
- epsilon: Object of class "numeric", representing criterion to stop iteration for binding site estimation.

Methods

exportPlot signature(x = "DpeakFit", y = "missing", filename=NULL, plotType="fit", strand=FALSE, extensid draw plots of deconvolution results if plotType="fit", goodness of fit (GOF) plots if plotType="GOF", or plots of Bayesian information criterion (BIC) and Akaike information criterion (AIC) curves if plotType="BIC". Plots are exported to a PDF file (its file name is specified in filename). In deconvolution result plots, binding sites with strength larger than threshold are drawn in dark blue and other binding sites are drawn in light blue. When plotType="fit", options strand, extension, and smoothing are supported for SET data. If strand=TRUE, reads are plotted in a strand-specific manner, where reads are extended to extension from its 5' end. If smoothing=TRUE, a smoothed plot (using the smoothing spline) is provided. If strand=FALSE, strand information is ignored. For the GOF plots, nsimul fragments are simulated from the fitted model (seed indicates random seed; nCore CPUs are used for parallel computing).

show signature(object = "DpeakFit"): provide brief summary of the object.

Author(s)

Dongjun Chung

See Also

dpeakFit, exportPeakList.

```
data(exampleData)
exampleFit <- dpeakFit(exampleData, maxComp = 5)</pre>
```

dpeakMotif

Description

Implement de novo motif analysis based on the peak list, using MEME and FIMO.

Usage

```
dpeakMotif( peakfile=NULL, refGenome=NULL, flanking=100,
memeArgument="-dna -mod zoops -nmotifs 1 -minw 10 -maxw 20 -revcomp -maxsize 1000000000",
fimoArgument="-max-stored-scores 100000000 -motif-pseudo 0.000001",
    tempDir=NULL )
```

Arguments

peakfile	File name of the peak list.
refGenome	BSgenome class object to extract sequences.
flanking	Flanking length.
memeArgument	Parameters for MEME.
fimoArgument	Parameters for FIMO.
tempDir	Directory of temporary files for sequence extraction, MEME, and FIMO.

Details

The first three columns of the peak list file (specifed as peakfile) are assumed to be chromosome, start and end positions of each peak region. There should be no header in the peak list file.

refGenome is a BSgenome class object and assumed to already be available in the R environment.

Value

Construct DpeakMotif class object.

Author(s)

Dongjun Chung

See Also

dpeakFit, DpeakMotif.

```
## Not run:
library(BSgenome.Ecoli.NCBI.20080805)
resultMotif <- dpeakMotif( peakfile="examplePeak.txt", refGenome=Ecoli )</pre>
```

DpeakMotif-class Class "DpeakMotif"

Description

This class represents dPeak data.

Objects from the Class

Objects can be created by calls of the form new("DpeakMotif",...).

Slots

motif: Object of class "character", representing a vector of motifs.

locMotif: Object of class "list", representing list of locations of motifs in candidate regions.
peakChr: Object of class "character", representing a vector of chromosome of each peak.
peakStart: Object of class "numeric", representing a vector of start position of each peak.

peakEnd: Object of class "numeric", representing a vector of end position of each peak.

Methods

dpeakFit signature(object = "DpeakMotif"): fit the deconvolution model.
show signature(object = "DpeakMotif"): provide brief summary of the object.

Author(s)

Dongjun Chung

See Also

dpeakMotif, dpeakFit.

```
## Not run:
library(BSgenome.Ecoli.NCBI.20080805)
resultMotif <- dpeakMotif( peakfile="vignettes/examplePeak.txt", refGenome=Ecoli )
## End(Not run)
```

dpeakRead

Description

Import and process peak list and aligned read files.

Usage

```
dpeakRead( peakfile=NULL, readfile=NULL, fileFormat="eland_result",
    PET=FALSE, fragLen=200, parallel=FALSE, nCore=1, tempDir=NULL, perl = "perl" )
```

Arguments

peakfile	File name of the peak list.
readfile	Name of the aligned read file.
fileFormat	Format of the aligned read file to be processed. For single-end tag (SET) ChIP- seq data, dpeakRead permits the following aligned read file formats: "eland_result" (Eland result), "eland_extended" (Eland extended), "eland_export" (Eland export), "bowtie" (default Bowtie), "sam" (SAM), and "bed" (BED). For paired- end tag (PET) ChIP-seq data, dpeakRead permits only "eland_result" (Eland result format).
PET	Is the aligned read file paired-end tag (PET)? Possible values are either TRUE (PET) or FALSE (SET). Default is FALSE (SET).
fragLen	Average fragment length. Default is 200. Not relevant when PET=TRUE.
parallel	Utilize multiple CPUs for parallel computing using "parallel" package? Possible values are TRUE (use "parallel") or FALSE (not use "parallel"). Default is FALSE (not use "parallel").
nCore	Number of CPUs when parallel computing is utilized.
tempDir	Directory to store temporary files. If tempDir=NULL, dpeakRead() will use the temporary directory used by R.
perl	Name of the perl executable to be called. Default is "perl".

Details

The first three columns of the peak list file (specifed as peakfile) are assumed to be chromosome, start and end positions of each peak region. There should be no header in the peak list file.

When the data contains multiple chromosomes, parallel computing can be utilized for faster preprocessing if parallel=TRUE and parallel package is installed. nCore determines number of CPUs used for parallel computing.

Value

Construct DpeakData class object.

Author(s)

Dongjun Chung

exampleData

See Also

dpeakFit, DpeakData.

Examples

```
# PET data
# dataPET <- dpeakRead( peakfile="examplePeak.txt", readfile="examplePETRead.txt",
    fileFormat="eland_result", PET=TRUE )
# SET data
# dataSET <- dpeakRead( peakfile="examplePeak.txt", readfile="exampleSETRead.txt",
    fileFormat="eland_result", PET=FALSE, fragLen=150 )
data(exampleData)</pre>
```

exampleData

E. coli ChIP-seq Dataset

Description

This is an example E. coli ChIP-seq dataset.

Usage

data(exampleData)

Format

DpeakData class object containing aligned reads for a peak.

Examples

data(exampleData) exampleData

exportPeakList Export deconvolution results to text files

Description

Export deconvolution results to text files in TXT, BED, or GFF file formats.

Usage

```
exportPeakList(object, ...)
## S4 method for signature 'DpeakFit'
exportPeakList( object, type=NA, filename=NA, ... )
```

Arguments

object	Object of class DpeakFit, deconvolution model fits obtained using the method dpeakFit.
type	Format of the exported file. Possible values are "txt", "bed", and "gff". See Details.
filename	Name of the exported file.
	Other parameters to be passed through to generic exportPeakList.

Details

Columns of TXT file format (type="txt") include chromosome, binding site, relative binding strength in each peak region, and the peak region that each binding event belongs to. type="bed" and type="gff" export deconvolution results in standard BED and GFF file formats, respectively, where score is the relative binding strength multiplied by 1000. The feature of GFF file and the name of BED file are the peak region that each binding event belongs to.

Value

Export deconvolution results to text files

Author(s)

Dongjun Chung

See Also

dpeakFit, DpeakFit.

Examples

```
data(exampleData)
fit <- dpeakFit(exampleData)
exportPeakList( fit, type="txt", filename="result.txt" )
exportPeakList( fit, type="bed", filename="result.bed" )
exportPeakList( fit, type="gff", filename="result.gff" )</pre>
```

exportPlot

Export plots to pdf files.

Description

Exports the plots of estimated binding sites (plotType="fit") or the goodness of fit (GOF) plots (plotType="GOF") to a PDF file.

Usage

exportPlot(x, y, ...)

printEmpty

Arguments

х	Object of class DpeakFit,
У	Name of file to export to.
	Other parameters to be passed through to generic exportPlot.

Details

Exports the plots of estimated binding sites (plotType="fit") or the goodness of fit (GOF) plots (plotType="GOF") to a PDF file. Its file name needs to be specified in the filename argument. In both of these plots, estimated binding sites or simulated fragments are superimposed on the plots of reads (or fragments) aligned to each position. For SET data, if plotType="fit" and strand=TRUE, reads will be plotted in a strand-specific manner, where each read is extended to extension from its 5' end. If smoothing=TRUE, a smoothed plot (using the smoothing spline) is provided. Unsmoothed plot is provided by default.

Value

Export plots to files

Author(s)

Dongjun Chung

Examples

```
data(exampleData)
exampleFit <- dpeakFit( exampleData, maxComp=5)
exportPlot( exampleFit, filename="exampleResult_combined.pdf" )</pre>
```

printEmpty

Return the peak regions without any reads.

Description

Return the data frame of the peak regions without any reads.

Usage

```
printEmpty( object, ... )
## S4 method for signature 'DpeakData'
printEmpty( object, ... )
```

Arguments

object	Object of class dpeakData, dPeak data obtained using the method dpeakRead.
	Other parameters to be passed through to generic printEmpty.

Value

Return the peak regions without any reads

printEmpty

Author(s)

Dongjun Chung

See Also

dpeakRead, DpeakData.

Examples

data(exampleData) printEmpty(exampleData)

Index

```
* classes
    DpeakData-class, 3
    DpeakFit-class, 6
    DpeakMotif-class, 9
* datasets
    exampleData, 11
* methods
    dpeakFit,4
    dpeakMotif, 8
    dpeakRead, 10
    exportPeakList, 11
    exportPlot, 12
    printEmpty, 13
* models
    dpeakFit,4
    dpeakMotif, 8
    dpeakRead, 10
    exportPeakList, 11
    exportPlot, 12
    printEmpty, 13
* package
    dpeak-package, 2
dpeak (dpeak-package), 2
dpeak-package, 2
DpeakData, 2, 11, 14
DpeakData-class, 3
DpeakFit, 2, 5, 12
dpeakFit, 2, 4, 4, 7–9, 11, 12
dpeakFit,DpeakData-method(dpeakFit),4
DpeakFit-class, 6
DpeakMotif, 8
dpeakMotif, 8, 9
DpeakMotif-class, 9
dpeakRead, 2, 4, 5, 10, 14
exampleData, 11
exportPeakList, 2, 7, 11
exportPeakList,DpeakFit-method
        (exportPeakList), 11
exportPlot, 12
exportPlot,DpeakData,missing-method
        (DpeakData-class), 3
```

exportPlot,DpeakFit,missing-method (DpeakFit-class), 6 printEmpty, 13 printEmpty,DpeakData-method (printEmpty), 13 show,DpeakData-method (DpeakData-class), 3 show,DpeakFit-method (DpeakFit-class), 6 show,DpeakMotif-method (DpeakMotif-class), 9