signalGrouping {adductomicsR}R Documentation

Signal grouping

Description

Euclidean distances between m/z signals are hierarchically clustering using the average method and the composite spectrum groups determined by an absolute error cutoff

Usage

signalGrouping(spectrum.df = NULL, mzError = 0.8, minPeaks = 5)

Arguments

spectrum.df

a dataframe or matrix with two or more columns: 1. Mass/ Mass-to-charge ratio 2. Intensity

mzError

interpeak absolute m/z error for signal grouping (Default = 0.001)

minPeaks

numeric minimum number of peaks to integrate

Value

dataframe of m/z grouped signals, the m/z values of the input dataframe/ matrix peak groups are averaged and the signal intensities summed.


[Package adductomicsR version 1.4.0 Index]