Protein Microarray Data Analysis using the PAA Package

Michael Turewicz

October 13, 2014

Contents

1 Introduction 2
1.1 General information 2
1.2 Installation 2
2 Loading PAA and importing data 3
3 Pre-processing 4
4 Differential analysis 7
5 Feature pre-selection 11
6 Feature selection 12
7 Results inspection 14

1 Introduction

1.1 General information

Protein Array Analyzer (PAA) is a package for protein microarray data analysis (esp., ProtoArray data). It imports single color (protein) microarray data that has been saved in 'gpr' file format. After pre- processing (background correction, batch filtering, normalization) univariate feature pre-selection is performed (e.g., using the "minimum M statistic" approach - hereinafter referred to as "mMs", [1]). Subsequently, a multivariate feature selection is conducted to discover biomarker candidates. Therefore, either a frequency-based backwards elimination approach or ensemble feature selection can be used. PAA provides a complete toolbox of analysis tools including several different plots for results examination and evaluation.
In this vignette the general workflow of PAA will be outlined by analyzing an exemplary data set that accompanies this package.

1.2 Installation

The recommended way to install PAA is to type the commands described below in the R console comment: (note: an active internet connection is needed):

```
> # only if you install a Bioconductor package for the first time
> source("http://www.bioconductor.org/biocLite.R")
> # else
> library("BiocInstaller")
> biocLite("PAA", dependencies=TRUE)
```

This will install PAA including all dependencies.
Furthermore, PAA has an external dependency that is needed to provide full functionality. This external dependency is the free $C++$ software package "Random Jungle" that can be downloaded from http://www.randomjungle.de/. comment: Note: PAA will be usable without Random Jungle. However, it needs this package for random jungle recursive feature elimination (RJ-RFE) provided by the function selectFeatures(). Please follow the instructions for your OS in the README file to install Random Jungle properly on your machine.

2 Loading PAA and importing data

After launching R, the first step of the exemplary analysis is to load PAA.

```
> library(PAA)
```

New microarray data should be imported using the function loadGPR() which is mainly a wrapper to limma's function read.maimages() featuring optional duplicate aggregation for ProtoArray data. PAA supports the import of files in 'gpr' file format. The imported data is stored in an expression list object (EList, respectively, EListRaw, see Bioconductor package limma). Paths to a targets file and to a folder containing 'gpr' files (all 'gpr' files in this folder that are listed in the targets file will be read) are mandatory arguments. The folder that can be obtained by the command system.file("extdata", package = "PAA") contains an exemplary targets file that can be used as a template. Below, the first 3 rows of this targets file are shown.

```
> targets <- read.table(file=list.files(system.file("extdata", package="PAA"),
+ pattern = "`targets", full.names = TRUE), header=TRUE)
> print(targets[1:3,])
\begin{tabular}{lrrrrrrr} 
& ArrayID & \multicolumn{2}{c}{ FileName } & Group & Batch & Date Array SerumID \\
1 & AD1 & GSM734833_PA41992_-_AD1.gpr & AD & Batch1 & 10.11 .2010 & 41992 & AD1 \\
2 & AD2 & GSM734834_PA41994_-_AD2.gpr & AD Batch2 & 10.11 .2010 & 41994 & AD2 \\
3 & AD3 & GSM734835_PA42006_-AD3.gpr & AD Batch1 & 12.11 .2010 & 42006 & AD3
\end{tabular}
```

The columns "ArrayID", "FileName", and "Group" are mandatory. "Batch" is mandatory for microarray data that has been processed in batches. The remaining three columns as well as custom columns containing further information (e.g., clinical data) are optional.

If array.type is set to "ProtoArray" (default) duplicate spots will be aggregated. After importing, the object can be saved in a '.RData' file for further sessions. In the following code chunk, loadGPR() is demonstrated using a exemplary dummy data set that comes with PAA and has been created from the real data described below.

```
> gpr <- system.file("extdata", package="PAA")
> targets <- list.files(system.file("extdata", package="PAA"),
+ pattern = "dummy_targets", full.names=TRUE)
> dummy.elist <- loadGPR(gpr.path=gpr, targets.path=targets)
> save(dummy.elist, file=paste(gpr, "/DummyData.RData",
+ sep=""))
```

PAA comes with an exemplary protein microarray data set. This 20 Alzheimer's disease serum samples vs. 20 controls data is a subset of a publicly available ProtoArray data set. It can be downloaded from the repository "Gene Expression Omnibus"(GEO, http://www.ncbi.nlm.nih.gov/geo/, record "GSE29676"). It has been contributed by Nagele E et al. [2] (note: Because a data set stored in 'gpr' files would be too large to accompany this package the exemplary data is stored as an '.RData' file).

In the following code chunk, the PAA installation path (where exemplary data is located) is localized, the new folder 'demo_output' (where all output of the following analysis will be saved) is created, and the exemplary data set is loaded (note: exceptionally not via loadGPR()).

```
> cwd <- system.file(package="PAA")
> dir.create(paste(cwd, "/demo/demo_output", sep=""))
> output.path <- paste(cwd, "/demo/demo_output", sep="")
> load(paste(cwd, "/extdata/Alzheimer.RData", sep=""))
```


3 Pre-processing

If the microarrays were manufactured or processed in lots/batches, data analysis will suffer from batch effects resulting in wrong results. Hence, the elimination of batch effects is a crucial step of data pre-processing. A simple method to remove the most obvious batch effects is to find features that are extremely differential in different batches. In PAA this can be done for two batches using the function batchFilter (). This function takes an EList or EListRaw object and the batch-specific column name vectors lot1 and lot2 to find differential features regarding batches/lots. For this purpose, thresholds for p-values (Student's t-test) and fold changes can be defined. To visualize the differential features a volcano plot is drawn. Finally, the differential features are removed and the remaining data is returned.
> lot1 <- elist\$targets[elist\$targets\$Batch=='Batch1','ArrayID']
> lot2 <- elist\$targets[elist\$targets\$Batch=='Batch2','ArrayID']
> elist <- batchFilter (elist=elist, lot1=lot1, lot2=lot2, p.thresh=0.001,

+ fold.thresh=3)

batch filter volcano

For background correction limma's function backgroundCorrect () can be used:

```
> library(limma)
> elist <- backgroundCorrect(elist, method="normexp",
+ normexp.method="saddle")
```

Another important step in pre-processing is normalization. To assist in choosing an appropriate normalization method for a given data set, PAA provides two functions: plotNormMethods() and plotMAPlots(). plotNormMethods() draws boxplots (one boxplot per sample) of raw data and data after all kinds of normalization provided by PAA. For each normalization approach sample-wise boxplots are created. All boxplots will be saved as a high-quality 'tiff' file, if an output path is specified.
> plotNormMethods(elist=elist)
plotMAPlots() draws MA plots of raw data and data after applying all kinds of normalization methods provided by PAA. If idx="all" and an output path is defined (default), for each microarray one 'tiff' file containing MA plots will be created. If idx is an integer indicating the column index of a particular sample, MA plots only for this sample will be created.
> plotMAPlots(elist=elist, idx=10)

After choosing a normalization method, the function normalizeArrays () can be used in order to normalize the data. normalizeArrays () takes an EListRaw object, normalizes the data, and returns an EList object containing normalized data in log2 scale. As normalization methods "cyclicloess", "quantile" or "vsn" can be chosen. Furthermore, for ProtoArrays robust linear normalization ("rlm", see Sboner A. et al. [3]) is provided.

```
> elist <- normalizeArrays(elist=elist, method="cyclicloess",
+ cyclicloess.method="fast")
```

In addition to batchFilter(), the function batchAdjust() can be used after normalization via normalizeArrays() to adjust the data for batch effects. This is a wrapper to sva's function ComBat () for batch adjustment using the empirical Bayes approach [4]. To use batchAdjust () the targets file information of the EList object must contain the columns "Batch" and "Group".

```
> elist <- batchAdjust(elist=elist, log=TRUE)
```

Found 2 batches
Found 1 categorical covariate(s)
Standardizing Data across genes
Fitting L/S model and finding priors
Finding parametric adjustments
Adjusting the Data
Since for further analysis also data in original scale will be needed, a copy of the EList object containing unlogged data should be created.

```
> elist.unlog <- elist
> elist.unlog$E <- 2^(elist$E)
```


4 Differential analysis

The goal of univariate differential analysis is to detect relevant differential features. Therefore, statistical measures such as t -test p -values or mMs as well as fold changes are considered. PAA provides plotting functions in order to depict the number and the quality of the differential features in the data set. Accordingly, the function volcanoPlot () draws a volcano plot to visualize differential features. Therefore, thresholds for p-values and fold changes can be defined. Furthermore, the p-value computation method ("mMs" or "tTest") can be set. When an output path is defined (via output.path) the plot will be saved as a 'tiff' file. In the next code chunk, an example with method="tTest" is given.

```
> c1 <- paste(rep("AD",20), 1:20, sep="")
> c2 <- paste(rep("NDC",20), 1:20, sep="")
> volcanoPlot(elist=elist.unlog, group1=c1, group2=c2, method="tTest",
+ p.thresh=0.01, fold.thresh=2)
```


volcano plot

Here, an example with method="mMs" is given:
> mMs.matrix1 <- mMs.matrix2 <- mMsMatrix (x=20, $y=20$)
> volcanoPlot(elist=elist.unlog, group1=c1, group2=c2, method="mMs",

+ p.thresh=0.01, fold.thresh=2, mMs.matrix1=mMs.matrix1,
+ mMs.matrix2=mMs.matrix2, above=1500, between=400)

Another plotting function is pvaluePlot() which draws a plot of p-values for all features in the data set (sorted in increasing order and in log2 scale). The p-value computation method ("tTest" or "mMs") can be set via the argument method. Furthermore, when adjust=TRUE adjusted p-values (method: Benjamini \& Hochberg, 1995, computed via p.adjust()) will be used. For a better orientation, horizontal dashed lines indicate which p-values are smaller than 0.05 and 0.01 . If adjust=FALSE, additionally, the respective Bonferroni significance threshold (to show p-values that would be smaller than 0.05 after a possible Bonferroni correction) for the given data is indicated by a third dashed line. comment: Note: Bonferroni is not used for the adjustment. The dashed line is for better orientation only. When an output path is defined (via output.path) the plot will be saved as a 'tiff' file. In the next code chunk, an example with method="tTest" is given.
> pvaluePlot(elist=elist.unlog, group1=c1, group2=c2, method="tTest")
p-values
($1375<0.05,637<0.01,100<0.05$ after Bonferroni)

Here, an example with method="mMs" is given:
> mMs.matrix1 <- mMs.matrix2 <- mMsMatrix (x=20, $y=20$)
> pvaluePlot(elist=elist.unlog, group1=c1, group2=c2, method="mMs",

+ mMs.matrix1=mMs.matrix1, mMs.matrix2=mMs.matrix2, above=1500,
+ between=400)
Here, an example with method="tTest" and adjust=TRUE is given:

[^0]FDRs

Here, an example with method="mMs" and adjust=TRUE is given:

```
> mMs.matrix1 <- mMs.matrix2 <- mMsMatrix(x=20, y=20)
> pvaluePlot(elist=elist.unlog, group1=c1, group2=c2, method="mMs",
+ mMs.matrix1=mMs.matrix1, mMs.matrix2=mMs.matrix2, above=1500,
+ between=400, adjust=TRUE)
```

Finally, diffAnalysis () performs a detailed univariate differential analysis. This function takes an EList\$E- or ELis-tRaw\$E- matrix (e.g., temp <- elist\$E) extended by row names comprising " $B R C$ "-IDs of the corresponding features. The BRC-IDs can be created via:
brc <- paste(elist\$genes[,1], elist\$genes [,3], elist\$genes [,2]).
Next, the row names can be assigned as follows: rownames (temp) <- brc. Furthermore, the corresponding column name vectors, group labels and mMs - parameters are needed to perform the univariate differential analysis. This analysis covers inter alia p-value computation, p-value adjustment (method: Benjamini \& Hochberg, 1995), and fold change computation. Since the results table is usually large, a path for saving the results should be defined via output. path. Optionally, a vector of row indices (features) and additionally (not mandatory for subset analysis) a vector of corresponding feature names (feature.names) can be forwarded to perform the analysis for a feature subset.

```
> E <- elist.unlog$E
> rownames(E) <- paste(elist.unlog$genes[,1], elist.unlog$genes[,3],
+ elist.unlog$genes[,2])
> write.table(x=cbind(rownames(E),E), file=paste(cwd,"/demo/demo_output/data.txt",
```

```
+ sep=""), sep="\t", eol="\n", row.names=FALSE, quote=FALSE)
> mMs.matrix1 <- mMs.matrix2 <- mMsMatrix(x=20, y=20)
> diff.analysis.results <- diffAnalysis(input=E, label1=c1, label2=c2,
+ class1="AD", class2="NDC", output.path=output.path,
+ mMs.matrix1=mMs.matrix1, mMs.matrix2=mMs.matrix2, above=1500,
+ between=400)
> print(diff.analysis.results[1:10,])
```


1 1646.15876708672 564.287945192393
2 2967.05315916364 18425.3711275158
3165.94169574946982 .1672930729294
41062.949770818633156 .77911820629
$5 \quad 2444.5364262869111805 .2557183832$
$6 \quad 1276.804146088751559 .53973583639$
$7 \quad 155.25816836103123 .083850273056$
8338.85905247142593 .5614899941108
9718.813809075484323 .921664377623
10432.9008623089491425 .95241316282

Subsequently, the most relevant differential features (i.e., features having low p-values and high absolute fold changes) can be extracted as a univariate feature selection. Nevertheless, it is recommended to perform also multivariate feature selection and to consider feature panels obtained from both approaches.

5 Feature pre-selection

Before multivariate feature selection will be performed, it is recommended to discard features that are obviously not differential. Discarding them will accelerate runtimes without any negative impact on results. In PAA, this task is called "feature pre-selection" and it is performed by the function preselect(). This function iterates all features of the data set to score them via $m M s$, Student's t-test, or $m R M R$. If discard.features is TRUE (default), all features that are considered as obviously not differential will be collected and returned for discarding. Which features are considered as not differential depends on the parameters method, discard.threshold, and fold.thresh.

- If method $=$ "mMs", features having an $m M s$ value larger than discard.threshold (here: numeric between 0.0 and 1.0) or do not satisfy the minimal absolute fold change fold.thresh will be considered as not differential.
- If method = "tTest", features having a p-value larger than discard.threshold (here: numeric between 0.0 and 1.0) or do not satisfy the minimal absolute fold change fold.thresh will be considered as not differential.
- If method = "mrmr", $m R M R$ scores for all features will be computed as scoring method (using the function mRMR.classic () of the R package mRMRe). Subsequently, features that are not the discard.threshold (here: integer indicating a number of features) features having the best $m R M R$ scores are considered as not differential.

```
> mMs.matrix1 <- mMs.matrix2 <- mMsMatrix(x=20, y=20)
> pre.sel.results <- preselect(elist=elist.unlog, columns1=c1, columns2=c2,
+ label1="AD", label2="NDC", discard.threshold=0.5, fold.thresh=1.5,
+ discard.features=TRUE, mMs.above=1500, mMs.between=400,
+ mMs.matrix1=mMs.matrix1, mMs.matrix2=mMs.matrix2,
+ method="mMs")
> elist <- elist[-pre.sel.results$discard,]
```


6 Feature selection

For multivariate feature selection PAA provides the function selectFeatures(). It performs a multivariate feature selection using "frequency-based" feature selection (based on RF-RFE, RJ-RFE or SVM-RFE) or "ensemble" feature selection (based on SVM-RFE).

Frequency-based feature selection (method="frequency"): The whole data is splitted in k cross validation training and test set pairs. For each training set a multivariate feature selection procedure is performed. The resulting k feature subsets are tested using the corresponding test sets (via classification). As a result, selectFeatures() returns the average k-fold cross validation classification accuracy as well as the selected feature panel (i.e., the union set of the k particular feature subsets). As multivariate feature selection methods random forest recursive feature elimination ($R F$ $R F E)$, random jungle recursive feature elimination ($R J-R F E$) and support vector machine recursive feature elimination (SVM-RFE) are supported. To reduce running times, optionally, an additional univariate feature pre-selection can be performed (usage via preselection.method). As univariate pre-selection methods mMs ("mMs"), Student's t-test ("tTest") and mRMR ("mrmr") are supported. Alternatively, no pre-selection can be chosen ("none"). This approach is similar to the method proposed in Baek et al. [5].

Ensemble feature selection (method="ensemble"): From the whole data a previously defined number of subsamples is drawn defining pairs of training and test sets. Moreover, for each training set a previously defined number of bootstrap samples is drawn. Then, for each bootstrap sample SVM-RFE is performed and a feature ranking is obtained. To obtain a final ranking for a particular training set, all associated bootstrap rankings are aggregated to a single ranking. To score the cutoff best features, for each subsample a classification of the test set is performed (using a svm trained with the cutoff best features from the training set) and the classification accuracy is determined. Finally, the stability of the subsample-specific panels is assessed (via Kuncheva index, Kuncheva LI, 2007 [6]), all subsample-specific rankings are aggregated, the top n features (defined by cutoff) are selected, the average classiification accuracy is computed, and all these results are returned in a list. This approach has been proposed and is described in Abeel et al. [7].
selectFeatures () takes an EListRaw or EList object, group-specific sample numbers, group labels and parameters choosing and setting up a univariate feature pre-selection method as well as a multivariate feature selection method (frequency-based or ensemble feature selection) to select a panel of differential features. When an output path is defined (via output.path) results will be saved on the hard disk and when verbose is TRUE additional information will be printed to the console. Depending on the selection method, one of two different results lists will be returned:

1. If method is "frequency", the results list contains the following elements:

- accuracy: average k-fold cross validation accuracy.
- sensitivity: average k-fold cross validation sensitivity.
- specificity: average k-fold cross validation specificity.
- features: selected feature panel.
- all.results: complete cross validation results.

2. If method is "ensemble", the results list contains the following elements:

- accuracy: average accuracy regarding all subsamples.
- sensitivity: average sensitivity regarding all subsamples.
- specificity: average specificity regarding all subsamples.
- features: selected feature panel.
- all.results: all feature ranking results.
- stability: stability of the feature panel (i.e., Kuncheva index for the subrun-specific panels).

In the following two code chunks first "frequency-based"feature selection and then "ensemble"feature selection is demonstrated.

```
> selectFeatures.results <- selectFeatures(elist,n1=20,n2=20,label1="AD",
+ label2="NDC",selection.method="rf.rfe",subruns=2, candidate.number=1000,
+ method="frequency")
> selectFeatures.results <- selectFeatures(elist,n1=20,n2=20,label1="AD",
+ label2="NDC",selection.method="rf.rfe",subsamples=10,bootstraps=10,
+ method="ensemble")
```

Because runtimes would take too long for this vignette $P A A$ comes with pre-computated selectFeatures.results objects stored in '.RData' files. These objects can be loaded as follows:

```
> # results of frequency-based feature selection:
> load(paste(cwd, "/extdata/selectFeaturesResultsFreq.RData", sep=""))
> # or results of ensemble feature selection:
> load(paste(cwd, "/extdata/selectFeaturesResultsEns.RData", sep=""))
```


7 Results inspection

After the selection of a feature panel, these features should be validated by manual inspection and evaluation for further research. To aid results inspection, PAA provides several functions. The function plotFeatures () plots the intensities of all features (represented by BRC-IDs) that have been selected by selectFeatures () (one sub-plot per feature) in group-specific colors. All sub-plots are aggregated in one figure. If output. path is not NULL, this figure will be saved in a 'tiff' file in output.path.

```
> plotFeatures(features=selectFeatures.results$features, elist=elist, n1=20,
+ n2=20, group1="AD", group2="NDC")
```


- AD
- NDC

Alternatively, the function plotFeaturesHeatmap() plots intensities of all features given in the vector features (represented by BRC-IDs) as a heatmap. If description is TRUE (default: FALSE), features will be described via protein names instead of uniprot accessions. Again, if output.path is not NULL, the heatmap will be saved as a 'tiff' file in output.path.

```
> plotFeaturesHeatmap(features=selectFeatures.results$features, elist=elist,
+ n1=20, n2=20, description=TRUE)
```


Finally, the function printFeatures() creates a table containing the selected biomarker candidate panel as well as additional information for results inspection. If output.path is defined, this table will be saved in a 'txt' file ('candidates.txt').

```
> printFeatures(features=selectFeatures.results$features, elist=elist.unlog)[,-2]
\begin{tabular}{|c|c|c|c|c|}
\hline BRC & AD1 & AD2 & AD3 & AD4 \\
\hline 11315 & 1707.5487217474 & 1497.38674689785 & 1518.50548665975 & 1595.48520781193 \\
\hline 1443 & 3647.8856681814 & 2525.02827878685 & 1822.99945555959 & 1693.2902270162 \\
\hline 15129 & 821.899619465933 & 1053.14353763606 & 1517.30660391222 & 1358.10268235525 \\
\hline 17911 & 5841.3140798993 & 5741.40278219469 & 6210.83563636426 & 6537.74627659344 \\
\hline 24173 & 616.111573789624 & 430.50778352629 & 810.54024033577 & 640.802478533216 \\
\hline 2537 & 3684.06124930958 & 8097.25857845367 & 4873.09737651854 & 3029.75212058229 \\
\hline 251121 & 2540.94438380918 & 2354.59829803536 & 3390.11030199312 & 3353.44247657033 \\
\hline 29413 & 5874.42547230922 & 4891.00677037418 & 6347.91201462816 & 6413.66758809429 \\
\hline 4875 & 845.714240769055 & 620.14440193628 & 340.749562634244 & 449.474219299952 \\
\hline 481911 & 476.178151266892 & 943.905600292745 & 288.804357634443 & 720.297395448951 \\
\hline
\end{tabular}
AD5 AD6 AD7 AD8 AD9
1851.16995801813 1954.34250591408 1474.58808187167 1800.72128180474 2203.41666536497
1545.93055668746 1382.00035799687 2342.34218157283 4715.17557251859 1453.15299797788
1049.37102695366 959.981281957999 784.029298909074 1211.404624031531168.05152698585
```

> NDC10
964.547283576047 1199.79776944195
4260.177147340674202 .6018760059316612 .02651710959541 .510538630534658 .8588632926 632.069400444672548 .7631005072821023 .428803810631052 .798560772891141 .40761228461 $3567.87822120163361 .127817446353083 .527345531563582 .11181827476 \quad 2964.7945481156$ 2318.922216941862253 .410133033132440 .770820298993254 .859073223062857 .61042907193 6536.808500770557127 .748977975867039 .478580758456525 .736615814239104 .56738330518 293.28859081869478 .504192919484353 .200964938405750 .950212843063534 .827154135703 628.686647544015736 .022640348691677 .197314077335523 .364514901869723 .686113405843

$$
\begin{array}{ccccc}
\text { AD10 } & \text { AD11 } & \text { AD12 } & \text { AD13 } & \text { AD14 }
\end{array}
$$

2386.464034481511487 .733267378951883 .455318986062229 .513827815212089 .56380522875 $1576.317267769732192 .546309978451657 .0714848759 \quad 2643.20658059431622 .60970111715$ 1817.671458016571632 .146974808951852 .352478930441983 .679623295661225 .49775172497 5223.888244697127296 .751127939685235 .966983906445625 .423155434944562 .07038409095 948.4925185324991046 .88437502484793 .9384111581951128 .04497935662769 .658352738974 4130.590065004953768 .62900951353117 .052766580924362 .448721856924826 .64287027535 3076.078522487453518 .446207708212828 .558636813755617 .819384276953021 .46387470043 $8470.83889644311 \quad 6197.3754285687401 .901311655498122 .563446686058489 .87868607207$ 534.374903350561640 .036360803523494 .014987949269936 .872390455245521 .727313868953 $668.0096864263111640 .47500006756 \quad 825.61698691541170 .89751921492702 .412305275103$ AD15 AD16 AD17 AD18 AD19 1816.814808373831581 .638554041331913 .63049498382964 .0978976069521041 .31869662808 2680.757547619392088 .899854755761386 .722705394932163 .215982359243100 .93907875795 $1264.90132812999 \quad 1606.1280358861363 .544807043561451 .212326999241472 .8558509718$ 4313.497227042375726 .17932727715729 .036260458867322 .0100818893410463 .4326694858 1461.333983843871014 .5357715599796 .6544714943861643 .681884989611600 .00902244818 3305.55291661683411 .903312602326299 .568379330742867 .608785582065513 .99669518703 $3482.214520765363007 .384133106081935 .38202306179 \quad 2846.67803253692274 .68712494841$ $9182.193048330796731 .10498346019 \quad 4314.235953056610389 .9308274544 \quad 2697.2862285214$ 385.232741137462654 .526774344986547 .2493190199182785 .35671953292543 .590666369519 679.003582388763 .1908194805391035 .66536310848628 .178037013272799 .090556916149 AD20 NDC1 NDC2 NDC3 NDC4 2926.42411753136916 .310255562927965 .297890850329682 .054562088009912 .950704810332 1377.258500410971467 .912076710021203 .850122615391605 .846994312131313 .29858767954 1084.48003919482817 .847716743097906 .146982416223548 .946861729732957 .882043011654 3724.162003208422957 .788668721822703 .032698126832583 .57431962813735 .99667897858 744.952853092911338 .540631709138484 .80631656514302 .279573332991491 .625200407955 $17381.952008675212078 .43805845948356 .16477086812 \quad 6570.94940407857820 .46972808707$ 3041.024038689321271 .707445379421587 .812302324251184 .559503085571012 .47570612393 $6708.441882347382418 .89204876839 \quad 1531.7973860577 \quad 3265.91990969854 \quad 4176.0404600778$ $414.318514283749478 .04672302892564 .959917710933 \quad 393.11844852088274 .765462066987$ $626.652122277308183 .129536672821 \quad 396.28721824634229 .44416280979492 .2033511239305$

NDC5 NDC6 NDC7 NDC8 NDC9 1126.38247141383922 .659886109754830 .938986253421961 .6063418946091312 .65211553595 981.7523078764041679 .4377370426796 .743380621784798 .9915490460951600 .45415383023 558.713037627185410 .597277093104739 .751575990382686 .466408438075473 .595891923403 3777.335395569562722 .261777076132158 .439441202159622 .392142295882075 .93149199798 303.117065525581536 .157510885349326 .678547811917396 .881767196424334 .843022317661 8007.971212541337280 .364882255176646 .320142047949120 .4843139833315347 .6266865229 $1171.43537550505 \quad 1234.7604151031577 .461723866721112 .002984936651325 .10396521862$ 3025.965472879411557 .588857600923812 .532151342332681 .251607435993572 .53949683205 $282.289985043158373 .757162655114211 .309445291489 \quad 242.78647758168326 .622127353132$ 357.247510556263344 .052731115053435 .198927146926227 .203421006667252 .122607579654 NDC11 NDC12 NDC13 NDC14 $965.92545559619 \quad 794.505758199141153 .040445637431024 .41205626165$ 714.828087360541381 .108173466441247 .850772309021181 .44529164993

```
778.128372427853 594.239115574468 959.255211480267 964.787743665097 1388.6637961329
2326.72562790667 2119.09515194113 3252.01291938126 3134.98527115832 4336.07141691114
452.275401873642 231.547622778675 406.947836547416 60.6294493022822 354.768459059868
7335.85579632123 19002.2930164707 15171.4608698072 14820.5186810997 10027.6534437621
1201.24683215565 1695.59724444137 1250.25039970223 1165.9062640145 2011.78693289675
2463.80654651362 2434.45300087446 1689.94804150121 2615.46312616187 2135.879656365
405.535678033691 423.906146123585 373.155329687147 390.503241154251 334.165739139467
416.622316198235 328.548938140955 376.120270496846 311.854059551946 383.569582362546
    NDC15 NDC16 NDC17 NDC18 NDC19
1062.74220857401 1241.54257236708 1338.10713313903 1100.43290991954 936.367518922342
2271.31764943595 862.867035440605 766.574994407207 1060.18779683922 1149.13869569307
440.992612465661 751.178591098318 917.357004718083 498.687370891933 621.105094349124
    2443.1633378586 2258.87688670426 2743.14047789468 2340.8324014454 3014.3285273019
329.753797565583 85.9622199864277 374.766024317663 300.196996312634 341.950351299524
10473.5885640039 10195.7433739508 21655.7767725156 6220.93753625123 7480.52915420366
1232.22526054351 1395.71156412758 1313.52593772083 3038.53221162454 1279.57569704464
3154.40516192712 2952.69278321963 3448.73707209167 4903.95735927502 2564.88063392489
    397.00171296248 315.579611644105 405.872950164305 275.519666925887 204.822065149198
466.530753677265 433.52538788943 410.710097186036 394.782278488936 421.419441238472
                    NDC20
997.772012656477
1338.41875267022
1016.73416943206
3615.51895537296
265.147174966629
7771.28134001059
1075.78204186532
1529.55534039403
291.125728322958
340.338492661371
```


References

[1] Love B: The Analysis of Protein Arrays. In: Functional Protein Microarrays in Drug Discovery. CRC Press; 2007: 381-402.
[2] Nagele E, Han M, Demarshall C, Belinka B, Nagele R (2011): Diagnosis of Alzheimer's disease based on diseasespecific autoantibody profiles in human sera. PLoS One 6: e23112.
[3] Sboner A. et al., Robust-linear-model normalization to reduce technical variability in functional protein microarrays. J Proteome Res 2009, 8(12):5451-5464.
[4] Johnson WE, Li C, and Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8:118-27.
[5] Baek S, Tsai CA, Chen JJ.: Development of biomarker classifiers from high- dimensional data. Brief Bioinform. 2009 Sep;10(5):537-46.
[6] Kuncheva, LI: A stability index for feature selection. Proceedings of the IASTED International Conference on Artificial Intelligence and Applications. February 12-14, 2007. Pages: 390-395.
[7] Abeel T, Helleputte T, Van de Peer Y, Dupont P, Saeys Y: Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics. 2010 Feb 1;26(3):392-8.

[^0]: > pvaluePlot(elist=elist.unlog, group1=c1, group2=c2, method="tTest", adjust=TRUE)

