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Abstract

This package provides an implementation of a hidden Markov Model for high throughput SNP
arrays. Users of this package should already have available locus-level estimates of copy number.
Copy number estimates can be relative or absolute.

1 Overview
This vignette requires that you have

e an absolute estimate of the total copy number organized such that rows correspond to loci and
columns correspond to samples

and / or

e a matrix of genotype calls (1=AA, 2 = AB, 3= BB): rows correspond to loci and columns corre-
spond to samples

Additional options that can improve the HMM predictions include

e a CRLMM confidence score of the genotype call

e standard errors of the copy number estimates

Other HMM implementations are available for the joint analysis of copy number and genotype, including
QuantiSNP [1] and PennCNV [4].

Data considerations. The HMM implemented in this package is most relevant for heritable diseases
for which integer copy numbers are expected. For somatic cell diseases such as cancer, we suggest
circular binary segmentation, as implemented in the R package DNAcopy [2].

Citing this software. Robert B Scharpf, Giovanni Parmigiani, Jonathan Pevsner, and Ingo Ruczin-
ski. Hidden Markov models for the assessment of chromosomal alterations using high-throughput SNP
arrays. Annals of Applied Statistics, 2(2):687-713, 2008.

2  Organizing the locus-level data

This package includes simulated genotype and copy number data for 9165 SNPs.

> library(VanillaICE)
> data(locusLevelData)



The copy number estimates in the locusLevelData object were multiplied by 100 and saved as an
integer. Verify that it is reasonable to assume integer copy number for the HMM by plotting the
locus-level estimates as a function of the physical position.

> par(las=1)
> plot(locusLevelDatal[["copynumber"]][, 1]1/100, pch=".", ylab="copy number", log="y")
> abline(h=1:3, col="grey70")
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Next, create an object of class oligoSnpSet from the simulated data:

oligoSet <- new("oligoSnpSet",
copyNumber=1og2(locusLevelData[["copynumber"]]/100),
call=locusLevelData[["genotypes"]],
callProbability=locusLevelData[["crimmConfidence"]],

+ annotation=locusLevelData[["platform"]])

> oligoSet <- oligoSet[!is.na(chromosome(oligoSet)), ]

> oligoSet <- oligoSet[chromosome(oligoSet) < 3, ]

+ + + VvV

If confidence scores or inverse standard errors for the copy number estimates are available, these
should be supplied to the cnConfidence slot in the assayData. For illustration, in the following code
chunk we transform the copy number estimates to the log scale and calculate a robust estimate of the
standard deviation across autosomes. If uncertainty estimates are not available for copy number, the
HMM will calculate the median absolute deviation (MAD). See the the function robustSds.

> sds <- sd(oligoSet)
The inverse of the sds object can be assigned to the cnConfidence slot.

> cnConfidence(oligoSet) <- 1/sds



3 Fitting the HMM
3.1 Vanilla HMM

When jointly modeling the copy number and genotype data, we assume that the genotype estimates
and copy number estimates are independent conditional on the underlying hidden state. The emission
probabilities for the genotypes are then calculated using either (i) assumptions of the probability of
observing a homozygous genotype call given the underlying state. Next we order the markers by
chromosome and physical position. The hmm method will order the oligoSnpSet object automatically,
so the following step is not required.

> oligoSet <- order(oligoSet)
> hmmOpts <- hmm.setup(oligoSet, is.log=TRUE)

The viterbi algorithm is used to obtain the most likely sequence of hidden states given the observed
data. For efficiency, we return an object of class RangedDataHMM with genomic coordinates of the
normal and altered regions. We also return the log-likelihood ratio (LLR) of the predicted sequence
in an interval versus the null of normal copy number. For intervals with typical copy number (2) and
percent heterozygosity (the 3rd state in the above codechunk), the LLR is zero.

> ## first 2 chromosomes
> oligoSet <- oligoSet[chromosome(oligoSet) <= 2, ]
> fit.van <- hmm(oligoSet, hmmOpts)
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Next we plot the data for chromosome 1 and overlay the predictions from the hidden markov model.
See Figure 1.

To find which markers are included in each genomic interval returned by the hmm method, one can
use the findOverlaps method in the oligoClasses. This method returns the 'match matrix’. The first
column in the match matrix are indices of the genomic intervals (rows) of the RangedDataHMM object;
the second column in the match matrix is a vector of indices for the markers in the oligoSet object.
For example, the second interval in the RangedDataHMM object fit.van contains 102 markers.

> fit.van[2, ]

RangedDataHMM with 1 row and 7 value columns across 1 space

space ranges | chrom num.mark id

<factor> <IRanges> | <integer> <integer> <character>

1 1 [49825223, 54637167] | 1 102 NA06993
start.index end.index state LLR
<integer> <integer> <integer> <numeric>
1 0 0 4 14.69012

To find the names of the 102 markers that are included in this genomic interval, one could do the
following

> mm <- matchMatrix(findOverlaps(fit.van, oligoSet))
> markersInRange <- featureNames(oligoSet) [mm[,1]==2]

Multipanel displays can be useful for visualizing the low-level data for copy number alterations. We
extend the xyplot method in the R package lattice for two common use-cases: by-locus and by-sample.
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Figure 1: Plot of artificial data for one chromosome.

By locus. To plot the genomic data for a set of ranges at a given locus, we provide an unevaluated
code chunk below (our example contains only a single sample):

> xyplot(cn ~ x | id, oligoSet, range=RangedDataObject, ylim=c(-0.5,4), panel=xypanel)

Note that the default in the above command is to use a common x- and y-scale for each panel. To allow
the x-axes to change for each panel, one could set the x-scales to 'free’:

> xyplot(cn ~ x | id, oligoSet, range=RangedDataObject, ylim=c(-0.5,4), scales=list(x="free"),
+ panel=xypanel)

The function xypanel provides default colors for annotating the plotting symbols by genotype and by
whether the markers are polymorphic. The RangedDataHMM must be passed by the name range to the
xyplot method.

By sample. To plot the low-level data for multiple alterations occurring in a single sample, one can
again pass a RangedDataHMM object with name range to the xyplot. For example, see Figure 2. The
code for producing Figure 2 is in the following code chunk. Note that the formula in the example below
conditions on range instead of id. The conditioning variable for displaying multiple panels of a single
sample must be called 'range’. We plot a 2 Mb window surrounding each of the alterations in the
simulated data by specifying frame=2e6.

> ranges.altered <- fit.van[state(fit.van) != 4, ]
> xy.example <- xyplot(cn ~ x | range, oligoSet, range=ranges.altered, frame=2e6,



+ scales=list (x="free"), ylim=c(-0.5,4),
+ panel=xypanel, cex=0.4, pch=21, border='grey",
+ ylab=expression(log[2] ("copy number")))

See 7xyplot for additional details.
Note also that scales must be set to free in the above call to xyplot.

3.2 ICE HMM

To compute emission probabilities that incorporate the crimm genotype confidence scores, (i) set ICE
to TRUE in the hmm.setup function and (ii) indicate which of the states are expected to be largely
homozygous (rohStates). Note that this option is limited too a few platforms and the Affy 100k
platforms is not one of them.

> hmmOpts <- hmm.setup(oligoSet, ICE=TRUE, rohStates=c(FALSE, TRUE, TRUE, FALSE, FALSE))
> res <- tryCatch(hmm(oligoSet, hmmOpts),

+ error=function(e) "platform not supported")

> print(res)

[1] "platform not supported"

> ## supported platforms
> VanillaICE:::icePlatforms()

[1] "pd.genomewidesnp.6"

[2] "genomewidesnp6"

[3] "pd.mapping250k.nsp"

[4] "pd.mapping250k.sty"

[5] "pd.mapping250k.nsp, pd.mapping250k.sty"

For the purpose of illustration, we assign 'genomewidesnp6’ to the annotation slot since this platform
is supported.

> ann <- annotation(oligoSet)
annotation(oligoSet) <- "genomewidesnp6"
> fit.ice <- hmm(oligoSet, hmmOpts)

A\

|
| | 0%
I
| | 100%
> fit.ice
RangedDataHMM with 12 rows and 7 value columns across 1 space
space ranges | chrom num.mark id
<factor> <IRanges> | <integer> <integer> <character>
1 1 [ 846864, 70065480] | 1 2000 NA06993
2 1 [ 70081878, 73381312] | 1 202 NA06993
3 1 [ 73401482, 121226982] | 1 2499 NA06993
4 1 [144908589, 176547669] | 1 1294 NA06993
5 1 [176548473, 178534221] | 1 101 NA06993
6 1 [178659933, 218173294] | 1 1898 NA06993
7 1 [218219379, 219806187] | 1 99 NA06993



8 1 [219825554, 240236045] | 1 900 NA06993
9 1 [240253320, 240351241] | 1 5 NA06993
10 1 [240363241, 248794371] | 1 160 NA06993
11 1 [ 170616, 88467934] | 2 40 NA06993
12 1 [102998279, 240767758] | 2 60 NA06993
start.index end.index state LLR
<integer> <integer> <integer> <numeric>
1 0 0 3 0.000000
2 0 0 5 306.031321
3 0 0 3 0.000000
4 0 0 3 0.000000
5 0 0 1 334.520760
6 0 0 3 0.000000
7 0 0 1 378.708245
8 0 0 3 0.000000
9 0 0 1 4.617305
10 0 0 3 0.000000
11 0 0 3  0.000000
12 0 0 3  0.000000

> annotation(oligoSet) <- ann

homDel
hemDel
normal
ROH
3copy
4copy
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3.3 Other options

Copy number. A HMM for copy number only (e.g., if genotypes are ignored or are unavailable) can
be fit as follows.

> cnSet <- new("CopyNumberSet",
+ copyNumber=1og2(locusLevelDatal[["copynumber"]]/100),



+ annotation=locusLevelData[["platform"]])

> cnSet <- cnSet[chromosome(cnSet) <= 2 & !is.na(chromosome(cnSet)), ]
> hmmOpts <- hmm.setup(cnSet, is.log=TRUE)

> fit.cn <- hmm(cnSet, hmmOpts)

I
I | 0%
I
I

| 100%

Regions of homozygosity. A HMM for genotype-only data can be used to find long stretches of
homozygosity. Note that hemizygous deletions are also identified as '/ROH’ when copy number is ignored
(as the biallelic genotypte call in a hemizygous deletions tends to be all homozygous calls).

snpSet <- new("SnpSet",
call=locusLevelData[["genotypes"]],
callProbability=locusLevelData[["crlmmConfidence"]],
annotation=locusLevelData[["platform"]])

featureData(snpSet) <- addFeatureAnnotation (snpSet)

snpSet <- snpSet[chromosome (snpSet) < 3, ]

hmmOpts <- hmm.setup (snpSet)

fit.gt <- hmm(snpSet, hmmOpts)
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4 Quality control

4.1 Outliers

Copy number outliers can cause the HMM to become too jumpy. One approach to reduce the influence of
outliers is to some light-smoothing prior to fitting the HMM, as suggested in the R package DNAcopy. For
instance, one could identify outliers by some criteria and then average the outliers using the estimates
from neigboring probes. Here, we use the defaults in smooth.CNA.

> if(require ("DNAcopy")){

+ ##create an outlier
+ copyNumber (cnSet) [60] <- 10

+ copyNumber (cnSet) [45:55]

+ cna0bj <- CNA(genomdat=copyNumber (cnSet),

+ chrom=chromosome (cnSet) ,

+ maploc=position(cnSet),

+ data.type="logratio",

+ sampleid=sampleNames (cnSet))

+ smoothed.cnaObj <- smooth.CNA(cnaObj)

+ copyNumber (cnSet) <- matrix(smoothed.cnaObj[, "NA06993"], nrow(cnSet), 1)
+ copyNumber (cnSet) [50]

+ }

[1] 1.281046

One could also increase the value of TAUP in the viterbi algorithm to encourage a fit with fewer jumps.
Note that with improved estimates of copy number uncertainty, many of these post-hoc approaches for
addressing outliers would be less critical.

4.2 Batch effects

VanillaICE can be used in conjunction with the crlmm package to reduce batch effects. See [3] for
details regarding the crlmm package.

5 Session Information
The version number of R and packages loaded for generating the vignette were:

e R version 2.14.0 (2011-10-31), x86_64-unknown-1inux-gnu

e Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=C, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

e Base packages: base, datasets, grDevices, graphics, methods, stats, utils

e Other packages: Biobase 2.14.0, DBI 0.2-5, DNAcopy 1.28.0, I[Ranges 1.12.1,
RColorBrewer 1.0-5, RSQLite 0.10.0, VanillaICE 1.16.1, oligo 1.18.0, oligoClasses 1.16.0,
pd.mapping50k.hind240 1.4.0, pd.mappingb0k.xba240 1.4.0

e Loaded via a namespace (and not attached): Biostrings 2.22.0, SNPchip 1.18.0,
affxparser 1.26.1, affyio 1.22.0, bit 1.1-7, ff 2.2-3, grid 2.14.0, lattice 0.20-0,
preprocessCore 1.16.0, splines 2.14.0, tools 2.14.0, zlibbioc 1.0.0
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Figure 2: The method xyplot is used to create a multi-panel display of alterations in a single sample.
Each panel displays a single copy number alteration detected by the HMM that is boxed by a rectangle.
The alteration is framed by specifying the number of basepairs to plot upstream and downstream of the
alteration. Here, we used a frame of 2 Mb. Homozygous SNPs with diallelic geotypes ‘AA’ and ‘BB’
are shaded blue; SNPs with diallelic genotype call ‘AB’ are shaded in red.
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