
Counting with summarizeOverlaps

Valerie Obenchain

Edited: October 2011; Compiled: February 6, 2012

Contents

1 Introduction 1

2 A First Example 1

3 Counting Modes 2

4 Counting Features 3

5 pasilla Data 6
5.1 source files . 6
5.2 Exon counts . 7
5.3 Gene counts . 8

6 Refererences 9

1 Introduction

This vignette illustrates how reads mapped to a genome can be counted with
summarizeOverlaps. Different ”modes”of counting are provided to resolve reads
that overlap multiple features. The built-in count modes are fashioned after the
”Union”, ”IntersectionStrict”, and ”IntersectionNotEmpty”methods found in the
HTSeq package by Simon Anders (see references).

2 A First Example

In this example reads are counted from a list of BAM files and returned in a
matrix for use in further analysis such as those offered in DESeq and edgeR.

> library(Rsamtools)

> library(DESeq)

locfit 1.5-6 2010-01-20

1

> library(edgeR)

> fls = list.files(system.file("extdata",package="GenomicRanges"),

+ recursive=TRUE, pattern="*bam$", full=TRUE)

> bfl <- BamFileList(fls)

> features <- GRanges(

+ seqnames = Rle(c("chr2L", "chr2R", "chr2L", "chr2R", "chr2L", "chr2R",

+ "chr2L", "chr2R", "chr2R", "chr3L", "chr3L")),

+ strand = strand(rep("+", 11)),

+ ranges = IRanges(start=c(1000, 2000, 3000, 3600, 7000, 7500, 4000, 4000,

+ 3000, 5000, 5400), width=c(500, 900, 500, 300, 600, 300, 500, 900, 500,

+ 500, 500))

+)

> olap <- summarizeOverlaps(features, bfl)

> deseq <- newCountDataSet(countData=assays(olap)$counts,

+ conditions=rownames(colData(olap)))

> edger <- DGEList(counts=assays(olap)$counts, group=rownames(colData(olap)))

3 Counting Modes

The modes of ”Union”, ”IntersectionStrict” and ”IntersectionNotEmpty” provide
different approaches to resolving reads that overlap multiple features. Figure 1
illustrates how both simple and gapped reads are handled by the modes. Note
that a read is counted a maximum of once; there is no double counting. These
methods do not currently handle paired-end reads. For additional detail on the
counting modes see the summarizeOverlaps man page.

2

Union IntersectionStrict IntersectionNotEmpty

Feature I Feature I Feature I

Feature I No hit Feature I

Feature I No hit Feature I

Feature I Feature I Feature I

Feature I Feature I Feature I

No hit Feature 1 Feature I

No hit No hit No hit

* Picture reproduced from HTSeq web site :
http://www-huber.embl.de/users/anders/HTSeq/doc/count.html

Feature 1

read

Feature 1

read

Feature 1

read

Feature 1

Feature 2

read

Feature 1Feature 1

read

Feature 1 Feature 1

read

read

Feature 1

Feature 2

read

Feature 1

Feature 2

Figure 1: Counting Modes

4 Counting Features

Features can be exons, transcripts, genes or any region of interest. The number
of ranges that define a single feature is specified in the features argument.

When annotation regions of interest are defined by a single range a GRanges
should be used as the features argument. With a GRanges it is assumed that
each row (i.e., each range) represents a distinct feature. If features was a
GRanges of exons, the result would be counts per exon.

When the region of interest is defined by one or more ranges the features

argument should be a GRangesList . In practice this could be a list of exons by
gene or transcripts by gene or other similar relationships. The count result will

3

be the same length as the GRangesList . For a list of exons by genes, the result
would be counts per gene.

The combination of defining the features as eitherGRanges or GRangesList
and choosing a counting mode controls how summarizeOverlaps assigns hits.
Reguardless of the mode chosen, each read is assigned to at most a single feature.
These options are intended to provide flexibility in defining different biological
problems.

This next example demonstrates how the same read can be counted differ-
ently depending on how the features argument is specified. We use a single
read that overlaps two ranges, gr1 and gr2.

> rd <- GappedAlignments("a", rname = Rle("chr1"), pos = as.integer(100),

+ cigar = "300M", strand = strand("+"))

> gr1 <- GRanges("chr1", IRanges(start=50, width=150), strand="+")

> gr2 <- GRanges("chr1", IRanges(start=350, width=150), strand="+")

When provided as a GRanges both gr1 and gr2 are considered distinct features.
In this case none of the modes count the read as a hit. Mode Union discards the
read becasue more than 1 feature is overlapped. IntersectionStrict requires
the read to fall completely within a feature which is not the case for either gr1
or gr2. IntersetctionNotEmpty requires the read to overlap a single unique
disjoint region of the features. In this case gr1 and gr2 do not overlap so each
range is considered a unique disjoint region. However, the read overlaps both
gr1 and gr2 so a decision cannot be made and the read is discarded.

> gr <- c(gr1, gr2)

> data.frame(union = assays(summarizeOverlaps(gr, rd))$counts,

+ intStrict = assays(summarizeOverlaps(gr, rd,

+ mode="IntersectionStrict"))$counts,

+ intNotEmpty = assays(summarizeOverlaps(gr, rd,

+ mode="IntersectionNotEmpty"))$counts)

union intStrict intNotEmpty

1 0 0 0

2 0 0 0

Next we count with features as a GRangesList ; this is list of length 1 with
2 elements. Modes Union and IntersectionNotEmpty both count the read for
the single feature.

> grl <- GRangesList(c(gr1, gr2))

> data.frame(union = assays(summarizeOverlaps(grl, rd))$counts,

+ intStrict = assays(summarizeOverlaps(grl, rd,

+ mode="IntersectionStrict"))$counts,

+ intNotEmpty = assays(summarizeOverlaps(grl, rd,

+ mode="IntersectionNotEmpty"))$counts)

union intStrict intNotEmpty

1 1 0 1

4

In this more complicated example we have 7 reads, 5 are simple and 2 have
gaps in the CIGAR. There are 12 ranges that will serve as the features.

> group_id <- c("A", "B", "C", "C", "D", "D", "E", "F", "G", "G", "H", "H")

> features <- GRanges(

+ seqnames = Rle(c("chr1", "chr2", "chr1", "chr1", "chr2", "chr2",

+ "chr1", "chr1", "chr2", "chr2", "chr1", "chr1")),

+ strand = strand(rep("+", length(group_id))),

+ ranges = IRanges(

+ start=c(1000, 2000, 3000, 3600, 7000, 7500, 4000, 4000, 3000, 3350, 5000, 5400),

+ width=c(500, 900, 500, 300, 600, 300, 500, 900, 150, 200, 500, 500)),

+ DataFrame(group_id)

+)

> reads <- GappedAlignments(

+ names = c("a","b","c","d","e","f","g"),

+ rname = Rle(c(rep(c("chr1", "chr2"), 3), "chr1")),

+ pos = as.integer(c(1400, 2700, 3400, 7100, 4000, 3100, 5200)),

+ cigar = c("500M", "100M", "300M", "500M", "300M", "50M200N50M", "50M150N50M"),

+ strand = strand(rep.int("+", 7L)))

>

Using a GRanges as the features all 12 ranges are considered to be different
features and counts are produced for each row,

> data.frame(union = assays(summarizeOverlaps(features, reads))$counts,

+ intStrict = assays(summarizeOverlaps(features, reads,

+ mode="IntersectionStrict"))$counts,

+ intNotEmpty = assays(summarizeOverlaps(features, reads,

+ mode="IntersectionNotEmpty"))$counts)

union intStrict intNotEmpty

1 1 0 1

2 1 1 1

3 0 0 0

4 0 0 0

5 0 1 1

6 0 0 0

7 0 0 0

8 0 0 0

9 0 0 0

10 0 0 0

11 0 1 1

12 0 0 0

When the data are split by group to create a GRangesList the highest list-levels
are treated as different features and the multiple list elements are considered
part of the same features. Counts are returned for each group.

5

> lst <- split(features, values(features)[["group_id"]])

> length(lst)

[1] 8

> data.frame(union = assays(summarizeOverlaps(lst, reads))$counts,

+ intStrict = assays(summarizeOverlaps(lst, reads,

+ mode="IntersectionStrict"))$counts,

+ intNotEmpty = assays(summarizeOverlaps(lst, reads,

+ mode="IntersectionNotEmpty"))$counts)

union intStrict intNotEmpty

A 1 0 1

B 1 1 1

C 1 0 1

D 1 1 1

E 0 0 0

F 0 0 0

G 1 1 1

H 1 1 1

If desired, users can supply their own counting function as the mode argument
and take advantage of the infrastructure for counting over multiple BAM files
and parsing the results into a SummarizedExperiment . See ?’BamViews-class’
or ?’BamFile-class’ in Rsamtools.

5 pasilla Data

In this excercise we use the pasilla data to create an ExonCountSet and Count-
DataSet similar to those available in the pasilla data package. These objects
can be used in differential expression methods offered in the DESeq or DEXSeq
packages. Details of read alignment and the creation of the annotaion file are
available in the pasilla package vignette.

5.1 source files

BAM files were downloaded from http://www.embl.de/~reyes/Graveley/bam.
Of the seven files available, 3 are single-reads and 4 are paired-end. summa-

rizeOverlaps does not currently handle paired-end reads so in this example we
use the following 3 single-read files,

• treated1.bam

• untreated1.bam

• untreated2.bam

6

http://www.embl.de/~reyes/Graveley/bam

We use the Dmel.BDGP5.25.62.DEXSeq.chr.gff annotation file created by
the pasilla authors and stored in the /extdata directory of the package. This file
contains non-overlapping exon regions identified as ”exonic part”and a collective
range for the exons identified as ”aggregate gene”. The ”exonic part” ranges will
be used to create the ExonCountSet and the ”aggregate gene” ranges to create
the CountDataSet .

> library(pasilla)

> library(rtracklayer)

> library(Rsamtools)

> gff <- import(system.file("extdata", "Dmel.BDGP5.25.62.DEXSeq.chr.gff",

+ package = "pasilla"), "gff1")

> features <- as(gff, "GRanges")

> head(features[,1])

GRanges with 6 ranges and 1 elementMetadata value:

seqnames ranges strand | type

<Rle> <IRanges> <Rle> | <factor>

[1] chr2L [7529, 9484] + | aggregate_gene

[2] chr2L [7529, 8116] + | exonic_part

[3] chr2L [8193, 8589] + | exonic_part

[4] chr2L [8590, 8667] + | exonic_part

[5] chr2L [8668, 9484] + | exonic_part

[6] chr2L [9836, 21372] - | aggregate_gene

seqlengths:

chr2L ... chrdmel_mitochondrion_genome

NA ... NA

5.2 Exon counts

For counting exons we retain the ranges marked as ”exonic part”. The exon and
gene id’s are extracted from the ’group’ metadata column for later use.

> exons <- features[values(features)[["type"]] == "exonic_part"]

> st <- strsplit(gsub("\"", "", values(exons)[["group"]]), ";")

> exonID <- do.call(c,

+ lapply(st, function(x) {

+ gsub("[^0-9]", "", x[2])}))

> geneID <- do.call(c,

+ lapply(st, function(x) {

+ gsub(" gene_id ", "", x[3])}))

The params argument can be used to subset the reads in the bam file on
characteristics such as position, unmapped or paired-end reads. Quality scores
or the ”NH” tag, which identifies reads with multiple mappings, can be included
as metadata columns for further subsetting. See ?ScanBamParam for details
about specifying the param argument.

7

> param <- ScanBamParam(

+ what='qual',
+ which=GRanges("chr2L", IRanges(1, 1e+6)),

+ flag=scanBamFlag(isUnmappedQuery=FALSE, isPaired=NA))

> bamTag(param) <- "NH"

We use summarizeOverlaps to count with the default mode of ”Union”. If
a param argument is not included all reads from the BAM file are counted.

> fls <- c("treated1.bam", "untreated1.bam", "untreated2.bam")

> path <- "pathToBAMFiles"

> bamFiles <- BamFileList(file.path(paste(path, fls, sep="")))

> se_exons <- summarizeOverlaps(exons, bamFiles, mode="Union")

An ExonCountSet is constructed from the counts and experiment data in pasilla.

> library(DEXSeq)

> expdata = new("MIAME",

+ name="pasilla knockdown",

+ lab="Genetics and Developmental Biology, University of

+ Connecticut Health Center",

+ contact="Dr. Brenton Graveley",

+ title="modENCODE Drosophila pasilla RNA Binding Protein RNAi

+ knockdown RNA-Seq Studies",

+ url="http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE18508",

+ abstract="RNA-seq of 3 biological replicates of from the Drosophila

+ melanogaster S2-DRSC cells that have been RNAi depleted of mRNAs

+ encoding pasilla, a mRNA binding protein and 4 biological replicates

+ of the the untreated cell line.")

> pubMedIds(expdata) <- "20921232"

> design <- data.frame(

+ condition=c("treated", "untreated", "untreated"),

+ replicate=c(1,1,2),

+ type=rep("single-read", 3),

+ countfiles=colData(se_exons)[,1], stringsAsFactors=TRUE)

> pasillaECS <- newExonCountSet(

+ countData=assays(se_exons)$counts,

+ design=design,

+ exonIDs=factor(exonID),

+ geneIDs=factor(geneID))

> experimentData(pasillaECS) <- expdata

> sampleNames(pasillaECS) = colnames(se_exons)

5.3 Gene counts

The CountDataSet will hold counts for the aggregate gene regions. The counts
can be obtained by summing the exon hits by gene id using geneCountTable in
DEXSeq,

8

> genetable = geneCountTable(pasillaECS)

> pasillaCDS = newCountDataSet(countData=genetable, conditions=design)

> experimentData(pasillaCDS) = expdata

If the primary interest was in counts per gene and counts per exon were not
needed an alternative approach could be taken. The annotation file could be
subset on ”aggregate gene” ranges and then counted.

> genes <- features[values(features)[["type"]] == "aggregate_gene"]

> se_genes <- summarizeOverlaps(genes, bamFiles, mode="Union")

> pasillaCDS_alt <- newCountDataSet(countData=assays(se_genes)$counts,

+ conditions=design)

> experimentData(pasillaCDS_alt) = expdata

6 Refererences

http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html http:

//www-huber.embl.de/users/anders/HTSeq/doc/count.html

9

http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
http://www-huber.embl.de/users/anders/HTSeq/doc/count.html
http://www-huber.embl.de/users/anders/HTSeq/doc/count.html

	Introduction
	A First Example
	Counting Modes
	Counting Features
	pasilla Data
	source files
	Exon counts
	Gene counts

	Refererences

