gaga

March 24, 2012

buildPatterns

Build a matrix with all possible patterns given a number of groups where samples may belong to.

Description

Creates a matrix indicating which groups are put together under each pattern. The number of possible patterns increases very fast as the number of groups increases. This function provides an easy way to compute all possible patterns. The output of this function is usually used for the patterns parameter of the lmFit function.

Usage

buildPatterns (groups)

Arguments

groups

Character containing the names of the groups at which samples may belong to. If the output of the function is going to be used in fitGG it must match the group levels specified in the groups parameter that will be given to fitGG.

Examples

```
buildPatterns(groups=c('GroupControl','GroupA','GroupB'))
```

checkfit

Check goodness-of-fit of GaGa and MiGaGa models

Description

Produces plots to check fit of GaGa and MiGaGa model. Compares observed data with posterior predictive distribution of the model. Can also compare posterior distribution of parameters with method of moments estimates.

Usage

```
checkfit(gg.fit, x, groups, type='data', logexpr=FALSE, xlab, ylab, main, lty, l
```

2 checkfit

Arguments

gg.fit	GaGa or MiGaGa fit (object of type gagafit, as returned by fitGG).
X	ExpressionSet, exprSet, data frame or matrix containing the gene expression measurements used to fit the model.
groups	If x is of type <code>ExpressionSet</code> or <code>exprSet</code> , <code>groups</code> should be the name of the column in <code>pData(x)</code> with the groups that one wishes to compare. If x is a matrix or a data frame, <code>groups</code> should be a vector indicating to which group each column in x corresponds to.
type	data checks marginal density of the data; shape checks shape parameter; mean checks mean parameter; shapemean checks the joint of shape and mean parameters
logexpr	If set to TRUE, the expression values are in log2 scale.
xlab	Passed on to plot
ylab	Passed on to plot
main	Passed on to plot
lty	Ignored.
lwd	Ignored.
	Other arguments to be passed to plot

Details

The routine generates random draws from the posterior and posterior predictive distributions, fixing the hyper-parameters at their estimated value (posterior mean if model was fit with method=='Bayes' or maximum likelihood estimate is model was fit with method=='Bayes').

Value

Produces a plot.

Note

Posterior and posterior predictive checks can lack sensitivity to detect model misfit, since they are susceptible to over-fitting. An alternative is to perform prior predictive checks by generating parameters and data with simGG.

Author(s)

David Rossell

References

Rossell D. GaGa: a simple and flexible hierarchical model for microarray data analysis. http://rosselldavid.googlepages.com.

See Also

simGG to simulate samples from the prior-predictive distribution, simnewsamples to generate parameters and observations from the posterior predictive, which is useful to check goodness-of-fit individually a desired gene.

classpred 3

classpred Predict the class that a new sample belongs to.	classpred	Predict the class that a new sample belongs to.	
---	-----------	---	--

Description

Computes the posterior probability that a new sample belongs to each group and classifies it into the group with highest probability.

Usage

```
classpred(gg.fit, xnew, x, groups, prgroups, ngene=100)
```

Arguments

gg.fit	GaGa or MiGaGa fit (object of type gagafit, as returned by fitGG).
xnew	Expression levels of the sample to be classified. Only the subset of the genes indicated by ngene is used.
X	ExpressionSet, exprSet, data frame or matrix containing the gene expression measurements used to fit the model.
groups	If x is of type <code>ExpressionSet</code> or <code>exprSet</code> , <code>groups</code> should be the name of the column in <code>pData(x)</code> with the groups that one wishes to compare. If x is a matrix or a data frame, <code>groups</code> should be a vector indicating to which group each column in x corresponds to.
prgroups	Vector specifying prior probabilities for each group. Defaults to equally probable groups.
ngene	Number of genes to use to build the classifier. Genes with smaller probability of being equally expressed are selected first.

Details

The classifier weights each gene according to the posterior probability that it is differentially expressed. Hence, adding genes that are unlikely to be differentially expressed does not affect the performance of the classifier, but it does increase the computational cost. All computations are performed by fixing the hyper-parameters to their estimated value (posterior mean if model was fit with method=='Bayes').

Value

List with the following elements:

d	Numeric value indicating the group that the new sample is classified into, i.e. where the maximum in posgroups is.
posgroups	Vector giving the posterior probability that the xnew belongs to each of the groups.

Author(s)

David Rossell

4 degamma

References

Rossell D. GaGa: a simple and flexible hierarchical model for microarray data analysis. http://rosselldavid.googlepages.com.

See Also

```
fitGG, parest
```

Examples

```
#Not run. Example from the help manual
#library(gaga)
#set.seed(10)
#n <- 100; m <- c(6,6)
#a0 <- 25.5; nu <- 0.109
#balpha <- 1.183; nualpha <- 1683
#probpat <- c(.95,.05)
#xsim <- simGG(n,m,p.de=probpat[2],a0,nu,balpha,nualpha)
#
#ggfit <- fitGG(xsim$x[,c(-6,-12)],groups,patterns=patterns,nclust=1)
#ggfit <- parest(ggfit,x=xsim$x[,c(-6,-12)],groups,burnin=100,alpha=.05)
#
#pred1 <- classpred(ggfit,xnew=xsim$x[,6],x=xsim$x[,c(-6,-12)],groups)
#pred2 <- classpred(ggfit,xnew=xsim$x[,12],x=xsim$x[,c(-6,-12)],groups)
#pred1
#pred2</pre>
```

dcgamma

Approximate gamma shape distribution

Description

degamma approximates density of a gamma shape distribution with a gamma density. regamma obtains random draws from the approximation. megamma computes approximated mean, variance and normalization constant.

Usage

```
dcgamma(x, a, b, c, d, r, s, newton = TRUE) rcgamma(n, a, b, c, d, r, s, newton = TRUE) mcgamma(a, b, c, d, r, s, newton = TRUE)
```

Arguments

x Vector indicating the values at which to evaluate the density.

n Number of random draws to obtain.

a, b, c, d, r, s Parameter values.

newton Set to TRUE to try to locate the mode by taking a few Newton-Raphson steps.

findgenes 5

Details

The density of a gamma shape distribution is given by C (a,b,c,d,r,s) (gamma (a*x+d) /gamma (x) ^a) (x/(r+s*x)) ^{a*x+d} x^{b-d-1} exp(-x*c) for x>=0, and 0 otherwise, where C () is the normalization constant. The gamma approximation is Ga (a/2+b-1/2, c+a*log(s/a)). The approximate normalization constant is obtained by taking the ratio of the exact density and the approximation at the maximum, as described in Rossell (2007).

Value

degamma returns a vector with approximate density. regamma returns a vector with draws from the approximating gamma. megamma returns a list with components:

m Approximate mean
v Approximate variance

normk Approximate normalization constant

Note

For general values of the parameters the gamma approximation may be poor. In such a case one could use this function to obtain draws from the proposal distribution in a Metropolis-Hastings step.

Author(s)

David Rossell

References

Rossell D. GaGa: a simple and flexible hierarchical model for microarray data analysis. http://rosselldavid.googlepages.com.

See Also

dgamma, rgamma

findgenes

Find differentially expressed genes after GaGa fit.

Description

Obtains a list of differentially expressed genes using the posterior probabilities from a GaGa or MiGaGa fit. For parametric==TRUE the procedure controls the Bayesian FDR below fdrmax. For parametric==FALSE it controls the estimated frequentist FDR.

Usage

```
findgenes(gg.fit, x, groups, fdrmax=.05, parametric=TRUE, B=500)
```

6 findgenes

Arguments

gg.fit GaGa or MiGaGa fit (object of type gagafit, as returned by fitGG).

x ExpressionSet, exprSet, data frame or matrix containing the gene ex-

pression measurements used to fit the model.

groups If x is of type <code>ExpressionSet</code> or <code>exprSet</code>, groups should be the name

of the column in pData (x) with the groups that one wishes to compare. If x is a matrix or a data frame, groups should be a vector indicating to which group

each column in x corresponds to.

fdrmax Upper bound on FDR..

parametric Set to TRUE to use the Bayes rule. Set to FALSE to estimate the frequentist

FDR non-parametrically.

B Number of boostrap samples to estimate FDR non-parametrically (ignored if

parametric==TRUE)

Details

The Bayes rule to minimize expected FNR subject to FDR <=fdrmax declares differentially expressed all genes with posterior probability of being equally expressed below a certain threshold. The value of the threshold is computed exactly for parametric==TRUE, FDR being defined in a Bayesian sense. For parametric==FALSE the FDR is defined in a frequentist sense.

Value

List with components:

truePos Expected number of true positives.

d Vector indicating the pattern that each gene is assigned to.

fdr Frequentist estimated FDR that is closest to fdrmax.

fdrpar Bayesian FDR. If parametric==TRUE, this is equal to fdrmax. If parametric==FALSE,

it's the Bayesian FDR needed to achieve frequentist estimated FDR=fdrmax.

fdrest Data frame with estimated frequentist FDR for each target Bayesian FDR

fnr Bayesian FNR

power Bayesian power as estimated by expected number of true positives divided by

the expected number of differentially expressed genes

threshold Optimal threshold for posterior probability of equal expression (genes with prob-

ability < threshold are declared DE)

Author(s)

David Rossell

References

Rossell D. GaGa: a simple and flexible hierarchical model for microarray data analysis. http://rosselldavid.googlepages.com.

See Also

fitGG, parest

fitGG 7

Examples

```
#Not run. Example from the help manual
#library(gaga)
#set.seed(10)
#n <- 100; m <- c(6,6)
#a0 <- 25.5; nu <- 0.109
#balpha <- 1.183; nualpha <- 1683
#probpat <- c(.95,.05)
#xsim <- simGG(n,m,p.de=probpat[2],a0,nu,balpha,nualpha)
#
#ggfit <- fitGG(xsim$x[,c(-6,-12)],groups,patterns=patterns,nclust=1)
#ggfit <- parest(ggfit,x=xsim$x[,c(-6,-12)],groups,burnin=100,alpha=.05)
#
#d <- findgenes(ggfit,xsim$x[,c(-6,-12)],groups,fdrmax=.05,parametric=TRUE)
#dtrue <- (xsim$1[,1]!=xsim$1[,2])
#table(d$d,dtrue)</pre>
```

fitGG

Fit GaGa hierarchical model

Description

Fits GaGa or MiGaGa hierarchical models, either via a fully Bayesian approach or via maximum likelihood.

Usage

```
fitGG(x, groups, patterns, equalcv = TRUE, nclust = 1, method = "quickEM", B, pr
```

Arguments

Х	ExpressionSet, exprSet, data frame or matrix containing the gene expression measurements used to fit the model.
groups	If x is of type <code>ExpressionSet</code> or <code>exprSet</code> , <code>groups</code> should be the name of the column in <code>pData(x)</code> with the groups that one wishes to compare. If x is a matrix or a data frame, <code>groups</code> should be a vector indicating to which group each column in x corresponds to.
patterns	Matrix indicating which groups are put together under each pattern, i.e. the hypotheses to consider for each gene. colnames (patterns) must match the group levels specified in groups. Defaults to two hypotheses: null hypothesis of all groups being equal and full alternative of all groups being different. The function buildPatterns can be used to construct a matrix with all possible patterns.
equalcv	equalcv==TRUE fits model assuming constant CV across groups. equalcv==FALSE compares cv as well as mean expression levels between groups
nclust	Number of clusters in the MiGaGa model. nclust corresponds to the GaGa model.
method	method=='MH' fits a fully Bayesian model via Metropolis-Hastings posterior sampling. method=='Gibbs' does the same using Gibbs sampling. method=='SA' uses Simulated Annealing to find the posterior mode. method=='EM'

8 fitGG

> finds maximum-likelihood estimates via the expectation-maximization algorithm, but this is currently only implemented for nclust>1. method=='quickEM' is a quicker implementation that only performs 2 optimization steps (see details). Number of iterations. For method=='MH' and method=='Gibbs', B is the number of MCMC iterations (defaults to 1000). For method=='SA', B is the

> number of iterations in the Simulated Annealing scheme (defaults to 200). For method==' EM', B is the maximum number of iterations (defaults to 20).

List with prior parameter values. It must have components a .alpha0, b .alpha0, a .nu, b .nu, a priorpar

and p.probpat. If missing they are set to non-informative values that are usu-

ally reasonable for RMA and GCRMA normalized data.

list with components a0, nu, balpha, nualpha, probclus and probpat parini

indicating the starting values for the hyper-parameters. If not specified, a method

of moments estimate is used.

trace For trace==TRUE the progress of the model fitting routine is printed.

Details

В

An approximation is used to sample faster from the posterior distribution of the gamma shape parameters and to compute the normalization constants (needed to evaluate the likelihood). These approximations are implemented in regamma and megamma.

The cooling scheme in method=='SA' uses a temperature equal to 1/log(1+i), where i is the iteration number.

The EM implementation in method=='quickEM' is a quick EM algorithm that usually delivers hyper-parameter estimates very similar to those obtained via the slower method==' EM'. Additionally, the GaGa model inference has been seen to be robust to moderate changes in the hyperparameter estimates in most datasets.

Value

An object of class gagafit, with components

Hyper-parameter estimates. Only returned if method=='EBayes', for method=='Bayes' parest

one must call the function parest after fitGG

Object of class mcmc with posterior draws for hyper-parameters. Only returned mcmc

if method=='Bayes'.

For method==' Bayes' it is the log-likelihood evaluated at each MCMC iterlhood

ation. For method==' EBayes' it is the log-likelihood evaluated at the max-

imum.

Same as input argument. nclust

Same as input argument, converted to object of class gagahyp. patterns

Author(s)

David Rossell

References

Rossell D. GaGa: a simple and flexible hierarchical model for microarray data analysis. http: //rosselldavid.googlepages.com.

forwsimDiffExpr 9

See Also

parest to estimate hyper-parameters and compute posterior probabilities after a GaGa or MiGaGa fit. findgenes to find differentially expressed genes. classpred to predict the group that a new sample belongs to.

Examples

```
library(gaga)
set.seed(10)
n <- 100; m <- c(6,6)
a0 <- 25.5; nu <- 0.109
balpha <- 1.183; nualpha <- 1683
probpat <- c(.95,.05)
xsim <- simGG(n,m,p.de=probpat[2],a0,nu,balpha,nualpha,equalcv=TRUE)
x <- exprs(xsim)

#Frequentist fit: EM algorithm to obtain MLE
groups <- pData(xsim)$group[c(-6,-12)]
patterns <- matrix(c(0,0,0,1),2,2)
colnames(patterns) <- c('group 1','group 2')
gg1 <- fitGG(x[,c(-6,-12)],groups,patterns=patterns,method='EM',trace=FALSE)
gg1 <- parest(gg1,x=x[,c(-6,-12)],groups)
gg1</pre>
```

forwsimDiffExpr

Forward simulation for differential expression.

Description

Forward simulation allows to evaluate the expected utility for sequential designs. Here the utility is the expected number of true discoveries minus a sampling cost. The routine simulates future data either from the prior predictive or using a set of pilot data and a GaGa model fit. At each future time point, it computes a summary statistic that will be used to determine when to stop the experiment.

Usage

```
forwsimDiffExpr(gg.fit, x, groups, ngenes, maxBatch, batchSize, fdrmax = 0.05, g
Bsummary = 100, trace = TRUE, randomSeed)
```

Arguments

gg.fit	GaGa or MiGaGa fit (object of type gagafit, as returned by fitGG).
х	ExpressionSet, exprSet, data frame or matrix containing the gene expression measurements used to fit the model.
groups	If x is of type <code>ExpressionSet</code> or <code>exprSet</code> , <code>groups</code> should be the name of the column in <code>pData(x)</code> with the groups that one wishes to compare. If x is a matrix or a data frame, <code>groups</code> should be a vector indicating to which group each column in x corresponds to.
ngenes	Number of genes to simulate data for. If x is specified this argument is set to $nrow(x)$ and data is simulated from the posterior predictive conditional on x . If x not specified simulation is from the prior predictive.

10 forwsimDiffExpr

maxBatch Maximum number of batches, i.e. the routine simulates batchSize*maxBatch samples per group. batchSize Batch size, i.e. number of observations per group to simulate at each time point. Defaults to ncol(x)/length(unique(groups)). fdrmax Upper bound on FDR. Only the genelimit genes with the lowest probability of being equally exgenelimit pressed across all groups will be simulated. Setting this limit can significantly increase the computational speed. Only genes with posterior probability of being equally expressed < v0thre v0thre will be simulated. Setting this limit can significantly increase the computational speed. Number of forward simulations. В Number of simulations for estimating the summary statistic. Bsummary

For trace==TRUE iteration progress is displayed. trace

randomSeed Integer value used to set random number generator seed. Defaults to as .numeric (Sys.time())

modulus 10^6.

Details

To improve computational speed hyper-parameters are not re-estimated as new data is simulated.

Value

A data.frame with the following columns:

Simulation number. simid Time (sample size). j

Expected number of true positives if we were to stop experimentation at this 11

time.

fdr Expected FDR if we were to stop experimentation at this time. Expected FNR if we were to stop experimentation at this time. fnr

Expected power (as estimated by E(TP)/E(positives)) if we were to stop experipower

mentation at this time.

summary Summary statistic: increase in expected true positives if we were to obtain one

more data batch.

Author(s)

David Rossell.

References

Rossell D., Mueller P. Sequential sample sizes for high-throughput hypothesis testing experiments. http://sites.google.com/site/rosselldavid/home.

Rossell D. GaGa: a simple and flexible hierarchical model for microarray data analysis. Annals of Applied Statistics, 2009, 3, 1035-1051.

geneclus 11

See Also

fitGG for fitting a GaGa model, seqBoundariesGrid for finding the optimal design based on the forwards simulation output. powfindgenes for fixed sample size calculations.

Examples

```
#Simulate data and fit GaGa model
set.seed(1)
x <- simGG(n=20, m=2, p.de=.5, a0=3, nu=.5, balpha=.5, nualpha=25)
gg1 <- fitGG(x,groups=1:2,method='EM')</pre>
gg1 <- parest(gg1,x=x,groups=1:2)
#Run forward simulation
fs1 <- forwsimDiffExpr(gg1, x=x, groups=1:2,
maxBatch=2,batchSize=1,fdrmax=0.05, B=100, Bsummary=100, randomSeed=1)
#Expected number of true positives for each sample size
tapply(fs1$u,fs1$time,'mean')
#Expected utility for each sample size
samplingCost <- 0.01</pre>
tapply(fs1$u,fs1$time,'mean') - samplingCost*(0:2)
#Optimal sequential design
b0seq <- seq(0,20,length=200); b1seq <- seq(0,40,length=200)
bopt <-seqBoundariesGrid(b0=b0seq,b1=b1seq,forwsim=fs1,samplingCost=samplingCost,powmin=0
bopt <- bopt$opt
plot(fs1$time,fs1$u,xlab='Additional batches',ylab='E(newly discovered DE genes)')
abline(bopt['b0'],bopt['b1'])
text(.2,bopt['b0'],'Continue',pos=3)
text(.2,bopt['b0'],'Stop',pos=1)
```

geneclus

Cluster genes into expression patterns.

Description

Performs supervised gene clustering. Clusters genes into the expression pattern with highest posterior probability, according to a GaGa or MiGaGa fit.

Usage

```
geneclus(gg.fit, method='posprob')
```

Arguments

gg.fit GaGa or MiGaGa fit (object of type gagafit, as returned by fitGG).

method

For method==1 samples are assigned to pattern with highest posterior probability, and for method==1 to the pattern with highest likelihood (e.g. assuming equal a priori prob for all patterns)

12 getpar

Details

Each gene is assigned to the pattern with highest posterior probability. This is similar to routine findgenes, which also assigns genes to the pattern with highest posterior probability, although findgenes applies an FDR-based correction i.e. tends to assign more genes to the null pattern of no differential expression.

Value

List with components:

d Vector indicating the pattern that each gene is assigned to.

posprob Vector with posterior probabilities of the assigned patterns.

Author(s)

David Rossell

References

Rossell D. GaGa: a simple and flexible hierarchical model for microarray data analysis. http://rosselldavid.googlepages.com.

See Also

```
fitGG, parest
```

Examples

```
#Not run. Example from the help manual
#library(gaga)
#set.seed(10)
#n <- 100; m <- c(6,6)
#a0 <- 25.5; nu <- 0.109
#balpha <- 1.183; nualpha <- 1683
#probpat <- c(.95,.05)
#xsim <- simGG(n,m,p.de=probpat[2],a0,nu,balpha,nualpha)
#
#ggfit <- fitGG(xsim$x[,c(-6,-12)],groups,patterns=patterns,nclust=1)
#ggfit <- parest(ggfit,x=xsim$x[,c(-6,-12)],groups,burnin=100,alpha=.05)
#
#dclus <- geneclus(ggfit)  #not use FDR correction
#dfdr <- findgenes(ggfit,xsim$x[,c(-6,-12)],groups,fdrmax=.05,parametric=TRUE)  #use FDR correction
#dfdr <- findgenes(ggfit,xsim$x[,c(-6,-12)],groups,fdrmax=.05,parametric=TRUE)  #use FDR correction</pre>
```

getpar

Extract hyper-parameter estimates from a gagafit object

Description

Extracts the hyper-parameter estimates from a gagafit object and puts them in a list.

parest 13

Usage

```
getpar(gg.fit)
```

Arguments

gg.fit Object of class gagafit, as returned by parest.

Details

This routine simply evaluates the component gg.fit\$parest from a gagafit object, which causes an error if this component is not available. This routine is used internally by a number of other routines.

Value

A list with components:

a0 Estimated value of hyper-parameter a0
nu Estimated value of hyper-parameter nu
balpha Estimated value of hyper-parameter balpha
nualpha Estimated value of hyper-parameter nualpha

probclus Estimated cluster probabilities

probpat Estimated prior probability of each expression pattern

Author(s)

David Rossell

References

Rossell D. GaGa: a simple and flexible hierarchical model for microarray data analysis. http://rosselldavid.googlepages.com.

See Also

```
fitGG, parest
```

parest	Parameter estimates and posterior probabilities of differential expres-
	sion for GaGa and MiGaGa model

Description

Obtains parameter estimates and posterior probabilities of differential expression after a GaGa or MiGaGa model has been fit with the function fitGG.

Usage

```
parest(gg.fit, x, groups, burnin, alpha=.05)
```

14 parest

Arguments

gg.fit	GaGa or MiGaGa fit (object of type gagafit, as returned by fitGG).
х	ExpressionSet, exprSet, data frame or matrix containing the gene expression measurements used to fit the model.
groups	If x is of type <code>ExpressionSet</code> or <code>exprSet</code> , <code>groups</code> should be the name of the column in <code>pData(x)</code> with the groups that one wishes to compare. If x is a matrix or a data frame, <code>groups</code> should be a vector indicating to which group each column in x corresponds to.
burnin	Number of MCMC samples to discard. Ignored if gg.fit was fit with the option method=='EBayes'.
alpha	If gg.fit was fit with the option method=='Bayes', parest also computes 1-alpha posterior credibility intervals.

Details

If gg.fit was fit via MCMC posterior sampling (option method=='Bayes'), parest discards the first burnin iterations and uses the rest to obtain point estimates and credibility intervals for the hyper-parameters. To compute posterior probabilities of differential expression the hyper-parameters are fixed to their estimated value, i.e. not averaged over MCMC iterations.

Value

An object of class gagafit, with components:

parest	Hyper-parameter estimates.
mcmc	Object of class meme with posterior draws for hyper-parameters. Only returned if method==' Bayes'.
lhood	For method=='Bayes' it is the posterior mean of the log-likelihood. For method=='EBayes' it is the log-likelihood evaluated at the maximum.
nclust	Number of clusters.
patterns	Object of class gagahyp indicating which hypotheses (expression patterns) were tested.
pp	Matrix with posterior probabilities of differential expression for each gene. Genes are in rows and expression patterns are in columns (e.g. for 2 hypotheses, 1st column is the probability of the null hypothesis and 2nd column for the alternative).

Author(s)

David Rossell

References

Rossell D. GaGa: a simple and flexible hierarchical model for microarray data analysis. http://rosselldavid.googlepages.com.

See Also

fitGG to fit a GaGa or MiGaGa model, findgenes to find differentially expressed genes and posmeansGG to obtain posterior expected expression values. classpred performs class prediction.

posmeansGG 15

Examples

```
#Not run
#library(EBarrays); data(gould)
#x <- log(exprs(gould)[,-1])  #exclude 1st array
#groups <- pData(gould)[-1,1]
#patterns <- rbind(rep(0,3),c(0,0,1),c(0,1,1),0:2) #4 hypothesis
#gg <- fitGG(x,groups,patterns,method='EBayes')
#gg
#gg <- parest(gg,x,groups)
#gg</pre>
```

posmeansGG

Gene-specific posterior means

Description

Computes posterior means for the gene expression levels using a GaGa or MiGaGa model.

Usage

```
posmeansGG(gg.fit, x, groups, sel, underpattern)
```

Arguments

gg.fit	GaGa or MiGaGa fit (object of type gagafit, as returned by fitGG).
Х	ExpressionSet, exprSet, data frame or matrix containing the gene expression measurements used to fit the model.
groups	If x is of type <code>ExpressionSet</code> or <code>exprSet</code> , <code>groups</code> should be the name of the column in <code>pData(x)</code> with the groups that one wishes to compare. If x is a matrix or a data frame, <code>groups</code> should be a vector indicating to which group each column in x corresponds to.
sel	Numeric vector with the indexes of the genes we want to draw new samples for (defaults to all genes). If a logical vector is indicated, it is converted to (1:nrow(x))[sel].
underpattern	Expression pattern assumed to be true (defaults to last pattern in gg.fit\$patterns). Posterior means are computed under this pattern. For example, if only the null pattern that all groups are equal and the full alternative that all groups are different are considered, underpattern=1 returns the posterior means under the assumption that groups are different from each other (underpattern=0 returns the same mean for all groups).

Details

The posterior distribution of the mean parameters actually depends on the gene-specific shape parameter(s), which is unknown. To speed up computations, a gamma approximation to the shape parameter posterior is used (see regamma for details) and the shape parameter is fixed to its mode a posteriori.

Value

Matrix with mean expression values a posteriori, for each selected gene and each group. Genes are in rows and groups in columns.

16 powclasspred

Author(s)

David Rossell

References

Rossell D. GaGa: a simple and flexible hierarchical model for microarray data analysis. http://rosselldavid.googlepages.com.

See Also

fitGG for fitting GaGa and MiGaGa models, parest for computing posterior probabilities of each expression pattern.

powclasspred	Expected probability that a future sample is correctly classified.
--------------	--

Description

Estimates posterior expected probability that a future sample is correctly classified when performing class prediction. The estimate is obtained via Monte Carlo simulation from the posterior predictive.

Usage

```
powclasspred(gg.fit, x, groups, prgroups, v0thre=1, ngene=100, B=100)
```

Arguments

gg.fit	GaGa or MiGaGa fit (object of type gagafit, as returned by fitGG).
х	ExpressionSet, exprSet, data frame or matrix containing the gene expression measurements used to fit the model.
groups	If x is of type <code>ExpressionSet</code> or <code>exprSet</code> , <code>groups</code> should be the name of the column in <code>pData(x)</code> with the groups that one wishes to compare. If x is a matrix or a data frame, <code>groups</code> should be a vector indicating to which group each column in x corresponds to.
prgroups	Vector specifying prior probabilities for each group. Defaults to equally probable groups.
v0thre	Only genes with posterior probability of being equally expressed below $\verb"v0thre"$ are used.
ngene	Number of genes to use to build the classifier. Genes with smaller probability of being equally expressed are selected first.

powfindgenes 17

Details

The routine simulates future samples (microarrays) from the posterior predictive distribution of a given group (e.g. control/cancer). Then it computes the posterior probability that the new sample belongs to each of the groups and classifies the sample into the group with highest probability. This process is repeated B times, and the proportion of correctly classified samples is reported for each group. The standard error is obtained via the usual normal approximation (i.e. SD/B). The overall probability of correct classification is also provided (i.e. for all groups together), but using a more efficient variant of the algorithm. Instead of reporting the observed proportion of correctly classified samples, it reports the expected proportion of correctly classified samples (i.e. the average posterior probability of the class that the sample is assigned to).

Value

List with components:

ccall	Estimated expected probability of correctly classifying a future sample.
seccall	Estimated standard error of ccall.
ccgroup	Vector with the estimated probability of correctly classifying a sample from each group.
segroup	Estimated standard error of cogroup.

Author(s)

David Rossell

References

Rossell D. GaGa: a simple and flexible hierarchical model for microarray data analysis. http://rosselldavid.googlepages.com.

See Also

classpred, fitGG, parest. See powfindgenes for differential expression power calculations.

powfindgenes	Power computations for differential expression	
powiinagenes	Power computations for differential expression	

Description

powfindgenes evaluates the posterior expected number of true positives (e.g. true gene discoveries) if one were to obtain an additional batch of data. It uses a gaga model fit based on a set of pilot data.

Usage

```
powfindgenes(gg.fit, x, groups, batchSize = 1, fdrmax = 0.05, genelimit, v0thre
```

18 powfindgenes

Arguments

gg.fit	GaGa or MiGaGa fit (object of type gagafit, as returned by fitGG).
Х	ExpressionSet, exprSet, data frame or matrix containing the gene expression measurements used to fit the model.
groups	If x is of type <code>ExpressionSet</code> or <code>exprSet</code> , <code>groups</code> should be the name of the column in <code>pData(x)</code> with the groups that one wishes to compare. If x is a matrix or a data frame, <code>groups</code> should be a vector indicating to which group each column in x corresponds to.
batchSize	Number of additional samples to obtain per group.
fdrmax	Upper bound on FDR
genelimit	Only the genelimit genes with the lowest probability of being equally expressed across all groups will be simulated. Setting this limit can significantly increase the computational speed.
v0thre	Only genes with posterior probability of being equally expressed < v0thre will be simulated. Setting this limit can significantly increase the computational speed.
В	Number of simulations from the GaGa predictive distribution to be used to esti-

Details

The routine simulates data from the posterior predictive distribution of a GaGa model. That is, first it simulates parameter values (differential expression status, mean expression levels etc.) from the posterior distribution. Then it simulates data using Gamma distributions and the parameter values drawn from the posterior. Finally the simulated data is used to determine the differential status of each gene, controlling the Bayesian FDR at the fdrmax level, as implemented in findgenes. As the differential expression status is known for each gene, one can evaluate the number of true discoveries in the reported gene list.

mate the posterior expected number of true positives.

Value

m	Posterior expected number of true positives (as estimated by the sample mean of \ensuremath{B} simulations)
S	Standard error of the estimate i.e. SD of the simulations/sqrt(B)

Author(s)

David Rossell

References

Rossell D. GaGa: a simple and flexible hierarchical model for microarray data analysis. http://rosselldavid.googlepages.com.

See Also

findgenes, fitGG, parest. See powclasspred for power calculations for sample classification.

print.gagaclus 19

Examples

```
#Simulate data and fit GaGa model
set.seed(1)
x <- simGG(n=20,m=2,p.de=.5,a0=3,nu=.5,balpha=.5,nualpha=25)
gg1 <- fitGG(x,groups=1:2,method='EM')
gg1 <- parest(gg1,x=x,groups=1:2)

#Expected nb of TP for 1 more sample per group
powfindgenes(gg1,x=x,groups=1:2,batchSize=1,fdrmax=.05)$m

#Expected nb of TP for 10 more samples per group
powfindgenes(gg1,x=x,groups=1:2,batchSize=10,fdrmax=.05)$m</pre>
```

print.gagaclus

Print an object of class gagaclus

Description

Prints an object of class gagaclus, which contains the result of clustering genes into expression patterns.

Usage

```
## S3 method for class 'gagaclus'
print(x, ...)
```

Arguments

x Object of type gagaclus.

... Other arguments to be passed on to the generic print function.

Value

Displays the expression patterns and the number of genes classified into each of them.

Author(s)

David Rossell

References

Rossell D. GaGa: a simple and flexible hierarchical model for microarray data analysis. http://rosselldavid.googlepages.com.

See Also

```
fitGG, geneclus
```

20 print.gagafit

```
print.gagafit
```

Print an object of class gagafit

Description

Prints an object of class gagafit, as returned by fitGG or parest. Provides general information and hyper-parameter estimates, if available.

Usage

```
## S3 method for class 'gagafit'
print(x,...)
```

Arguments

- x Object of type gagafit, as returned by fitGG or parest.
- ... Other arguments to be passed on to the generic print function.

Details

fitGG does not create a complete gagafit object. The complete object is returned by parest, which computes the posterior probabilities of differential expression and obtain hyper-parameter estimates (these are only provided by fitGG when the option method='EBayes' is used).

Value

Prints number of genes, hypotheses, details about the model fitting and hyper-parameter estimates (when available).

Author(s)

David Rossell

References

Rossell D. GaGa: a simple and flexible hierarchical model for microarray data analysis. http://rosselldavid.googlepages.com.

See Also

```
fitGG, parest
```

print.gagahyp 21

print.gagahyp

Print an object of class gagahyp

Description

Prints an object of class gagahyp, which contains information on the hypotheses (expression patterns) from a GaGa or MiGaGa model.

Usage

```
## S3 method for class 'gagahyp'
print(x, probpat=NA, ...)
```

Arguments

x Object of type gagahyp.

probpat Vector with either estimated probabilities of each hypothesis, or with number of

genes classified into each expression pattern.

... Other arguments to be passed on to the generic print function.

Value

Prints hypotheses. When available, also displays estimated proportion of genes following each expression pattern or the number of genes classified into each expression pattern.

Author(s)

David Rossell

References

Rossell D. GaGa: a simple and flexible hierarchical model for microarray data analysis. http://rosselldavid.googlepages.com.

See Also

```
fitGG, geneclus
```

seqBoundariesGrid Evaluate expected utility for parametric sequential stopping boundaries.

Description

Estimate the expected utility for sequential boundaries parameterized by (b0,b1). Expected utility is estimated on a grid of (b0,b1) values based on a forward simulation output such as that generated by the function forwsimDiffExpr.

22 seqBoundariesGrid

Usage

seqBoundariesGrid(b0, b1, forwsim, samplingCost, powmin = 0, f = "linear", ineq

Arguments

b0 Vector with b0 values. Expected utility is evaluated for a grid defined by all

combinations of (b0,b1) values.

b1 Vector with b1 values.

forwsim data.frame with forward simulation output, such as that returned by the

function forwsimDiffExpr. It must have columns named simid, time, u, fdr, fnr, power and summary. See forwsimDiffExpr for details on

the meaning of each column.

samplingCost Cost of obtaining one more data batch, in terms of the number of new truly

differentially expressed discoveries that would make it worthwhile to obtain one

more data batch.

powmin Constraint on power. Optimization chooses the optimal b0, b1 satisfying power>=powermin

(if such b0,b1 exists).

f Parametric form for the stopping boundary. Currently only 'linear' and 'invsqrt'

are implemented. For 'linear', the boundary is b0+b1*time. For 'invsqrt', the boundary is b0+b1/sqrt (time), where time is the sample size measured as

number of batches.

ineq For ineq=='less' the trial stops when summary is below the stopping

boundary. This is appropriate whenever summary measures the potential benefit of obtaining one more data batch. For ineq=='greater' the trial stops when summary is above the stopping boundary. This is approapriate whenever

summary measures the potential costs of obtaining one more data batch.

Details

Intuitively, the goal is to stop collecting new data when the expected benefit of obtaining one more data batch is small, i.e. below a certain boundary. We consider two simple parametric forms for such a boundary (linear and inverse square root), which allows to easily evaluate the expected utility for each boundary within a grid of parameter values. The optimal boundary is defined by the parameter values achieving the largest expected utility, restricted to parameter values with an estimated power greater or equal than powmin. Here power is defined as the expected number of true discoveries divided by the expected number of differentially expressed entities.

The routine evaluates the expected utility, as well as expected FDR, FNR, power and sample size for each specified boundary, and also reports the optimal boundary.

Value

A list with two components:

opt Vector with optimal stopping boundary (b), estimated expected utility (u), false

discovery rate (fdr), false negative rate (fnr), power (power) and the ex-

pected sample size measured as the number of batches (time).

grid data.frame with all evaluated boundaries (columns b0 and b1) and their

respective estimated expected utility, false discovery rate, false negative rate,

power and expected sample size (measured as the number of batches).

simGG 23

Author(s)

David Rossell.

References

Rossell D., Mueller P. Sequential sample sizes for high-throughput hypothesis testing experiments. http://sites.google.com/site/rosselldavid/home.

Rossell D. GaGa: a simple and flexible hierarchical model for microarray data analysis. Annals of Applied Statistics, 2009, 3, 1035-1051.

See Also

forwsimDiffExpr

simGG

Prior predictive simulation

Description

Simulates parameters and data from the prior-predictive of GaGa or MiGaGa model with several groups, fixing the hyper-parameters.

Usage

```
simGG(n, m, p.de=.1, a0, nu, balpha, nualpha, equalcv = TRUE, probclus = 1, a = NA, l = NA, useal = FALSE)
```

Arguments

n	Number of genes.	
m	Vector indicating number of observations to be simulated for each group.	
p.de	Probability that a gene is differentially expressed.	
a0, nu	Mean expression for each gene is generated from 1/rgamma(a0,a0/nu) if probclus is of length 1, and from a mixture if length (probclus)>1.	
balpha, nualpha		
	$Shape\ parameter\ for\ each\ gene\ is\ generated\ from\ \verb"rgamma"\ (balpha,balpha/nualpha).$	
equalcv	If equalcv==TRUE the shape parameter is simulated to be constant across groups.	
probclus	Vector with the probability of each component in the mixture. Set to 1 for the GaGa model.	
a, 1	Optionally, if useal==TRUE the parameter values are not generated, only the data is generated. a is a matrix with the shape parameters of each gene and group and 1 is a matrix with the mean expressions.	
useal	For useal == TRUE the parameter values specified in a and 1 are used, instead of being generated.	

24 simnewsamples

Details

The shape parameters are actually drawn from a gamma approximation to their posterior distribution. The function regamma implements this approximation.

Value

Object of class 'ExpressionSet'. Expression values can be accessed via exprs (object) and the parameter values used to generate the expression values can be accessed via fData (object).

Note

Currently, the routine only implements prior predictive simulation for the 2 hypothesis case.

Author(s)

David Rossell

References

Rossell D. GaGa: a simple and flexible hierarchical model for microarray data analysis. http://rosselldavid.googlepages.com.

See Also

simnewsamples to simulate from the posterior predictive, checkfit for graphical posterior predictive checks.

Examples

```
#Not run. Example from the help manual
#library(gaga)
#set.seed(10)
#n <- 100; m <- c(6,6)
#a0 <- 25.5; nu <- 0.109
#balpha <- 1.183; nualpha <- 1683
#probpat <- c(.95,.05)
#xsim <- simGG(n,m,p.de=probpat[2],a0,nu,balpha,nualpha)
#
#plot(density(xsim$x),main='')
#plot(xsim$1,xsim$a,ylab='Shape',xlab='Mean')</pre>
```

simnewsamples

Posterior predictive simulation

Description

Simulates parameters and data from the posterior and posterior predictive distributions, respectively, of a GaGa or MiGaGa model.

Usage

```
simnewsamples(gg.fit, groupsnew, sel, x, groups)
```

simnewsamples 25

Arguments

gg.fit	GaGa or MiGaGa fit (object of type gagafit, as returned by fitGG).
groupsnew	Vector indicating the group that each new sample should belong to. length (groupsnew) is the number of new samples that will be generated.
sel	Numeric vector with the indexes of the genes we want to draw new samples for (defaults to all genes). If a logical vector is indicated, it is converted to $(1:nrow(x))$ [sel].
X	ExpressionSet, exprSet, data frame or matrix containing the gene expression measurements used to fit the model.
groups	If x is of type <code>ExpressionSet</code> or <code>exprSet</code> , <code>groups</code> should be the name of the column in <code>pData(x)</code> with the groups that one wishes to compare. If x is a matrix or a data frame, <code>groups</code> should be a vector indicating to which group each column in x corresponds to.

Details

The shape parameters are actually drawn from a gamma approximation to their posterior distribution. The function regamma implements this approximation.

Value

Object of class 'ExpressionSet'. Expression values can be accessed via exprs (object) and the parameter values used to generate the expression values can be accessed via fData (object).

Author(s)

David Rossell

References

Rossell D. GaGa: a simple and flexible hierarchical model for microarray data analysis. http://rosselldavid.googlepages.com.

See Also

checkfit for posterior predictive plot, simGG for prior predictive simulation.

Index

Tonio design	Eindman 5 0 14 19	
*Topic design forwsimDiffExpr, 9	findgenes, 5, 9, 14, 18 fitGG, 4, 6, 7, 11-14, 16-21	
seqBoundariesGrid, 21	forwsimDiffExpr, 9, 23	
*Topic distribution	TOTWSTHIDITIEXPT, 9, 23	
checkfit, 1	geneclus, 11, 19, 21	
dcgamma, 4	getpar, 12	
posmeansGG, 15	5001.0.1	
simGG, 23	mcgamma (dcgamma), 4	
simnewsamples, 24		
*Topic htest	parest, 4, 6, 9, 12, 13, 13, 16-18, 20	
classpred, 3	posmeansGG, <i>14</i> , 15	
findgenes, 5	powclasspred, 16, 18	
forwsimDiffExpr, 9	powfindgenes, <i>11</i> , <i>17</i> , 17	
-	print.gagaclus, 19	
geneclus, 11	print.gagafit, 20	
powclasspred, 16	print.gagahyp,21	
powfindgenes, 17 segBoundariesGrid, 21		
*Topic logic	rcgamma (dcgamma), 4	
1 0	rgamma, 5	
buildPatterns, 1	5 1 2 2 2 1 21	
*Topic models checkfit, 1	seqBoundariesGrid, 11, 21	
•	simGG, 2, 23, 25	
classpred, 3	simnewsamples, 2, 24, 24	
findgenes, 5		
fitGG,7		
geneclus, 11		
getpar, 12		
parest, 13		
posmeansGG, 15		
powclasspred, 16		
powfindgenes, 17		
simGG, 23		
simnewsamples, 24 *Topic print		
* *		
<pre>print.gagaclus, 19 print.gagafit, 20</pre>		
print.gagahyp,21		
buildPatterns, 1		
checkfit, 1, 24, 25		
classpred, 3, 9, 14, 17		
dcgamma, 4		
dgamma, 5		