altcdfenvs

March 24, 2012

AffyProbesMatch-class

Class "AffyProbesMatch"

Description

Store the results of a call to matchAffyProbes.

Objects from the Class

Objects can be created by calls of the form new ("AffyProbesMatch", ...). An object will store the result of matching probe sequences against target sequences.

Slots

pm: Object of class "list": each element is vector of index values

mm: Object of class "list": each element is vector of index values

labels: Object of class "character"

chip_type: Object of class "character" and of length 1.

probes: Object of class "ANY": the probetable object used to perform the matches.

Methods

combine signature(x = "AffyProbesMatch", y = "AffyProbesMatch"):combine two instances. This is can be useful when splitting the list of target sequences to parallelized the job.

```
show signature(x = "AffyProbesMatch"):Show the instance.
```

toHypergraph signature(object = "AffyProbesMatch"): build an Hypergraph
from the matches.

Examples

```
showClass("AffyProbesMatch")
```

CdfEnvAffy-class Class "CdfEnvAffy"

Description

A class to hold the information necessary to handle the grouping of probes in set of probes, and to find XY coordinates of probes on a chip

Objects from the Class

Objects can be created by calls of the form new ("CdfEnvAffy", ...). Typically, there is an instance of the class for each type of chip (e.g. Hu6800, HG-U95A, etc...).

Slots

envir: Object of class "environment". It has to be thought of as a hashtable: the keys are probe set identifiers, or gene names, and the values are indexes.

envName: Object of class "character". A name for the environment.

- index2xy: Object of class "function". The function used to resolve index into xy coordinates. Unless you are an advanced user, you probably want to ignore this (and rely on the default provided with the package).
- xy2index: Object of class "function". The function used to resolve xy coordinates into index. Unless you are an advanced user, you probably want to ignore this (and rely on the default provided with the package).
- nrow: Object of class "integer". The number of rows of probes for the chip type.
- ncol: Object of class "integer". The number of columns of probes for the chip type.
- probeTypes: Object of class "character". The different types of probes stored for each probe set. In the case of Affymetrix chips, the probes are typically perfect match (pm) probes or mismatch probes (mm).
- chipType: Object of class "character". The name of the chip type the instance is associated with. This is useful when one starts to create alternative mappings of the probes on a chip (see associated vignette).

Methods

- coerce signature(object = "CdfEnvAffy", "environment"): coerce an instance
 of the class to an environment.
- coerce signature(object = "CdfEnvAffy", "Cdf"): coerce an instance of the class
 to a Cdf.
- **geneNames** signature(object="CdfEnvAffy"): Return the names of the known probe sets (of course, it depends on the associated CDF).
- index2xy signature(object = "CdfEnvAffy", i="integer"): convert index values into XY coordinates.

- plot signature(x = "CdfEnvAffy", y = "missing"): Plot the chip. It mainly sets coordinates for further plotting (see examples). See plot.CdfEnvAffy
- show signature(object = "CdfEnvAffy"): Print method.
- xy2index signature(object = "CdfEnvAffy", x="integer", y="integer"):convert XY coordinates into index values.
- toHypergraph signature(object = "CdfEnvAffy"): convert XY coordinates into index values.

Author(s)

Laurent Gautier

See Also

indexProbes.CdfEnvAffy,plot.CdfEnvAffy

Examples

```
## build an instance
library(hgu95acdf)
cdfenv.hgu95a <- wrapCdfEnvAffy(hgu95acdf, 640, 640, "HG-U95A")
show(cdfenv.hgu95a)
## find the indexes for a probe set (pm only)
ip <- indexProbes(cdfenv.hgu95a, "pm", "1000_at")[[1]]
## get the XY coordinates for the probe set
xy <- index2xy(cdfenv.hgu95a, ip)
## plot the chip
plot(cdfenv.hgu95a)
## plot the coordinates
plotLocation(xy)
## subset the environment
cdfenv.hgu95a.mini <- cdfenv.hgu95a["1000_at"]</pre>
```

appendCdfEnvAffy append probe sets to a CdfEnvAffy

Description

append probe sets to a CdfEnvAffy

Usage

```
appendCdfEnvAffy(acdfenv, id, i, nocopy = TRUE)
```

Arguments

acdfenv	instance of class CdfEnvAffy
id	identifier for the probe set to add
i	a matrix of indexes (see details)
nocopy	whether to make a copy of the environment or not (see details)

Details

The matrix i must have one column per probe type. For typical Affymetrix chip types, there are two probe types: "pm" and "mm".

nocopy set to TRUE means that the environment is added the probe set 'in-situ' (this can boost execution speed if you add a lot of probe sets).

Value

An CdfEnvAffy is returned

Examples

data(cdfenvEx)

```
## pm and mm probe set
m <- matrix(1:10, ncol = 2)
colnames(m) <- c("pm", "mm")
appendCdfEnvAffy(cdfenvEx, "blabla", m)
indexProbes(cdfenvEx, c("pm", "mm"), "blabla")
## pm only probe set
m <- matrix(6:9, ncol = 1)
colnames(m) <- c("pm")
appendCdfEnvAffy(cdfenvEx, "blabla2", m)
## note that the unspecified "mm" were set to NA
indexProbes(cdfenvEx, c("pm", "mm"), "blabla2")
```

buildCdfEnv.biostrings
Build CDF environments

Description

Build CDF environment from Biostrings matchPDict results

cdfenvs

Usage

Arguments

apm	AffyProbesMatch
abatch	AffyBatch
nrow.chip	number of rows for the chip type (see details)
ncol.chip	number of columns for the chip type (see details)
simplify	simplify the environment built (removing target names when there is no match- ing probe)
x.colname	column name
y.colname	column name
verbose	verbose TRUE/FALSE

Details

Whenever an abatch is specified, nrow.chip and ncol.chip are not needed. Specifying the an AffyBatch in abatch is the easiest way to specify information about the geometry of a chip type.

Value

An instance of class CdfEnvAffy.

cdfenvs

functions related to cdfenvs

Description

A set of functions to handle cdfenvs

Usage

Arguments

abatch	an AffyBatch
cdfenv	A cdfenv environment
check	perform consistency check or not
chiptype	A name for the chip type
ids	a vector of probe set identifiers for the matches
matches	a list as returned by the function combineAffyBatch
mm	The value to store for MMs
ncol.chip	The number of columns for the chip type
nrow.chip	The number of rows for the chip type
probes.pack	The name of the probe package
simplify	Simplify the environment created by removing the ids without any matching probe
x.colname, y	.colname
	see the getxy.probeseq
verbose	verbosity (TRUE or FALSE)

Value

An instance of class CdfEnvAffy.

Examples

See the main vignette

cdfenvEx CdfEnvAffy

Description

An example of CdfEnvAffy

Usage

data(cdfenvEx)

Format

The format is: Formal class 'CdfEnvAffy' [package "altcdfenvs"] with 8 slots ..@ index2xy :function (object, i) ..@ xy2index :function (object, x, y) ..@ envir :length 2 <environment> ..@ envName : chr "ZG-DU33" ..@ nrow : int 100 ..@ ncol : int 100 ..@ probeTypes: chr [1:2] "pm" "mm" ..@ chipType : chr "ZG-DU33"

Examples

data(cdfenvEx)

print (cdfenvEx)

copyCdfEnvAffy make a copy of a CdfEnvAffy

Description

make a copy of a CdfEnvAffy

Usage

```
copyCdfEnvAffy(acdfenv)
```

Arguments

acdfenv instance of class CdfEnvAffy

Details

Make a copy can be needed since a CdfEnvAffy contains an environment

Value

 $A\, {\tt CdfEnvAffy}$

See Also

CdfEnvAffy-class, copyEnv

countduplicated Count the number of times probes are used

Description

This function counts the number of times the probes in a CdfEnvAffy are found in this object.

Usage

```
countduplicated(x, incomparables = FALSE, verbose = FALSE)
```

Arguments

x An instance of CdfEnvAffy-class incomparables (not implemented yet, keep away) verbose verbose or not

Value

An environment is returned. Each element in this environment has the same identifier than its corresponding probe set in the CdfEnvAffy-class and contains the number of times a probe is in use in the environment (instead of an index number in the CdfEnvAffy-class).

Author(s)

Laurent

See Also

CdfEnvAffy-class

geneNames.CdfEnvAffy

get the names of the known probe sets

Description

get the names of the probe sets known to the CdfEnv

Usage

geneNames.CdfEnvAffy(object)

Arguments

object CdfEnvAffy-class

Value

a vector of mode character

getxy.probeseq A function to get the XY coordinates from a probes sequences data frame

Description

A function to get the XY coordinates from a probes sequences data.frame

Usage

```
getxy.probeseq(ppset.id = NULL, probeseq = NULL, i.row = NULL,
xy.offset = NULL, x.colname = "x", y.colname = "y")
```

Arguments

ppset.id	The probe sets of interest (a vector of mode character.
probeseq	The probe sequence data.frame (see details).
i.row	Row indexes in the data.frame (see details).
xy.offset	Offset for the xy coordinates. if NULL, uses the default offset stored as an option
	for the affy package.
x.colname,	y.colname
	The probe sequence packages have seen the names for the columns in their data.frame. This parameters exists to let us follow these changes.

index2xy

Details

The data.frame passed as argument probeseq is expected to have (at least) the following columns: Probe.X, Probe.Y and Probe.Set.Name. When the argument ppset.id is not null, the probe sets

Value

A matrix of two columns. The first column contains x coordinates, while the second column contains y coordinates.

Warning

The parameter xy.offset.one is here for historical reasons. This should not be touched, the option in the affy package should be modified if one wishes to modify this.

This function should not be confused with the methods index2xy and similar. Here the the XY coordinate come from a data.frame that stores information about an arbitrary number probes on the chip. (See the 'probe sequence' data packages on Bioconductor, and the package Biostrings).

The methods index2xy are meant to interact with instances of class AffyBatch.

Author(s)

Laurent

Examples

##---- Should be DIRECTLY executable !! ----

index2xy Functions to shuttle from indexes to XY coordinates

Description

Functions to shuttle from indexes to XY coordinates.

Usage

```
index2xy(object, ...)
xy2index(object, ...)
index2xy.CdfEnvAffy(object, i)
```

```
xy2index.CdfEnvAffy(object, x, y)
```

Arguments

object	An object of class CdfEnvAffy.
i	A vector of indexes.
х, у	Vectors of X and Y coordinates.
	Optional parameters (not used).

Value

A vector of integers (for xy2index methods), or a matrix of two columns (for index2xy methods).

See Also

CdfEnvAffy-class

Examples

To be done...

indexProbes.CdfEnvAffy

indexes for probes

Description

A function to get the index for probes

Usage

```
indexProbes.CdfEnvAffy(object, which, probeSetNames = NULL)
```

Arguments

object	CdfEnvAffy	
which	which kind of probe are of interest (see details).	
probeSetNames		
	names of the probe sets of interest. If NULL, all the probe sets are considered.	

Details

The parameter which let one specify which category of probes are of interest. In the case of Affymetrix chips, probes can be "pm" probes or "mm" probes. It the parameter is set to c ("pm", "mm"), both are returned. Should other categories be defined, they can be handled as well.

Value

A list of indexes.

See Also

CdfEnvAffy-class, AffyBatch-class

matchAffyProbes Match the probes on an Affymetrix array

Description

Match the individual probes on an Affymetrix array to arbitrary targets.

Usage

Arguments

probes	a probetable object	
targets	a vector of references	
chip_type	a name for the chip type.	
matchmm	whether to match MM probes or not	
selectMatches		
	a function to select matches (see Details).	
	further arguments to be passed to matchPDict.	

Details

The matching is performed by the function matchPDict. The man page for that function will indicate what are the options it accepts.

In the case where a large number targets are given, like when each target represents a possible mRNA, is it expected to have a largely sparse incidence matrix, that is a low number of probes matching every target. For that reason, only the index of matching probes are associated with each given target, with the function selectMatches giving the definition of what are matching probes. The default function just count anything matching, but the user can specify a more stringent definition if wanted.

Value

mmProbes returns a vector of MM probe sequences.

matchAffyProbes returns an instance of AffyProbesMatch-class.

Author(s)

Laurent Gautier

See Also

```
matchPDict for details on how the matching is performed, AffyProbesMatch-class and
buildCdfEnv.biostrings
```

Examples

plot.CdfEnvAffy A function to 'plot' a CdfEnvAffy

Description

A function to set the axis and plot the outline for a CdfEnvAffy

Usage

```
## S3 method for class 'CdfEnvAffy'
plot(x, xlab = "", ylab = "", main = x@chipType, ...)
```

Arguments

Х	a CdfEnvAffy
xlab	label for the rows
ylab	label for the columns
main	label for the plot. The chip-type by default.
	optional parameters to be passed to the underlying function ${\tt plot}$

Details

This function does not 'plot' much, but sets the coordinates for further plotting (see the examples).

Author(s)

Laurent

See Also

CdfEnvAffy-class

removeIndex

Examples

See "CdfEnvAffy-class"

removeIndex A function to remove probes in an environment

Description

A function to remove probes in an environment, given their index.

Usage

```
removeIndex(x, i, simplify = TRUE, verbose = FALSE)
```

Arguments

Х	An instance of CdfEnvAffy-class
i	A vector of indexes (integers !).
simplify	Simply the resulting CdfEnvAffy (see details).
verbose	verbose output or not.

Details

The probes to be removed are set to NA in the CdfEnvAffy. When simplify is set to TRUE the probe sets are simplified whenever possible. For example, if both pm and mm for the same probe pair are set to NA, then the probe pair is removed from the probe set.

Value

An instance of CdfEnvAffy-class is returned.

Author(s)

Laurent Gautier

See Also

CdfEnvAffy-class

Examples

```
## use plasmodiumanopheles chip as an example
if (require(plasmodiumanophelescdf)) {
    ## wrap in a (convenient) CdfEnvAffy object
    planocdf <- wrapCdfEnvAffy(plasmodiumanophelescdf, 712, 712, "plasmodiumanophelescdf")
    print(planocdf)
    ## ask for the probe indexed '10759' to be removed
    ## (note: if one wishes to remove from X/Y coordinates,
    ## the function xy2index can be of help).
```

```
planocdfCustom <- removeIndex(planocdf, as.integer(10759))
## let see what happened (we made this example knowing in which
## probe set the probe indexed '10759' is found).
indexProbes(planocdf, "pm", "200000_s_at")
indexProbes(planocdfCustom, "pm", "200000_s_at")
## The 'second' pm probe (indexed '10579') in the probe set is now set
## to NA.</pre>
```

toHypergraph Transform to an hypergraph

Description

}

Transform to an hypergraph

Usage

toHypergraph(object, ...)

Arguments

object	Object derived from class AffyProbesMatch.
• • •	Unused.

Value

An Hypergraph-class object.

unique.CdfEnvAffy Remove duplicated elements from a CdfEnvAffy

Description

Remove duplicated elements from a CdfEnvAffy

Usage

```
## S3 method for class 'CdfEnvAffy'
unique(x, incomparables = FALSE, simplify = TRUE, verbose = FALSE, ...)
```

Arguments

```
    x
    An instance of CdfEnvAffy-class

    incomparables
    (not yet implemented)

    simplify
    simplify the result

    verbose
    verbose or not

    ...
    (here for compatibility with the generic unique)
```

Details

The parameter simplify has the same function as the one with the same name in countduplicated.

Value

An instance of CdfEnvAffy-class in which probes used several times are removed.

Warning

The function differs slightly from the generic unique. Here the elements found in several place a merely removed.

Author(s)

Laurent

See Also

countduplicated

Examples

##not yet here...

read.FASTA.entry Functions to work with FASTA files / connections

Description

Set of function to work with biological sequences stored in FASTA format.

Usage

```
countskip.FASTA.entries(con, linebreaks = 3000)
grep.FASTA.entry(pattern, con, ...)
## S3 method for class 'FASTA'
print(x, ...)
read.FASTA.entry(con, linebreaks = 3000)
read.n.FASTA.entries(con, n, linebreaks = 3000)
read.n.FASTA.entries.split(con, n, linebreaks = 3000)
read.n.FASTA.headers(con, n, linebreaks = 3000)
read.n.FASTA.sequences(con, n, linebreaks = 3000)
skip.FASTA.entry(con, skip, linebreaks = 3000)
write.FASTA(x, file="data.fasta", append = FALSE)
```

Arguments

append	append to the file (or not)
con	a connection
file	a file name
linebreaks	(to optimize the parsing, probably safe to leave it as it is)
n	number of entries to read
pattern	a pattern (to be passed to the function grep)
skip	number of entries to skip
х	a FASTA sequence object
	optional arguments to be forwarded to the function print or to the function grep

Details

countskip.FASTA.entries skips the remaining FASTA entries currently remaining in the connection and return the count. grep.FASTA.entry returns the next FASTA entry in the connection that matches a given regular expression. print.FASTA prints a FASTA object. read.FASTA.entry reads the next FASTA entry in the connection. read.n.FASTA.entries reads the n next FASTA entries and returns a list of FASTA objects. read.n.FASTA.entries.split reads the n next FASTA entries and returns a list of two elements: headers and sequences. read.n.FASTA.headers reads the n next FASTA headers. read.n.FASTA.sequences reads the n next FASTA headers. read.n.FASTA.sequences.write.FASTA write a FASTA object into a connection.

Value

The value returned depends on the function. See above.

Author(s)

Laurent Gautier

Examples

print(fasta.seq)

validAffyBatch Check validity of a CdfEnvAffy.

Description

Tries to see if a CdfEnvAffy, or a pair of AffyBatch / CdfEnvAffy is valid.

Usage

```
validAffyBatch(abatch, cdfenv)
validCdfEnvAffy(cdfenv, verbose=TRUE)
printValidCdfEnvAffy(x)
```

Arguments

abatch	instance of AffyBatch-class
cdfenv	instance of CdfEnvAffy-class
verbose	verbose or not
Х	object returned by validCdfEnvAffy

Details

The function validAffyBatch calls in turn validCdfEnvAffy.

See Also

AffyBatch-class,CdfEnvAffy-class

Examples

To be done...

Index

cdfenvEx, 6 cdfenvs, 5

```
*Topic IO
    read.FASTA.entry, 15
*Topic classes
   AffyProbesMatch-class, 1
   CdfEnvAffy-class, 2
*Topic connection
    read.FASTA.entry, 15
*Topic datasets
    cdfenvEx,6
*Topic hplot
   plot.CdfEnvAffy, 12
*Topic manip
   appendCdfEnvAffy, 3
   buildCdfEnv.biostrings,4
   cdfenvs, 5
   copyCdfEnvAffy, 7
   countduplicated, 7
   geneNames.CdfEnvAffy,8
   getxy.probeseq,8
   index2xy,9
   indexProbes.CdfEnvAffy, 10
   matchAffyProbes, 11
   read.FASTA.entry, 15
   removeIndex, 13
   toHypergraph, 14
   unique.CdfEnvAffy, 14
   validAffyBatch, 17
       (CdfEnvAffy-class), 2
AffyBatch-class, 10, 17
AffyProbesMatch-class, 11
AffyProbesMatch-class, 1
appendCdfEnvAffy, 3
buildCdfEnv.biostrings, 4, 11
buildCdfEnv.matchprobes
       (cdfenvs), 5
CdfEnv (cdfenvs), 5
CdfEnvAffy-class, 7, 8, 10, 12, 13, 17
CdfEnvAffy-class, 2
```

```
coerce, CdfEnvAffy, Cdf-method
       (CdfEnvAffy-class), 2
coerce, CdfEnvAffy, environment-method
       (CdfEnvAffy-class), 2
combine, AffyProbesMatch, AffyProbesMatch-method
       (AffyProbesMatch-class), 1
connection, 16
copyCdfEnvAffy, 7
copyEnv, 7
countduplicated, 7, 15
countskip.FASTA.entries
       (read.FASTA.entry), 15
```

```
geneNames, CdfEnvAffy-method
       (CdfEnvAffy-class), 2
geneNames.CdfEnvAffy,8
getCdfEnvAffy (cdfenvs), 5
getxy.probeseq,8
grep.FASTA.entry
      (read.FASTA.entry), 15
```

```
Hypergraph, 1
Hypergraph-class, 14
```

```
index2xy,9
                                       index2xy,CdfEnvAffy-method
                                               (CdfEnvAffy-class), 2
                                       indexProbes, CdfEnvAffy, character-method
[,CdfEnvAffy,character,missing,missing-method (CdfEnvAffy-class),2
                                       indexProbes.CdfEnvAffy, 3, 10
```

```
matchAffyProbes, 11
matchPDict.11
mmProbes (matchAffyProbes), 11
```

```
plot, CdfEnvAffy, missing-method
       (CdfEnvAffy-class), 2
plot.CdfEnvAffy, 3, 12
print.FASTA (read.FASTA.entry), 15
printValidCdfEnvAffy
       (validAffyBatch), 17
```

```
read.FASTA.entry, 15
read.n.FASTA.entries
       (read.FASTA.entry), 15
```

INDEX

read.n.FASTA.headers (read.FASTA.entry), 15 read.n.FASTA.sequences (read.FASTA.entry), 15 removeIndex, 13 show, AffyProbesMatch-method (AffyProbesMatch-class), 1 show, CdfEnvAffy-method (CdfEnvAffy-class), 2 skip.FASTA.entry (read.FASTA.entry), 15 toHypergraph, 14

toHypergraph,AffyProbesMatch-method
 (AffyProbesMatch-class),1
toHypergraph,CdfEnvAffy-method
 (CdfEnvAffy-class),2

unique.CdfEnvAffy,14

wrapCdfEnvAffy(cdfenvs), 5
write.FASTA(read.FASTA.entry), 15