SBMLR

March 24, 2012

Ops.SBML

Check the equality of the species and reactions of two SBML models

Description

This function tests the equivalence of two models with respect to the species and reaction data frames generated by summary.

Usage

```
## S3 method for class 'SBML'
Ops(e1,e2)
```

Arguments

el	The first of the two model objects of class SBML which are to be compared.
e2	The second model object.

Value

A list containing the following two boolean dataframes

species	The equality of species information tabularized as a data frame.
reactions	The equality of reaction information tabularized as a dataframe.

Author(s)

Tom Radivoyevitch

See Also

summary.SBML

```
library(SBMLR)
curto1=readSBMLR(file.path(system.file(package="SBMLR"), "models/curto.r"))
curto2=readSBML(file.path(system.file(package="SBMLR"), "models/curto.xml"))
curto1==curto2
```

readSBML

Description

This function converts an SBML level 2 file into a corresponding R model structure of class SBML.

Usage

```
readSBML(filename)
```

Arguments

filename An SBML level 2 model input file.

Details

A limited subset of SBML level 2 models is currently supported, e.g. events and function definitions are not covered.

Value

A corresponding SBML model object in R.

Note

This function replaces read.SBML of older versions.

Author(s)

Tom Radivoyevitch

See Also

readSBMLR

```
library(SBMLR)
library(odesolve)
curtoX=readSBML(file.path(system.file(package="SBMLR"), "models/curto.xml"))
curtoR=readSBMLR(file.path(system.file(package="SBMLR"), "models/curto.r"))
curtoX==curtoR
```

readSBMLR

Description

This function converts an SBMLR model definition in filename into a corresponding returned SBML model structure.

Usage

```
readSBMLR(filename)
```

Arguments

filename An SBMLR model definition file.

Details

A limited subset of SBML level 2 models is currently supported, e.g. events and function definitions are not covered.

Value

A corresponding SBML model object in R.

Note

This function replaces the use of source in older versions of SBMLR. It includes rate law and rule string to function, expression and MathML mappings.

Author(s)

Tom Radivoyevitch

See Also

readSBML

```
library(SBMLR)
library(odesolve)
curtoX=readSBML(file.path(system.file(package="SBMLR"), "models/curto.xml"))
curtoR=readSBMLR(file.path(system.file(package="SBMLR"), "models/curto.r"))
curtoX==curtoR
```

saveSBML

Description

This function converts a class SBML model object in R into an SBML level 2 file.

Usage

```
saveSBML(model,filename)
```

Arguments

model	The model object in R.
filename	The name of the SBML file

Details

The output file is SBML level 2.

Value

No value returned.

Warning

SBML events and function definitions are NOT implemented.

Note

For speed, the SBML file is written incrementally, rather than first built as a DOM in R and then saved using xmlSave.

Author(s)

Tom Radivoyevitch

References

Radivoyevitch, T. A two-way interface between limited Systems Biology Markup Language and R. BMC Bioinformatics 5, 190 (2004).

See Also

saveSBMLR

saveSBMLR

Examples

```
library(SBMLR)
library(odesolve)
curtoR=readSBMLR(file.path(system.file(package="SBMLR"), "models/curto.r"))
saveSBML(curtoR, "curtoR.xml")
curtoX=readSBML("curtoR.xml")
curtoX==curtoR
summary(curtoR)
unlink("curtoR.xml")
```

saveSBMLR

Save an R model object of class SBML as an SBMLR file

Description

This function converts SBML model object in R into an SBMLR model definition file.

Usage

```
saveSBMLR(model, filename)
```

Arguments

model	The SBML model object to be mapped into the SBMLR model definition file.
filename	The file name of the destination SBMLR model definition file.

Value

No value returned.

Warning

SBML events and function definitions are NOT implemented.

Note

Similar to saveSBML, the file is written incrementally.

Author(s)

Tom Radivoyevitch

References

Radivoyevitch, T. A two-way interface between limited Systems Biology Markup Language and R. BMC Bioinformatics 5, 190 (2004).

See Also

saveSBML

Examples

```
library(SBMLR)
library(odesolve)
curto=readSBMLR(file.path(system.file(package="SBMLR"), "models/curto.r"))
saveSBMLR(curto,"curtoR.r")
curtoR=readSBMLR("curtoR.r")
curto=curtoR
summary(curtoR)
unlink("curtoR.r")
```

simulate

Simulate a model of class SBML

Description

This function simulates a model given the report times and optional modulators. It uses lsoda of the odesolve package.

Usage

```
simulate(model, times, modulator=NULL, X0=NULL, ...)
```

Arguments

model	The model object to be simulated. Initial conditions are passed through this object.
times	The sequence of time points to be sampled and provided as rows of the output matrix.
modulator	Null if there are no modulators (default), a vector of numbers if there are steady state Vmax modulators, and a list of interpolating functions if there are time course Vmax modulators.
X0	Override model initial conditions in simulations, particularly piece-wise perturbation simulations.
	For compatibility with simulate of the stats package.

Details

This is a wrapper for lsoda.

Value

The data frame output that comes out of lsoda.

Note

Rules are implemented through time varying boundary conditions updated at each time point as a side effect within the (now internal) function fderiv.

Author(s)

Tom Radivoyevitch

6

simulate

References

For the folate cycle example given below: Morrison PF, Allegra CJ: Folate cycle kinetics in human breast cancer cells. JBiolChem 1989, 264(18):10552-10566.

```
##---- The following example performs a perturbation in PRPP from 5 to 50 uM in Curto et
library(SBMLR)
library(odesolve)
curto=readSBML(file.path(system.file(package="SBMLR"), "models/curto.xml"))
out1=simulate(curto, seq(-20,0,1))
curto$species$PRPP$ic=50
out2=simulate(curto,0:70)
outs=data.frame(rbind(out1,out2))
attach(outs)
par(mfrow=c(2,1))
plot(time,IMP,type="l")
plot(time,HX,type="l")
par(mfrow=c(1,1))
detach (outs)
# which should be the same plots as
curto=readSBMLR(file.path(system.file(package="SBMLR"), "models/curto.r"))
out1=simulate(curto, seq(-20,0,1))
curto$species$PRPP$ic=50
out2=simulate(curto,0:70)
outs=data.frame(rbind(out1,out2))
attach(outs)
par(mfrow=c(2,1))
plot(time,IMP,type="l")
plot(time,HX,type="l")
par(mfrow=c(1,1))
detach (outs)
##---- The following example uses fderiv to generate Morrison's folate system response to
morr=readSBMLR(file.path(system.file(package="SBMLR"), "models/morrison.r"))
out1=simulate(morr, seq(-20,0,1))
morr$species$EMTX$ic=1
out2=simulate(morr,0:30)
outs=data.frame(rbind(out1,out2))
attach (outs)
par(mfrow=c(3, 4))
plot(time,FH2b,type="l",xlab="Hours")
plot(time,FH2f,type="l",xlab="Hours")
plot(time,DHFRf,type="l",xlab="Hours")
plot(time,DHFRtot,type="l",xlab="Hours")
plot(time,CHOFH4,type="l",xlab="Hours")
plot(time,FH4,type="l",xlab="Hours")
plot(time,CH2FH4,type="l",xlab="Hours")
plot(time,CH3FH4,type="l",xlab="Hours")
plot(time,AICARsyn,type="l",xlab="Hours")
plot(time,MTR,type="l",xlab="Hours")
plot(time,TYMS,type="l",xlab="Hours")
#plot(time,EMTX,type="l",xlab="Hours")
plot(time,DHFReductase,type="1",xlab="Hours")
```

```
par(mfrow=c(1,1))
detach(outs)
morr$species$EMTX$ic=0
```

summary.SBML Get summary information from an SBML model

Description

This function extracts information from a model of class SBML and returns it as a list. The list includes species and reaction information tabularized as data frames.

Usage

```
## S3 method for class 'SBML'
summary(object,...)
```

Arguments

object	A model object of class SBML from which information is to be extracted.
	For compatibility with summary of the base package.

Details

no details

Value

A list containing the following elements

BC	A logical vector indicating which species are not state variables, i.e. which species are boundary conditions or auxillary variables.
уO	The initial state (boundary conditions excluded!).
nStates	The length of the state vector, i.e. the number of system states.
SO	The full set of species initial values.
nReactions	The number of reactions.
nSpecies	The number of species, including states, boundary conditions and possibly aux- illary variables such as the total concentration of dihydofolate reductase in the morrison.r model.
incid	The incidence/stoichiometry matrix. This usually contains ones and minus ones corresponding to fluxes either synthesizing or degrading (respectively) a state variable chemical species. This matrix multiplied by the flux vector on its right yields the corresponding concentration state variable time derivatives.
species	Species information (i.e. names, ICs, BCs, and compartments) as a data frame.
reactions	Reaction information tabularized as a dataframe, including string laws and initial fluxes.

Note

The list output can be attached to immediately define many model variables of interest.

8

summary.SBML

Author(s)

Tom Radivoyevitch

```
library(SBMLR)
curto=readSBMLR(file.path(system.file(package="SBMLR"), "models/curto.r"))
summary(curto)
```

Index

*Topic arith readSBML, 2 readSBMLR, 3 saveSBML,4 saveSBMLR, 5 *Topic math Ops.SBML, 1 readSBML, 2 readSBMLR, 3 saveSBML,4 saveSBMLR, 5 simulate, 6 summary.SBML,8 Ops.SBML, 1 readSBML, 2, 3 readSBMLR, 2, 3 saveSBML, 4, 5

saveSBMLR, 4, 5
simulate, 6
summary (summary.SBML), 8
summary.SBML, 1, 8