PICS

March 24, 2012

pics

Estimation of binding site positions

Description

This object contains Estimation of binding site positions and has the following slots: segReadsList, dataType.

Usage

```
PICS (segReadsList, dataType="TF")
```

Arguments

segReadsList This object contains segmentation of Genome

dataType The type of data you are processing: specified 'TF' for transcription factor.

Methods

code signature(x = "pics"): return the error code for each list element (i.e. candidate region) of a PICS object. If the string is empty, there were no errors.

plot signature(x = "pics"): Plot all regions in the PICS object. This might be long, and should only be used to plot a few regions, so subset the object before plotting.

sigmaSqR signature (x = "pics"): return the variance parameter of the reverse (R) distribution for each binding event.

sigmaSqF signature (x = "pics"): return the variance parameter of the forward (F) distribution for each binding event.

score signature (x = "pics"): return the score for each binding event.

score F signature (x = "pics"): return the score of the forward (F) for each binding event.

scoreR signature (x = "pics"): return the score of the forward (R) for each binding event.

maxRange signature (x = "pics"): return the range maximum.

minRange signature (x = "pics"): return the range minimal.

K signature (x = "pics"): subset PICS object.

density signature (x = "pics"): return the density for each binding event.

2 segReadsList

Author(s)

Xuekui Zhang, Arnaud Droit <<arnaud.droit@crchuq.ualaval.ca>> and Raphael Gottardo <<rgottard@fhcrc.org>>

References

X. Zhang, G. Robertson, M. Krzywinski, K. Ning, A. Droit, S. Jones, and R. Gottardo, "PICS: Probabilistic Inference for ChIP-seq" arXiv, 0903.3206, 2009. To appear in Biometrics.

See Also

pics

segReadsList

Segment the genome into candidate regions

Description

Pre-process bidirectional aligned reads data from a single ChIP-Seq experiment to detect candidate regions with a minimum number of forward and reverse reads. These candidate regions will then be processed by PICS.

Methods

```
[ signature(x = "pics"): subset gadem object.
[ signature(x = "pics"): subset gadem object.
```

Methods

```
length signature(x = "pics"): subset PICS object.
```

Author(s)

Xuekui Zhang, Arnaud Droit <<arnaud.droit@crchuq.ualaval.ca>> and Raphael Gottardo <<rgottard@fhcrc.org>>

References

X. Zhang, G. Robertson, M. Krzywinski, K. Ning, A. Droit, S. Jones, and R. Gottardo, "PICS: Probabilistic Inference for ChIP-seq" arXiv, 0903.3206, 2009. To appear in Biometrics.

See Also

pics

makeRangedDataOutput

Create a RangedData object from a PICS output

Description

Create a list of 'RangedData' objects from a 'pics' object. The resulting RangedData object can then be analyzed with the 'IRanges' packages and/or exported to bed/wig files with the 'rtracklayer' package.

Usage

```
makeRangedDataOutput(obj, type="fixed", filter=list(delta=c(0,Inf),se=c(0,Inf),s
```

Arguments

obj	An object of class 'picsList' as returned by 'PICS' when running it on the IP/Control data.
type	The type of intervals to be created. The different types are 'bed', 'wig', 'ci' and 'fixed'. See details for more info.
filter	A list of filters to be used before computing the FDR. By default all regions are included, see details for more info on how to specify the filters.
length	The length to be used for the fixed type 'RangedData', see details.

Details

'bed' will generate intervals from the forward peak max to the reverse peak max. 'wig' will generate a density profile for the forward and reverse reads. 'bed' and 'wig' types should be used to be exported to wig/bed files to be used with the UCSC genome browser. 'ci' corresponds to the binding site estimates +/-3*se, while 'fixed' corresponds to the binding site estimates +/-3*length. 'bed' and 'wig' files can be exported using the 'export' function fo the 'rtracklayer' package.

Value

An object of type 'RangedData'.

Author(s)

Xuekui Zhang, Arnaud Droit <<arnaud.droit@crchuq.ualaval.ca>> and Raphael Gottardo <<rgottard@fhcrc.org>>

References

X. Zhang, G. Robertson, M. Krzywinski, K. Ning, A. Droit, S. Jones, and R. Gottardo, "PICS: Probabilistic Inference for ChIP-seq" arXiv, 0903.3206, 2009. To appear in Biometrics.

See Also

export

4 pics-class

Examples

```
## Not run:
   rdBed<-makeRangedDataOutput(pics,type="bed",filter=list(delta=c(50,Inf),se=c(0,50),sign
   export(rbBed,"myfile.bed")
   rdBed<-makeRangedDataOutput(pics,type="wig",filter=list(delta=c(50,Inf),se=c(0,50),sign
   export(rbBed,"myfile.wig")
## End(Not run)</pre>
```

pics-class

The pics class

Description

This object is used to gather all parameters from fitting PICS to a single candidate region. The objet contains the following slots: 'estimates', 'infMat', 'Nmerged', 'converge', 'chr'. 'estimates' is a list containing all parameters estimates as well as standard errors. 'infMat' is the Cholesky decomposition of the information matrix, 'converge' is a logical value indicating whether the EM algorithm has converged, while 'chr' is a character string corresponding to a candidate region's chromosome. 'Nmerged' gives the number of binding events that were merged; binding events that overlap are merged (see the cited paper below for details).

Accessors

The PICS package provide accessors to directly access to most of the parameters/standard errors and chromosome. In the code snippets below, 'x' is a 'pics' object.

'chromosome(x)' Gets the chromosome name of the candidate region.

'mu(x)' Gets the position estimates of all binding sites identified in the region.

'delta(x)' Gets the average fragment lengths of all binding sites identified in the region.

'sigmaSqF(x)' Gets the F peak variances of all binding sites identified in the region.

'sigmaSqR(x)' Gets the R peak variances of all binding sites identified in the region.

'seF(x)' Gets the standard errors of all binding site position estimates identified in the region.

'se $\mathbf{F}(\mathbf{x})$ ' Gets the standard errors of all F peak modes identified in the region.

'se $\mathbf{R}(\mathbf{x})$ ' Gets the standard errors of all R peak modes identified in the region.

score signature (x = "pics"): return the score for each binding event.

scoreF signature (x = "pics"): return the score of the forward (F) for each binding event.

score R signature (x = "pics"): return the score of the forward (R) for each binding event.

Constructor

newPics(w,mu,delta,sigmaSqF,sigmaSqR,seMu,seMuF,seMuR,score,Nmerged,converge,infMat,chr) construct a new 'pics' object with the following arguments:

```
w The mixture weights (a vector)
```

mu The binding site positions (a vector)

pics-class 5

```
delta The DNA fragment lengths (a vector)
sigmaSqF The variance parameters for the forward distribution (vector)
sigmaSqR The variance parameters for the forward distribution (vector)
seMu The standard errors for mu (vector)
seMuF The standard errors for muF (vector)
seMuR The standard errors for muR (vector)
seMuR The standard errors for muR (vector)
score The scores for each binding event (vector)
Nmerged The number of peaks that got merged (integer)
converge A logical value, TRUE, if the EM as converged
infMat The information matrix
chr The chromosome for the region
```

Author(s)

```
Xuekui Zhang, Arnaud Droit <<arnaud.droit@crchuq.ualaval.ca>> and Raphael Got-
tardo <<rgottard@fhcrc.org>>
```

References

X. Zhang, G. Robertson, M. Krzywinski, K. Ning, A. Droit, S. Jones, and R. Gottardo, "PICS: Probabilistic Inference for ChIP-seq" arXiv, 0903.3206, 2009. To appear in Biometrics.

See Also

```
pics picsError
```

```
# Here is an example of how to construct such a region.
# Typically, you would not do this manually, you would use the pics function to return a
w < -1
mu < -10000
delta<-150
sigmaSqF<-5000
sigmaSqR<-5000
seMu<-10
seMuF<-10
seMuR<-10
score<-5
Nmerged<-0
converge<-TRUE
chr<-"chr1"
range<-c(1000,2000)
# Contructor
#myPICS<-newPics(w,mu,delta,sigmaSqF,sigmaSqR,seMu,seMuF,seMuR,score,Nmerged,as.integer(
```

6 picsError-class

picsError-class

The pics class

Description

This object is used to return an error code when the PICS function failed to return a valid set of estimates for a candidate regions. This could be due to non-convergence of the EM algorithm, a singular information matrix, or a number of reads below the limit specified by the user. All of these are typically due to too few reads in the region and do not affect the rest of the analysis, as such regions would most likely be labelled as false positives.

Accessors

All of the accessors defined for a 'pics' object still work for a 'picsError' object but will simply return a NULL pointer.

Constructor

newPicsError(string) where 'string' is the error code.

Constructor

```
newPicsError<-function(string)
string The mixture weights (a vector)</pre>
```

Author(s)

Xuekui Zhang, Arnaud Droit <<arnaud.droit@crchuq.ualaval.ca>> and Raphael Gottardo <<rgottard@fhcrc.org>>

References

X. Zhang, G. Robertson, M. Krzywinski, K. Ning, A. Droit, S. Jones, and R. Gottardo, "PICS: Probabilistic Inference for ChIP-seq" arXiv, 0903.3206, 2009. To appear in Biometrics.

See Also

pics

Get the scores
score(myPicsError)

```
# Here is an example on how to construct such a picsError object
# Typically, you would not do this manually, you would use the pics function to return a
# Contructor
myPicsError<-newPicsError("Singular information matrix")
# Accessors
# Get the standard error of Mu
se(myPicsError)
# Get the standard error of MuF
seF(myPicsError)</pre>
```

picsFDR 7

R

Description

Calculate an estimate of the FDR for PICS. This calculation requires control data (e.g. from an input DNA sample).

Usage

```
\verb|picsFDR|(picsIP,picsCont,filter=list(delta=c(0,Inf),se=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf),sigmaSqF=c(0,Inf
```

Arguments

picsIP	An object of class 'picsList' as returned by 'PICS' when run on IP/Control data.
picsCont	An object of class 'picsList' as returned by 'PICS' when run on Control/IP data.
filter	A list of filters to be used before computing the FDR. By default all regions are
	included. See details for more info on how to specify the filters.

Value

A dataframe with three columns corresponding to the estimated FDR, the score, and the number of regions.

Author(s)

Xuekui Zhang, Arnaud Droit <<arnaud.droit@crchuq.ualaval.ca>> and Raphael Gottardo <<rgottard@fhcrc.org>>

References

X. Zhang, G. Robertson, M. Krzywinski, K. Ning, A. Droit, S. Jones, and R. Gottardo, "PICS: Probabilistic Inference for ChIP-seq" arXiv, 0903.3206, 2009. To appear in Biometrics.

See Also

pics

```
## Not run:
    # Segment the reads in order to identify candidate regions
    segC<-segmentReads(RD, minReads=3,invert=TRUE)
    # Use the serial version of PICS
    picsC<-PICS(segC,dataType='TF')
plot(pics,picsC,xlim=c(0,50),ylim=c(0,.2),filter=list(delta=c(50,300),se=c(0,50),sigmaSqF
## End(Not run)</pre>
```

8 picsList-class

picsList-class

The pics class

Description

This object is used to gather all parameters from fitting PICS to multiple candidate regions (as returned by the 'segmentReads' function). The objet contains the following slots: 'List', 'paraPrior', 'paraEM', 'minReads', 'N', 'Nc'. 'List' is a list of 'pics' or 'picsError' objects. 'paraPrior' is a list containing the hyperparameters used for the prior, 'paraEM' is a list of convergence parameters for the EM, 'minReads' is a list containing the minimum number of reads used to fit a region with 'PICS', 'N' is the total number of reads in the ChIP samples while 'Nc' is the total number of reads in the control sample.

Arguments

object

An object of class pics.

Accessors

The PICS package provide accessors to directly access to most of the parameters/standard errors and chromosomes. In the code snippets below, 'x' is a 'picsList' object. For all accessors, the 'picsError' objects are omitted, so that the accessors only return values for the 'pics' objects (i.e. all valid binding events).

'chromosome(x)' Gets the chromosome names of all candidate regions.

 $\mathbf{mu}(\mathbf{x})$ Gets the position estimates of all binding sites identified in all candidate regions.

'delta(x)' Gets the average fragment lengths of all binding sites identified in all candidate regions.

'sigmaSqF(x)' Gets the F peak variances of all binding sites identified in all candidate regions.

'sigmaSqR(x)' Gets the R peak variances of all binding sites identified in all candidate regions.

'seF(x)' Gets the standard errors of all binding site position estimates identified in all candidate regions.

 $\mathbf{seF}(\mathbf{x})$ Gets the standard errors of all F peak modes identified in all candidate regions.

'seR(x)' Gets the standard errors of all R peak modes identified in all candidate regions.

'score(x)' Gets the scores of all binding events identified in all candidate regions.

Constructor

```
newPicsList(List, paraEM, paraPrior, minReads, N, Nc)
```

List The mixture weights (a vector)

paraEM The binding site positions (a vector)

paraPrior The DNA fragment lengths (a vector)

N The variance parameters for the forward distribution (vector)

Nc The variance parameters for the forward distribution (vector)

Methods

```
[ signature(x = "pics"): subset PICS object.
```

picsList-class 9

Methods

```
length signature(x = "pics"): subset PICS object.
```

Constructor

newPicsList<-function(List, paraEM, paraPrior, minReads, N, Nc) constructs a new 'picsList' object with the following arguments.

```
newPicsList
```

```
w The mixture weights (a vector)
mu The binding site positions (a vector)
delta The DNA fragment lengths (a vector)
sigmaSqF The variance parameters for the forward distribution (vector)
sigmaSqR The variance parameters for the reverse distribution (vector)
seMu The standard errors for mu (vector)
seMuF The standard errors for muF (vector)
seMuR The standard errors for muR (vector)
seMuR The standard errors for muR (vector)
score The scores for each binding event (vector)
Nmerged The number of peaks that were merged (integer)
converge A logical value, TRUE, if the EM as converged
infMat The information matrix
```

Author(s)

chr The chromosome for the region

```
Xuekui Zhang, Arnaud Droit <<arnaud.droit@crchuq.ualaval.ca>> and Raphael Got-
tardo <<rgottard@fhcrc.org>>
```

References

X. Zhang, G. Robertson, M. Krzywinski, K. Ning, A. Droit, S. Jones, and R. Gottardo, "PICS: Probabilistic Inference for ChIP-seq" arXiv, 0903.3206, 2009. To appear in Biometrics.

See Also

pics

seMuF<-10 seMuR<-10

```
# Here is an example of how to construct such a region # Typically, you would not do this manually, you would use the pics function to return a w<-1 mu<-10000 delta<-150 sigmaSqF<-5000 sigmaSqR<-5000 seMu<-10
```

10 plot-FDR

```
score<-5
Nmerged<-0
converge<-TRUE
infMat<-matrix(0)</pre>
chr<-"chr1"
range<-c(1000,2000)
# Contructor
#myPICS1<-newPics(w,mu,delta,sigmaSqF,sigmaSqR,seMu,seMuF,seMuR,score,Nmerged,converge,ir</pre>
#myPICS2<-newPics(w,mu+1000,delta,sigmaSqF,sigmaSqR,seMu,seMuF,seMuR,score,Nmerged,conver
#minReads<-list(perPeak=2,perRegion=5)</pre>
#paraPrior<-list(xi=200, rho=1, alpha=20, beta=40000)</pre>
#paraEM<-list(minK=1, maxK=15, tol=10e-6, B=100)</pre>
#N<-100
#Nc<-200
#mynewPicsList<-newPicsList(list(myPICS1, myPICS2), paraEM, paraPrior, minReads, as.intege
# Accessors
# Get the standard error of Mu
#se(mynewPicsList)
# Get the standard error of MuF
#seF(mynewPicsList)
# Get the scores
#score(mynewPicsList)
```

plot-FDR

FDR plot for PICS

Description

This method plots an FDR curve showing the FDR as a function of the PICS scores.

Usage

```
## S4 method for signature 'picsList,picsList'
plot(x, y, filter=NULL, h=.1, ...)
```

Arguments

X	A picsList object as returned by the function PICS run on the treatment data.
У	A picsList object as returned by the function ${\tt PICS}$ run on the control data.
filter	A list of ranges for filtering regions based on PICS parameters. By default filter is set to 'NULL' and all regions are used.
h	A value between 0 and 1, representing the desired FDR. This simply draws a horizontal line at the given value.
	Further graphical parameters passed to the generic function plot.

Author(s)

Xuekui Zhang, Arnaud Droit <<arnaud.droit@crchuq.ualaval.ca>> and Raphael Gottardo <<rgottard@fhcrc.org>> segReads 11

References

X. Zhang, G. Robertson, M. Krzywinski, K. Ning, A. Droit, S. Jones, and R. Gottardo, "PICS: Probabilistic Inference for ChIP-seq," Biometrics, iss. In press, 2010.

See Also

PICS

segReads

Segment the genome into candidate regions

Description

Pre-process bidirectional aligned reads data from a single ChIP-Seq experiment to detect candidate regions with a minimum number of forward and reverse reads. These candidate regions will then be processed by PICS.

Methods

```
map signature (x = "pics"): subset PICS object.
```

Author(s)

Xuekui Zhang, Arnaud Droit <<arnaud.droit@crchuq.ualaval.ca>> and Raphael Gottardo <<rgottard@fhcrc.org>>

References

X. Zhang, G. Robertson, M. Krzywinski, K. Ning, A. Droit, S. Jones, and R. Gottardo, "PICS: Probabilistic Inference for ChIP-seq" arXiv, 0903.3206, 2009. To appear in Biometrics.

See Also

pics

segmentReads

Segment the genome into candidate regions

Description

Pre-process bidirectional aligned reads data from a single ChIP-Seq experiment to detect candidate regions with a minimum number of forward and reverse reads. These candidate regions will then be processed by PICS.

Usage

```
segmentReads(data, dataC=NULL, map=NULL, minReads=2, minReadsInRegion=3,
    jitter=FALSE, dataType="TF", maxLregion=0, minLregion=100)
```

12 segmentReads

Arguments

data A 'GenomeData' object containing the IP reads. See details for more informa-

tion on how to set up the data.

dataC A 'GenomeData' object containing the control reads. Set to NULL by default,

i.e. no control.

map A 'RangedData' object containing the mappability profiles. Set to NULL by

default, i.e. no profiles.

minReads The minimum number of F/R reads to be present in the sliding window.

minReadsInRegion

The minimum number of F/R reads to be present in the region.

jitter A logical value stating whether some noise should be added to the read locations.

This is recommended if the read positions have lots of duplicates.

dataType Type of experiment.

maxLregion The maximum length.

minLregion The minimum length.

Value

An object of class 'segmentReadsList' containing the results for all regions pre-processed.

Author(s)

Xuekui Zhang, Arnaud Droit <<arnaud.droit@crchuq.ualaval.ca>> and Raphael Gottardo <<rgottard@fhcrc.org>>

References

X. Zhang, G. Robertson, M. Krzywinski, K. Ning, A. Droit, S. Jones, and R. Gottardo, "PICS: Probabilistic Inference for ChIP-seq" arXiv, 0903.3206, 2009.

seg<-segmentReads(dataIP, dataC=dataCont, map=map, minReads=1)</pre>

See Also

segmentReads, picsFDR

setParaEM 13

setParaEM Set convergence parameters of the EM algorithm
--

Description

This function can be used to change the internal PICS parameters for the EM algorithm. This function should only be called if you really now what you are doing!.

Usage

setParaEM(minK=1, maxK=15, tol=1e-4, B=100, mSelect="BIC", mergePeaks=TRUE, mapCorrect

Arguments

minK	An integer value. The minimum number of binding events per region.
maxK	An integer value. The maximum number of binding events per region.
tol	The tolerance for the EM algorithm
В	An integer value. The maximum number of iterations to be used.
mSelect	A character string specifying the information criteria to be used when selecting the number of binding events.
mergePeaks	A logical value stating whether overlapping binding events should be picked.
mapCorrect	Should mappability profiles be incorporated in the estimation, that is missing reads estimated.
dataType	A character string equal to either 'H' or 'TF', 'H' for histone and 'TF' for transcription factors.

Value

No value returned. The function simply modifies the internal variables 'paraEMTF' if dataType='TF' and 'paraEMH' if dataType='H'.

Author(s)

 $\label{lem:condition} Xuekui\ Zhang,\ Arnaud\ Droit\ << arnaud\ .droit\ @crchuq\ .ualaval\ .ca>> \ and\ Raphael\ Gottardo\ << rgottard\ @fhcrc.org>>$

References

X. Zhang, G. Robertson, M. Krzywinski, K. Ning, A. Droit, S. Jones, and R. Gottardo, "PICS: Probabilistic Inference for ChIP-seq" arXiv, 0903.3206, 2009. To appear in Biometrics.

See Also

setParaPrior

```
# Using mSelect="BIC"
setParaEM(minK=1, maxK=15, tol=1e-4, B=100, mSelect="BIC", mergePeaks=TRUE, mapCorrect=TRUE, dat
# Using mSelect="AIC"
setParaEM(minK=1, maxK=15, tol=1e-4, B=100, mSelect="AIC", mergePeaks=TRUE, mapCorrect=TRUE, dat
```

14 setParaPrior

setParaPrior Set convergence parameters of the EM algorithm

Description

This function can be used to change the internal PICS parameters for the prior distribution. This function should only be called if you really now what you are doing! In particular, you may want to specify the average DNA fragment size for your sample by changing the 'xi' parameter.

Usage

```
setParaPrior(xi=200,rho=1,alpha=20,beta=40000,lambda=0,dMu=200,dataType="TF")
```

Arguments

хi	Our best guest for the average DNA fragment size.
rho	A variance parameter for the average DNA fragment size distribution.
alpha	First hyperparameter of the inverse Gamma distribution for sigma^2 in the PICS model.
beta	First hyperparameter of the inverse Gamma distribution for sigma^2 in the PICS model.
lambda	The precision of the prior for mu used for histone data.
dMu	Our best guess for the distance between two neighboring nucleosomes.
dataType	A character string equal to either 'H' or 'TF', 'H' for histone and 'TF' for transcription factors. 'H' is not yet supported

Value

No value returned. The function simply modifies the internal variables 'paraPriorTF' if dataType='TF' and 'paraPriorH' if dataType='H'.

Author(s)

Xuekui Zhang, Arnaud Droit <<arnaud.droit@crchuq.ualaval.ca>> and Raphael Gottardo <<rgottard@fhcrc.org>>

References

X. Zhang, G. Robertson, M. Krzywinski, K. Ning, A. Droit, S. Jones, and R. Gottardo, "PICS: Probabilistic Inference for ChIP-seq" arXiv, 0903.3206, 2009. To appear in Biometrics.

See Also

setParaEM

```
# Using xi=200 for the average DNA fragment size
setParaPrior(xi=200,rho=1,alpha=20,beta=40000,lambda=0,dMu=200,dataType="TF")
# Using xi=150 for the average DNA fragment size
setParaPrior(xi=150,rho=1,alpha=20,beta=40000,lambda=0,dMu=200,dataType="TF")
```

show 15

show show PICS

Description

This methods show the objects of PICS

Usage

```
## S4 method for signature 'pics'
show(object)
## S4 method for signature 'picsError'
show(object)
## S4 method for signature 'picsList'
show(object)
## S4 method for signature 'segReads'
show(object)
## S4 method for signature 'segReadsList'
show(object)
```

Arguments

object returned from pics.

Details

List of the slots include in the object

Author(s)

 $\label{lem:cappack} Xuekui\ Zhang,\ Arnaud\ Droit\ << arnaud\ droit\ @crchuq\ .ualaval\ .ca>> \ and\ Raphael\ Gottardo<< rgottard\ @fhcrc.org>>$

See Also

summary

summary

summary PICS

Description

This methods summarized 'pics', 'picsList', 'seg' or 'segList' objects.

16 unique

Usage

```
## S4 method for signature 'pics'
summary(object)
## S4 method for signature 'picsList'
summary(object)
## S4 method for signature 'segReads'
summary(object)
## S4 method for signature 'segReadsList'
summary(object)
```

Arguments

object returned from pics.

Author(s)

Xuekui Zhang, Arnaud Droit <<arnaud.droit@crchuq.ualaval.ca>> and Raphael Gottardo <<rgottard@fhcrc.org>>

See Also

show

unique

GenomeData Unique Reads

Description

This methods select the unique elements in a GenomeData object

Arguments

object

A 'GenomeData' object.

Author(s)

Xuekui Zhang, Arnaud Droit <<arnaud.droit@crchuq.ualaval.ca>> and Raphael Gottardo <<rgottard@fhcrc.org>>

See Also

```
segmentReads
```

Index

*Topic data	chromosome (pics-class), 4
makeRangedDataOutput, 3	chromosome, pics-method
segmentReads, 11	(pics-class), 4
setParaEM, 13	chromosome, picsError-method
setParaPrior, 14	(picsError-class), 6
*Topic graphs	chromosome, picsList-method
plot-FDR, 10	(picsList-class), 8
*Topic models	code (pics), 1
pics, 1	code, pics-method (pics), 1
pics-class,4	<pre>code, picsError-method (pics), 1</pre>
picsError-class,6	code, picsList-method (pics), 1
picsFDR, 7	coerce(pics), 1
picsList-class,8	coerce, AlignedRead, GenomeData-method
segmentReads, 11	(pics), 1
segReads, 11	coerce, data.frame, GenomeData-method
segReadsList, 2	(pics), 1
*Topic print	<pre>coerce, data.frame, picsList-method</pre>
show, 15	(pics), 1
summary, 15	coerce,picsList,data.frame-method
unique, 16	(pics), 1
*Topic process	coerce,picsList,RangedData-method
makeRangedDataOutput, 3	(pics), 1
[,picsList,ANY,ANY-method	coerce, RangedData, GenomeData-method
(picsList-class), 8	(pics), 1
[,picsList-method	dolta (niga glaga) A
(picsList-class), 8	<pre>delta(pics-class), 4 delta, pics-method(pics-class), 4</pre>
[,segReadsList,ANY,ANY-method	delta, pics=method (pics=class), 4 delta, picsError-method
(segReadsList), 2	(picsError-class), 6
[,segReadsList-method	delta, picsList-method
(segReadsList), 2	(picsList-class), 8
[[,picsList,ANY,ANY-method	density (pics), 1
(picsList-class), 8	density, pics-method (pics), 1
[[,picsList-method	density, picsError-method (pics), 1
(picsList-class), 8	density, picsList-method
[[, segReadsList, ANY, ANY-method	(picsList-class), 8
(segReadsList), 2	(P1002100 01000); 0
[[,segReadsList-method	FDR (plot-FDR), 10
(segReadsList), 2	
%in%, ANY, segReads-method	K(pics), 1
(segReads), 11	K, pics-method (pics), 1
, , , , , , , , , , , , , , , , , , ,	K, picsError-method (pics), 1
as.list,AlignedRead-method	K,picsList-method(pics),1
(pics), 1	length(picsList-class),8
$(P^{\perp}CS), 1$	TCHYCH (PICSHISC CIASS), 0

18 INDEX

length,picsList-method	plot,pics,segReads-method(pics),
(picsList-class), 8	1
length, segReadsList-method	plot,picsError,segReads-method
(segReadsList), 2	(pics), 1
(= = 9-10 = = = = = = = = = = = = = = = = = = =	plot,picsList,picsList-method
makeRangedDataOutput, 3	(plot-FDR), 10
map (segReads), 11	plot,picsList,segReadsList-method
map, segReads-method (segReads), 11	(pics), 1
map, segReadsList-method	plot-FDR, 10
(segReads), 11	<u> </u>
maxRange (pics), 1	score(pics), 1
maxRange, pics-method (pics), 1	score, pics-method (pics-class), 4
maxRange, picsError-method (pics),	score,picsError-method
1	(picsError-class), 6
maxRange, picsList-method (pics), 1	score, picsList-method
minRange (pics), 1	(picsList-class), 8
minRange, pics-method (pics), 1	scoreForward(pics),1
minRange, picsError-method (pics),	scoreForward,pics-method(pics),1
1	scoreForward,picsError-method
minRange, picsList-method (pics), 1	(pics), 1
mu (pics-class), 4	scoreForward,picsList-method
mu, pics-method (pics-class), 4	(pics), 1
mu, picsError-method	scoreReverse(pics), 1
(picsError-class), 6	scoreReverse,pics-method(pics),1
mu, picsList-method	scoreReverse, picsError-method
(picsList-class), 8	(pics), 1
(<u>r</u> ,	scoreReverse,picsList-method
newPics(pics-class),4	(pics), 1
newPics, pics-method (pics-class),	se(pics-class),4
4	se, pics-method (pics-class), 4
newPicsError(picsError-class), 6	se, picsError-method
newPicsError, picsError-method	(picsError-class), 6
(picsError-class), 6	se, picsList-method
newPicsList (picsList-class), 8	(picsList-class), 8
newPicsList,picsList-method	seF (pics-class), 4
(picsList-class), 8	seF, pics-method (pics-class), 4
(1	seF, picsError-method
paraEMH (setParaEM), 13	<pre>(picsError-class), 6 sef, picsList-method</pre>
paraEMTF (setParaEM), 13	(picsList-class), 8
paraPriorH (setParaPrior), 14	segmentReads, 11, 16
paraPriorTF (setParaPrior), 14	segReads, 11
PICS, 11	segReads-class (segReads), 11
PICS (pics), 1	segReadsList, 2
pics, 1, 2, 5–7, 9, 11, 15, 16	segReadsList-class
pics-class,4	(segReadsList), 2
pics-class(pics), 1	seR(pics-class),4
picsError, 5	seR, pics-method (pics-class), 4
picsError(picsError-class), 6	seR, picsError-method
picsError-class, 6	(picsError-class), 6
picsFDR, 7	seR, picsList-method
picsList(picsList-class), 8	(picsList-class), 8
picsList-class, 8	setParaEM, 13

INDEX 19

```
setParaPrior, 14
show, 15, 16
show, pics-method (show), 15
show, picsError-method (show), 15
show, picsList-method (show), 15
show, segReads-method (show), 15
show, segReadsList-method(show),
       15
show-methods (show), 15
sigmaSqF (pics), 1
sigmaSqF, pics-method (pics), 1
sigmaSqF, picsError-method (pics),
sigmaSqF,picsList-method(pics),1
sigmaSqR(pics), 1
sigmaSqR, pics-method (pics), 1
sigmaSqR,picsError-method(pics),
sigmaSqR, picsList-method (pics), 1
summary, 15, 15
summary, pics-method (summary), 15
summary,picsList-method
       (summary), 15
summary, segReads-method
       (summary), 15
summary,segReadsList-method
      (summary), 15
summary-methods (summary), 15
unique, 16
unique, GenomeData-method
       (unique), 16
unique-methods (unique), 16
w (pics-class), 4
w, pics-method (pics-class), 4
w, picsError-method
       (picsError-class), 6
w,picsList-method
       (picsList-class), 8
```