
MLInterfaces
March 24, 2012

MLIntInternals MLInterfaces infrastructure

Description

These functions are internal tools for MLInterfaces. Users will generally not call these func-
tions directly.

Usage

getGrid(x)

Arguments

x a vector or matrix or ExpressionSet

Details

Forthcoming.

Value

Functions with ‘new’ as prefix are constructor helpers.

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

1

2 MLearn

MLearn revised MLearn interface for machine learning

Description

revised MLearn interface for machine learning, emphasizing a schematic description of external
learning functions like knn, lda, nnet, etc.

Usage

MLearn(formula, data, .method, trainInd, ...)
makeLearnerSchema(packname, mlfunname, converter, predicter)

Arguments

formula standard model formula

data data.frame or ExpressionSet instance

.method instance of learnerSchema

trainInd obligatory numeric vector of indices of data to be used for training; all other
data are used for testing, or instance of the xvalSpec class

... additional named arguments passed to external learning function

packname character – name of package harboring a learner function

mlfunname character – name of function to use

converter function – with parameters (obj, data, trainInd) that tells how to convert the
material in obj [produced by [packname::mlfunname]] into a classifierOutput
instance.

predicter function – with parameters (obj, newdata, ...) that tells how to use the material
in obj to predict newdata.

Details

The purpose of the MLearn methods is to provide a uniform calling sequence to diverse ma-
chine learning algorithms. In R package, machine learning functions can have parameters (x,
y, ...) or (formula, data, ...) or some other sequence, and these functions can
return lists or vectors or other sorts of things. With MLearn, we always have calling sequence
MLearn(formula, data, .method, trainInd, ...), and data can be a data.frame
or ExpressionSet. MLearn will always return an S4 instance of classifierObject or
clusteringObject.

At this time (1.13.x), NA values in predictors trigger an error.

To obtain documentation on the older (pre bioc 2.1) version of the MLearn method, please use
help(MLearn-OLD).

randomForestI randomForest. Note, that to obtain the default performance of randomForestB,
you need to set mtry and sampsize parameters to sqrt(number of features) and table([training
set response factor]) respectively, as these were not taken to be the function’s defaults. Note
you can use xvalSpec("NOTEST") as trainInd, to use all the samples; the RObject() result will
print the misclassification matrix estimate along with OOB error rate estimate.

knnI(k=1,l=0) knn; special support bridge required, defined in MLint

MLearn 3

knn.cvI(k=1,l=0) knn.cv; special support bridge required, defined in MLint. This option uses the
embedded leave-one-out cross-validation of knn.cv, and thereby achieves high performance.
You can have more general cross-validation using knnI with an xvalSpec, but it will be
slower. When using this learner schema, you should use the numerical trainInd setting
with 1:N where N is the number of samples.

dldaI diagDA; special support bridge required, defined in MLint

nnetI nnet

rpartI rpart

ldaI lda

svmI svm

qdaI qda

logisticI(threshold) glm – with binomial family, expecting a dichotomous factor as response vari-
able, not bulletproofed against other responses yet. If response probability estimate exceeds
threshold, predict 1, else 0

adaI ada

BgbmI gbm, forcing the Bernoulli loss function.

blackboostI blackboost – you MUST supply a family parameter relevant for mboost package pro-
cedures

lvqI lvqtest after building codebook with lvqinit and updating with olvq1. You will need to write
your own detailed schema if you want to tweak tuning parameters.

naiveBayesI naiveBayes

baggingI bagging

sldaI slda

rdaI rda – you must supply the alpha and delta parameters to use this. Typically cross-validation
is used to select these. See rdacvI below.

rdacvI rda.cv. This interface is complicated. The typical use includes cross-validation internal to
the rda.cv function. That process searches a tuning parameter space and delivers an ordering
on parameters. The interface selects the parameters by looking at all parameter configurations
achieving the smallest min+1SE cv.error estimate, and taking the one among them that em-
ployed the -most- features (agnosticism). A final run of rda is then conducted with the tuning
parameters set at that ’optimal’ choice. The bridge code can be modified to facilitate alterna-
tive choices of the parameters in use. plotXvalRDA is an interface to the plot method for
objects of class rdacv defined in package rda. You can use xvalSpec("NOTEST") with this
procedure to use all the samples to build the discriminator.

ksvmI ksvm

hclustI(distMethod, agglomMethod) hclust – you must explicitly specify distance and agglomer-
ation procedure.

kmeansI(centers, algorithm) kmeans – you must explicitly specify centers and algorithm name.

If the multicore package is attached, cross-validation will be distributed to cores using mclapply.

Value

Instances of classifierOutput or clusteringOutput

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

4 MLearn

Examples

data(crabs)
set.seed(1234)
kp = sample(1:200, size=120)
rf1 = MLearn(sp~CW+RW, data=crabs, randomForestI, kp, ntree=600)
rf1
nn1 = MLearn(sp~CW+RW, data=crabs, nnetI, kp, size=3, decay=.01)
nn1
RObject(nn1)
knn1 = MLearn(sp~CW+RW, data=crabs, knnI(k=3,l=2), kp)
knn1
names(RObject(knn1))
dlda1 = MLearn(sp~CW+RW, data=crabs, dldaI, kp)
dlda1
names(RObject(dlda1))
lda1 = MLearn(sp~CW+RW, data=crabs, ldaI, kp)
lda1
names(RObject(lda1))
slda1 = MLearn(sp~CW+RW, data=crabs, sldaI, kp)
slda1
names(RObject(slda1))
svm1 = MLearn(sp~CW+RW, data=crabs, svmI, kp)
svm1
names(RObject(svm1))
ldapp1 = MLearn(sp~CW+RW, data=crabs, ldaI.predParms(method="debiased"), kp)
ldapp1
names(RObject(ldapp1))
qda1 = MLearn(sp~CW+RW, data=crabs, qdaI, kp)
qda1
names(RObject(qda1))
logi = MLearn(sp~CW+RW, data=crabs, glmI.logistic(threshold=0.5), kp, family=binomial) # need family
logi
names(RObject(logi))
rp2 = MLearn(sp~CW+RW, data=crabs, rpartI, kp)
rp2
recode data for RAB
#nsp = ifelse(crabs$sp=="O", -1, 1)
#nsp = factor(nsp)
#ncrabs = cbind(nsp,crabs)
#rab1 = MLearn(nsp~CW+RW, data=ncrabs, RABI, kp, maxiter=10)
#rab1
#
new approach to adaboost
#
ada1 = MLearn(sp ~ CW+RW, data = crabs, .method = adaI,

trainInd = kp, type = "discrete", iter = 200)
ada1
confuMat(ada1)
#
lvq.1 = MLearn(sp~CW+RW, data=crabs, lvqI, kp)
lvq.1
nb.1 = MLearn(sp~CW+RW, data=crabs, naiveBayesI, kp)
confuMat(nb.1)
bb.1 = MLearn(sp~CW+RW, data=crabs, baggingI, kp)
confuMat(bb.1)
#

MLearn 5

new mboost interface -- you MUST supply family for nonGaussian response
#
require(party) # trafo ... killing cmd check
blb.1 = MLearn(sp~CW+RW+FL, data=crabs, blackboostI, kp, family=mboost::Binomial())
confuMat(blb.1)
#
ExpressionSet illustration
#
12/20/2012 -- increased training set size to avoid new randomForest
error when empty classes emerge
data(sample.ExpressionSet)
X = MLearn(type~., sample.ExpressionSet[100:250,], randomForestI, 1:19, importance=TRUE)
library(randomForest)
library(hgu95av2.db)
opar = par(no.readonly=TRUE)
par(las=2)
plot(getVarImp(X), n=10, plat="hgu95av2", toktype="SYMBOL")
par(opar)
#
demonstrate cross validation
#
nn1cv = MLearn(sp~CW+RW, data=crabs[c(1:20,101:120),], nnetI, xvalSpec("LOO"), size=3, decay=.01)
confuMat(nn1cv)
nn2cv = MLearn(sp~CW+RW, data=crabs[c(1:20,101:120),], nnetI,

xvalSpec("LOG",5, balKfold.xvspec(5)), size=3, decay=.01)
confuMat(nn2cv)
nn3cv = MLearn(sp~CW+RW+CL+BD+FL, data=crabs[c(1:20,101:120),], nnetI,

xvalSpec("LOG",5, balKfold.xvspec(5), fsFun=fs.absT(2)), size=3, decay=.01)
confuMat(nn3cv)
nn4cv = MLearn(sp~.-index-sex, data=crabs[c(1:20,101:120),], nnetI,

xvalSpec("LOG",5, balKfold.xvspec(5), fsFun=fs.absT(2)), size=3, decay=.01)
confuMat(nn4cv)
#
try with expression data
#
library(golubEsets)
data(Golub_Train)
litg = Golub_Train[100:150,]
g1 = MLearn(ALL.AML~. , litg, nnetI, xvalSpec("LOG",5, balKfold.xvspec(5), fsFun=fs.probT(.75)), size=3, decay=.01)
confuMat(g1)
#
illustrate rda.cv interface from package rda (requiring local bridge)
#
library(ALL)
data(ALL)
#
restrict to BCR/ABL or NEG
#
bio <- which(ALL$mol.biol %in% c("BCR/ABL", "NEG"))
#
restrict to B-cell
#
isb <- grep("^B", as.character(ALL$BT))
kp <- intersect(bio,isb)
all2 <- ALL[,kp]
mads = apply(exprs(all2),1,mad)
kp = which(mads>1) # get around 250 genes

6 RAB

vall2 = all2[kp,]
vall2$mol.biol = factor(vall2$mol.biol) # drop unused levels

r1 = MLearn(mol.biol~., vall2, rdacvI, 1:40)
confuMat(r1)
RObject(r1)
plotXvalRDA(r1) # special interface to plots of parameter space

illustrate clustering support

cl1 = MLearn(~CW+RW+CL+FL+BD, data=crabs, hclustI(distFun=dist, cutParm=list(k=4)))
plot(cl1)

cl1a = MLearn(~CW+RW+CL+FL+BD, data=crabs, hclustI(distFun=dist, cutParm=list(k=4)),
method="complete")

plot(cl1a)

cl2 = MLearn(~CW+RW+CL+FL+BD, data=crabs, kmeansI, centers=5, algorithm="Hartigan-Wong")
plot(cl2, crabs[,-c(1:3)])

c3 = MLearn(~CL+CW+RW, crabs, pamI(dist), k=5)
c3
plot(c3, data=crabs[,c("CL", "CW", "RW")])

new interfaces to PLS thanks to Laurent Gatto

set.seed(1234)
kp = sample(1:200, size=120)

plsda.1 = MLearn(sp~CW+RW, data=crabs, plsdaI, kp, probMethod="Bayes")
plsda.1
confuMat(plsda.1)
confuMat(plsda.1,t=.65) ## requires at least 0.65 post error prob to assign species

plsda.2 = MLearn(type~., data=sample.ExpressionSet[100:250,], plsdaI, 1:16)
plsda.2
confuMat(plsda.2)
confuMat(plsda.2,t=.65) ## requires at least 0.65 post error prob to assign outcome

examples for predict
clout <- MLearn(type~., sample.ExpressionSet[100:250,], svmI , 1:16)
predict(clout, sample.ExpressionSet[100:250,17:26])

RAB real adaboost (Friedman et al)

Description

read adaboost ... a demonstration version

Usage

RAB(formula, data, maxiter=200, maxdepth=1)

balKfold.xvspec 7

Arguments

formula formula – the response variable must be coded -1, 1

data data

maxiter maxiter

maxdepth maxdepth – passed to rpart

Value

an instance of raboostCont

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

References

Friedman et al Ann Stat 28/2 337

Examples

library(MASS)
data(Pima.tr)
data(Pima.te)
Pima.all = rbind(Pima.tr, Pima.te)
tonp = ifelse(Pima.all$type == "Yes", 1, -1)
tonp = factor(tonp)
Pima.all = data.frame(Pima.all[,1:7], mtype=tonp)
fit1 = RAB(mtype~ped+glu+npreg+bmi+age, data=Pima.all[1:200,], maxiter=10, maxdepth=5)
pfit1 = Predict(fit1, newdata=Pima.tr)
table(Pima.tr$type, pfit1)

balKfold.xvspec generate a partition function for cross-validation, where the partitions
are approximately balanced with respect to the distribution of a re-
sponse variable

Description

generate a partition function for cross-validation, where the partitions are approximately balanced
with respect to the distribution of a response variable

Usage

balKfold.xvspec(K)

Arguments

K number of partitions to be computed

Details

This function returns a closure. The symbol K is bound in the environment of the returned function.

8 classifierOutput-class

Value

A closure consisting of a function that can be used as a partitionFunc for passage in xvalSpec.

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

Examples

The function is currently defined as
function (K)
function(data, clab, iternum) {

clabs <- data[[clab]]
narr <- nrow(data)
cnames <- unique(clabs)
ilist <- list()
for (i in 1:length(cnames)) ilist[[cnames[i]]] <- which(clabs ==

cnames[i])
clens <- lapply(ilist, length)
nrep <- lapply(clens, function(x) ceiling(x/K))
grpinds <- list()
for (i in 1:length(nrep)) grpinds[[i]] <- rep(1:K, nrep[[i]])[1:clens[[i]]]
(1:narr)[-which(unlist(grpinds) == iternum)]

}
try it out
data(crabs)
p1c = balKfold.xvspec(5)
inds = p1c(crabs, "sp", 3)
table(crabs$sp[inds])
inds2 = p1c(crabs, "sp", 4)
table(crabs$sp[inds2])
allc = 1:200
are test sets disjoint?
intersect(setdiff(allc,inds), setdiff(allc,inds2))

classifierOutput-class
Class "classifierOutput"

Description

This class summarizes the output values from different classifiers.

Objects from the Class

Objects are typically created during the application of a supervised machine learning algorithm to
data and are the value returned. It is very unlikely that any user would create such an object by
hand.

classifierOutput-class 9

Slots

testOutcomes: Object of class "factor" that lists the actual outcomes in the records on the
test set

testPredictions: Object of class "factor" that lists the predictions of outcomes in the test
set

testScores: Object of class "ANY" – this element will include matrices or vectors or arrays
that include information that is typically related to the posterior probability of occupancy of
the predicted class or of all classes. The actual contents of this slot can be determined by
inspecting the converter element of the learnerSchema used to select the model.

trainOutcomes: Object of class "factor" that lists the actual outcomes in records on the
training set

trainPredictions: Object of class "factor" that lists the predicted outcomes in the train-
ing set

trainScores: Object of class "ANY" see the description of testScores above; the same
information is returned, but applicable to the training set records.

trainInd: Object of class "numeric" with of indices of data to be used for training.

RObject: Object of class "ANY" – when the trainInd parameter of the MLearn call is nu-
meric, this slot holds the return value of the underlying R function that carried out the predic-
tive modeling. For example, if rpartI was used as MLearn method, Robject holds an
instance of the rpart S3 class, and plot and text methods can be applied to this. When
the trainInd parameter of the MLearn call is an instance of xvalSpec, this slot holds
a list of results of cross-validatory iterations. Each element of this list has two elements:
test.idx, giving the numeric indices of the test cases for the associated cross-validation
iteration, and mlans, which is the classifierOutput for the associated iteration. See
the example for an illustration of ’digging out’ the predicted probabilities associated with each
cross-validation iteration executed through an xvalSpec specification.

embeddedCV: logical value that is TRUE if the procedure in use performs its own cross-validation

fsHistory: list of features selected through cross-validation process

learnerSchema: propagation of the learner schema object used in the call

call: Object of class "call" – records the call used to generate the classifierOutput RObject

Methods

confuMat signature(obj = "classifierOutput"): Compute the confusion matrix for
test records.

confuMatTrain signature(obj = "classifierOutput"): Compute the confusion ma-
trix for training set. Typically yields optimistically biased information on misclassification
rate.

RObject signature(obj = "classifierOutput"): The R object returned by the un-
derlying classifier. This can then be passed on to specific methods for those objects, when
they exist.

trainInd signature(obj = "classifierOutput"): Returns the indices of data used for
training.

show signature(object = "classifierOutput"): A print method that provides a
summary of the output of the classifier.

predictions signature(object = "classifierOutput"): Print the predicted classes
for each sample/individual. The predictions for the training set are the training outcomes.

10 clusteringOutput-class

predictions signature(object = "classifierOutput", t = "numeric"): Print
the predicted classes for each sample/individual that have a testScore greater or equal than
t. The predictions for the training set are the training outcomes. Non-predicted cases and
cases that matche multiple classes are returned as NAs.

predScores signature(object = "classifierOutput"): Returns the prediction scores
for each sample/individual. The scores for the training set are set to 1.

testScores signature(object = "classifierOutput"): ...

testPredictions signature(object = "classifierOutput"): Print the predicted classes
for each sample/individual in the test set.

testPredictions signature(object = "classifierOutput", t = "numeric"): Print
the predicted classes for each sample/individual in the test set that have a testScore greater
or equal than t. Non-predicted cases and cases that matche multiple classes are returned as
NAs.

trainScores signature(object = "classifierOutput"): ...

trainPredictions signature(object = "classifierOutput"): Print the predicted classes
for each sample/individual in the train set.

trainPredictions signature(object = "classifierOutput", t = "numeric"): Print
the predicted classes for each sample/individual in the train set that have a testScore
greater or equal than t. Non-predicted cases and cases that matche multiple classes are re-
turned as NAs.

fsHistory signature(object = "classifierOutput"): ...

Author(s)

V. Carey

Examples

showClass("classifierOutput")
library(golubEsets)
data(Golub_Train) # now cross-validate a neural net
set.seed(1234)
xv5 = xvalSpec("LOG", 5, balKfold.xvspec(5))
m2 = MLearn(ALL.AML~., Golub_Train[1000:1050,], nnetI, xv5,

size=5, decay=.01, maxit=1900)
testScores(RObject(m2)[[1]]$mlans)
alls = lapply(RObject(m2), function(x) testScores(x$mlans))

clusteringOutput-class
container for clustering outputs in uniform structure

Description

container for clustering outputs in uniform structure

Objects from the Class

Objects can be created by calls of the form new("clusteringOutput", ...).

confuMat-methods 11

Slots

partition: Object of class "integer", labels for observations as clustered

silhouette: Object of class "silhouette", structure from Rousseeuw cluster package mea-
suring cluster membership strength per observation

prcomp: Object of class "prcompObj" a wrapped instance of stats package prcomp output

call: Object of class "call" for auditing

learnerSchema: Object of class "learnerSchema", a formal object indicating the package,
function, and other attributes of the clustering algorithm employed to generate this object

RObject: Object of class "ANY", the unaltered output of the function called according to learn-
erSchema

converter: converter propagated from call

distFun: distfun propagated from call

Methods

RObject signature(x = "clusteringOutput"): extract the unaltered output of the R
function or method called according to learnerSchema

plot signature(x = "clusteringOutput", y = "ANY"): a 4-panel plot showing fea-
tures of the clustering, including the scree plot for a principal components transformation and a
display of the partition in PC1xPC2 plane. For a clustering method that does not have a native
plot procedure, such as kmeans, the parameter y should be bound to a data frame or matrix with
feature data for all records; an image plot of robust feature z-scores (z=(x-median(x))/mad(x))
and the cluster indices is produced in the northwest panel.

show signature(object = "clusteringOutput"): concise report

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

Examples

showClass("clusteringOutput")

confuMat-methods Compute the confusion matrix for a classifier.

Description

This function will compute the confusion matrix for a classifier’s output

Methods

obj = "classifOutput", ... Typically, an instance of class "classifierOutput" is built on a
training subset of the input data. The model is then used to predict the class of samples in the
test set. When the true class labels for the test set are available the confusion matrix is the
cross-tabulation of the true labels of the test set against the predictions from the classifier. An
optional t score threshold can also be specified.

12 fs.absT

obj = "classifierOutput", type="character", ... For instances of classifierOutput, it is possible to
specify the type of confusion matrix desired. The default is test, which tabulates classes
from the test set against the associated predictions. If type is train, the training class
vector is tabulated against the predictions on the training set. An optional t score threshold
can also be specified.

obj = "classifierOutput", type="numeric" For instances of classifierOutput, it is possible to spec-
ify the minimum score feature classification threshold. Features with a score less than the
threshold are classified as NA in the confustion train or test confusion matrix.

Examples

library(golubEsets)
data(Golub_Merge)
smallG <- Golub_Merge[101:150,]
k1 <- MLearn(ALL.AML~., smallG, knnI(k=1), 1:30)
confuMat(k1)
confuMat(k1, "train")

fs.absT support for feature selection in cross-validation

Description

support for feature selection in cross-validation

Usage

fs.absT(N)
fs.probT(p)
fs.topVariance(p)

Arguments

N number of features to retain; features are ordered by descending value of abs(two-
sample t stat.), and the top N are used.

p cumulative probability (in (0,1)) in the distribution of absolute t statistics above
which we retain features

Details

This function returns a function that will be used as a parameter to xvalSpec in applications of
MLearn.

Value

a function is returned, that will itself return a formula consisting of the selected features for appli-
cation of MLearn.

fsHistory 13

Note

The functions fs.absT and fs.probT are two examples of approaches to embedded feature
selection that make sense for two-sample prediction problems. For selection based on linear models
or other discrimination measures, you will need to create your own selection helper, following the
code in these functions as examples.

fs.topVariance performs non-specific feature selection based on the variance. Argument p is the
variance percentile beneath which features are discarded.

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

See Also

MLearn

Examples

we will demonstrate this procedure with the crabs data.
first, create the closure to pick 3 features
demFS = fs.absT(3)
run it on the entire dataset with features excluding sex
demFS(sp~.-sex, crabs)
emulate cross-validation by excluding last 50 records
demFS(sp~.-sex, crabs[1:150,])
emulate cross-validation by excluding first 50 records -- different features retained
demFS(sp~.-sex, crabs[51:200,])

fsHistory extract history of feature selection for a cross-validated machine
learner

Description

extract history of feature selection for a cross-validated machine learner

Usage

fsHistory(x)

Arguments

x instance of classifierOutput

Details

returns a list of names of selected features

Value

a list; the names of variables are made ’syntactic’

14 learnerSchema-class

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

data(iris)
iris2 = iris[iris$Species %in% levels(iris$Species)[1:2],]
iris2$Species = factor(iris2$Species) # drop unused levels
x1 = MLearn(Species~., iris2, ldaI, xvalSpec("LOG", 3,

balKfold.xvspec(3), fs.absT(3)))
fsHistory(x1)

learnerSchema-class
Class "learnerSchema" - convey information on a machine learning
function to the MLearn wrapper

Description

conveys information about machine learning functions in CRAN packages, for example, to MLearn
wrapper

Objects from the Class

Objects can be created by calls of the form new("learnerSchema", ...).

Slots

packageName: Object of class "character" string naming the package in which the function
to be used is defined.

mlFunName: Object of class "character" string naming the function to be used

converter: Object of class "function" function with parameters obj, data, trainInd, that will
produce a classifierOutput instance

Methods

MLearn signature(formula = "formula", data = "ExpressionSet", method
= "learnerSchema", trainInd = "numeric"): execute desired learner passing
a formula and ExpressionSet

MLearn signature(formula = "formula", data = "data.frame", method =
"learnerSchema", trainInd = "numeric"): execute desired learner passing a
formula

show signature(object = "learnerSchema"): concise display

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

showClass("learnerSchema")

planarPlot-methods 15

planarPlot-methods Methods for Function planarPlot in Package ’MLInterfaces’

Description

show the classification boundaries on the plane dictated by two genes in an ExpressionSet

Methods

clo = "classifierOutput", eset = "ExpressionSet", classifLab = "character" uses two genes in
the ExpressionSet to exhibit the decision boundaries in the plane

clo = "classifierOutput", eset = "data.frame", classifLab = "character" uses two columns in
the data.frame to exhibit the decision boundaries in the plane

Examples

library(ALL)
library(hgu95av2.db)
data(ALL)
#
restrict to BCR/ABL or NEG
#
bio <- which(ALL$mol.biol %in% c("BCR/ABL", "NEG"))
#
restrict to B-cell
#
isb <- grep("^B", as.character(ALL$BT))
kp <- intersect(bio,isb)
all2 <- ALL[,kp]
#
sample 2 genes at random
#
set.seed(1234)
ng <- nrow(exprs(all2))
pick <- sample(1:ng, size=2, replace=FALSE)
gg <- all2[pick,]
sym <- unlist(mget(featureNames(gg), hgu95av2SYMBOL))
featureNames(gg) <- sym
gg$class = factor(ifelse(all2$mol.biol=="NEG", "NEG", "POS"))

cl1 <- which(gg$class == "NEG")
cl2 <- which(gg$class != "NEG")
#
create balanced training sample
#
trainInds <- c(sample(cl1, size=floor(length(cl1)/2)),

sample(cl2, size=floor(length(cl2)/2)))
#
run rpart
#
tgg <- MLearn(class~., gg, rpartI, trainInds, minsplit=4)
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2))
planarPlot(tgg, gg, "class")

16 predict.classifierOutput

title("rpart")
points(exprs(gg)[1,trainInds], exprs(gg)[2,trainInds], col=ifelse(gg$class[trainInds]=="NEG", "yellow", "black"), pch=16)
#
run nnet
#
ngg <- MLearn(class~., gg, nnetI, trainInds, size=8)
planarPlot(ngg, gg, "class")
points(exprs(gg)[1,trainInds], exprs(gg)[2,trainInds], col=ifelse(gg$class[trainInds]=="NEG", "yellow", "black"), pch=16)
title("nnet")
#
run knn
#
kgg <- MLearn(class~., gg, knnI(k=3,l=1), trainInds)
planarPlot(kgg, gg, "class")
points(exprs(gg)[1,trainInds], exprs(gg)[2,trainInds], col=ifelse(gg$class[trainInds]=="NEG", "yellow", "black"), pch=16)
title("3-nn")
#
run svm
#
sgg <- MLearn(class~., gg, svmI, trainInds)
planarPlot(sgg, gg, "class")
points(exprs(gg)[1,trainInds], exprs(gg)[2,trainInds], col=ifelse(gg$class[trainInds]=="NEG", "yellow", "black"), pch=16)
title("svm")
par(opar)

precision-methods Assessing classifier preformance

Description

Methods for function precision, recall and macroF1 in package MLInterfaces.

Methods

signature(obj = "classifierOutput", type = "character")

signature(obj = "classifierOutput", type = "missing")

signature(obj = "classifierOutput", type = "numeric")

predict.classifierOutput
Predict method for ’classifierOutput’ objects

Description

This function predicts values based on models trained with MLInterfaces’ MLearn interface to
many machine learning algorithms.

Usage

S3 method for class 'classifierOutput'
predict(object, newdata, ...)

predict.classifierOutput 17

Arguments

object An instance of class classifierOutput.

newdata An object containing the new input data: either a matrix, a data.frame or
an ExpressionSet.

... Other arguments to be passed to the algorithm-specific predict methods.

Details

This S3 method will extract the ML model from the classifierOutput instance and call either
a generic predict method or, if available, a specficly written wrapper to do classes prediction and
class probabilities.

Value

Currently, a list with

testPredictions
A factor with class predictions.

testScores A numeric or matrix with class probabilities.

Note

The function output will most likely be updated in a near future to a classifierOutput (or
similar) object.

Author(s)

Laurent Gatto <lg390@cam.ac.uk>

See Also

MLearn and classifierOutput.

Examples

set.seed(1234)
data(sample.ExpressionSet)
trainInd <- 1:16

clout.svm <- MLearn(type~., sample.ExpressionSet[100:250,], svmI, trainInd)
predict(clout.svm, sample.ExpressionSet[100:250,-trainInd])

clout.ksvm <- MLearn(type~., sample.ExpressionSet[100:250,], ksvmI, trainInd)
predict(clout.ksvm, sample.ExpressionSet[100:250,-trainInd])

clout.nnet <- MLearn(type~., sample.ExpressionSet[100:250,], nnetI, trainInd, size=3, decay=.01)
predict(clout.nnet, sample.ExpressionSet[100:250,-trainInd])

clout.knn <- MLearn(type~., sample.ExpressionSet[100:250,], knnI(k=3), trainInd)
predict(clout.knn, sample.ExpressionSet[100:250,-trainInd],k=1)
predict(clout.knn, sample.ExpressionSet[100:250,-trainInd],k=3)

clout.plsda <- MLearn(type~., sample.ExpressionSet[100:250,], plsdaI, trainInd)
predict(clout.plsda, sample.ExpressionSet[100:250,-trainInd])

18 raboostCont-class

clout.nb <- MLearn(type~., sample.ExpressionSet[100:250,], naiveBayesI, trainInd)
predict(clout.nb, sample.ExpressionSet[100:250,-trainInd])

clout.rf <- MLearn(type~., sample.ExpressionSet[100:250,], randomForestI, trainInd)
predict(clout.rf, sample.ExpressionSet[100:250,-trainInd])

raboostCont-class Class "raboostCont" ~~~

Description

~~ A concise (1-5 lines) description of what the class is. ~~

Objects from the Class

Objects can be created by calls of the form new("raboostCont", ...). ~~ describe objects
here ~~

Slots

.Data: Object of class "list" ~~

formula: Object of class "formula" ~~

call: Object of class "call" ~~

Extends

Class "list", from data part. Class "vector", by class "list", distance 2.

Methods

Predict is an S4 method that can apply to instances of this class.

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

Examples

showClass("raboostCont")

varImpStruct-class 19

varImpStruct-class Class "varImpStruct" - collect data on variable importance from var-
ious machine learning methods

Description

collects data on variable importance

Objects from the Class

Objects can be created by calls of the form new("varImpStruct", ...). These are matri-
ces of importance measures with separate slots identifying algorithm generating the measures and
variable names.

Slots

.Data: Object of class "matrix" actual importance measures

method: Object of class "character" tag

varnames: Object of class "character" conformant vector of names of variables

Extends

Class "matrix", from data part. Class "structure", by class "matrix". Class "array",
by class "matrix". Class "vector", by class "matrix", with explicit coerce. Class "vector",
by class "matrix", with explicit coerce.

Methods

plot signature(x = "varImpStruct"): make a bar plot, you can supply arguments plat
and toktypewhich will use lookUp(...,plat,toktype) from the annotate pack-
age to translate probe names to, e.g., gene symbols.

show signature(object = "varImpStruct"): simple abbreviated display

getVarImp signature(object = "classifOutput", fixNames="logical"): ex-
tractor of variable importance structure; fixNames parameter is to remove leading X used to
make variable names syntactic by randomForest (ca 1/2008). You can set fixNames to false if
using hu6800 platform, because all featureNames are syntactic as given.

report signature(object = "classifOutput", fixNames="logical"): extrac-
tor of variable importance data, with annotation; fixNames parameter is to remove leading X
used to make variable names syntactic by randomForest (ca 1/2008). You can set fixNames to
false if using hu6800 platform, because all featureNames are syntactic as given.

Examples

library(golubEsets)
data(Golub_Merge)
library(hu6800.db)
smallG <- Golub_Merge[1001:1060,]
set.seed(1234)
opar=par(no.readonly=TRUE)
par(las=2, mar=c(10,11,5,5))
rf2 <- MLearn(ALL.AML~., smallG, randomForestI, 1:40, importance=TRUE,

20 xvalLoop

sampsize=table(smallG$ALL.AML[1:40]), mtry=sqrt(ncol(exprs(smallG))))
plot(getVarImp(rf2, FALSE), n=10, plat="hu6800", toktype="SYMBOL")
par(opar)
report(getVarImp(rf2, FALSE), n=10, plat="hu6800", toktype="SYMBOL")

xvalLoop Cross-validation in clustered computing environments

Description

Use cross-validation in a clustered computing environment

Usage

xvalLoop(cluster, ...)

Arguments

cluster Any S4-class object, used to indicate how to perform clustered computations.

... Additional arguments used to inform the clustered computation.

Details

Cross-validiation usually involves repeated calls to the same function, but with different arguments.
This provides an obvious place for using clustered computers to enhance execution. The method
xval is structured to exploit this; xvalLoop provides an easy mechanism to change how xval
performs cross-validation.

The idea is to write an xvalLoop method that returns a function. The function is then used to
execute the cross-validation. For instance, the default method returns the function lapply, so the
cross-validation is performed by using lapply. A different method might return a function that
executed lapply-like functions, but sent different parts of the function to different computer nodes.

An accompanying vignette illustrates the technique in greater detail. An effective division of labor
is for experienced cluster programmers to write lapply-like methods for their favored clustering
environment. The user then only has to add the cluster object to the list of arguments to xval to
get clustered calculations.

Value

A function taking arguments like those for lapply

Examples

Not run:
library(golubEsets)
data(Golub_Merge)
smallG <- Golub_Merge[200:250,]

Evaluation on one node

lk1 <- xval(smallG, "ALL.AML", knnB, xvalMethod="LOO", group=as.integer(0))
table(lk1,smallG$ALL.AML)

xvalSpec 21

Evaluation on several nodes -- a cluster programmer might write the following...

library(snow)
setOldClass("spawnedMPIcluster")

setMethod("xvalLoop", signature(cluster = "spawnedMPIcluster"),
use the function returned below to evalutae
the central cross-validation loop in xval
function(cluster, ...) {

clusterExportEnv <- function (cl, env = .GlobalEnv)
{

unpackEnv <- function(env) {
for (name in ls(env)) assign(name, get(name, env), .GlobalEnv)
NULL

}
clusterCall(cl, unpackEnv, env)

}
function(X, FUN, ...) { # this gets returned to xval

send all visible variables from the parent (i.e., xval) frame
clusterExportEnv(cluster, parent.frame(1))
parLapply(cluster, X, FUN, ...)

}
})

... and use the cluster like this...

cl <- makeCluster(2, "MPI")
clusterEvalQ(cl, library(MLInterfaces))

lk1 <- xval(smallG, "ALL.AML", knnB, xvalMethod="LOO", group=as.integer(0), cluster = cl)
table(lk1,smallG$ALL.AML)

End(Not run)

xvalSpec container for information specifying a cross-validated machine learn-
ing exercise

Description

container for information specifying a cross-validated machine learning exercise

Usage

xvalSpec(type, niter=0, partitionFunc=function(data, classLab, iternum) {
(1:nrow(data))[-iternum] },

fsFun = function(formula, data) formula)

Arguments

type a string, "LOO" indicating leave-one-out cross-validation, or "LOG" indicating
leave-out-group, or "NOTEST", indicating the entire dataset is used in a single
training run.

22 xvalSpec

niter numeric specification of the number of cross-validation iterations to use. Ig-
nored if type is "LOO".

partitionFunc
function, with parameters data (bound to data.frame), clab (bound to charac-
ter string), iternum (bound to numeric index into sequence of 1:niter). This
function’s job is to provide the indices of training cases for each cross-validation
step. An example is balKfold.xvspec, which computes a series of indices
that are approximately balanced with respect to frequency of outcome types.

fsFun function, with parameters formula, data. The function must return a formula
suitable for defining a model on the basis of the main input data. A candidate
fsFun is given in example for fsHistory function.

Details

If type == "LOO", no other parameters are inspected. If type == "LOG" a value for partitionFunc
must be supplied. We recommend using balKfold.xvspec(K). The values of niter and K
in this usage must be the same. This redundancy will be removed in a future upgrade.

If the multicore package is attached, cross-validation will be distributed to cores using mclapply.

Value

An instance of classifierOutput, with a special structure. The RObject return slot is
populated with a list of niter cross-validation results. Each element of this list is itself a list
with two elements: test.idx (the indices of the test set for the associated cross-validation
iteration, and mlans, the classifierOutput generated at each iteration. Thus there are
classifierOutput instances nested within the main classifierOutput returned when
a xvalSpec is used.

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

data(crabs)
set.seed(1234)
#
demonstrate cross validation
#
nn1cv = MLearn(sp~CW+RW, data=crabs, nnetI, xvalSpec("LOG",

5, balKfold.xvspec(5)), size=3, decay=.01)
nn1cv
confuMat(nn1cv)
names(RObject(nn1cv)[[1]])
RObject(RObject(nn1cv)[[1]]$mlans)

Index

∗Topic classes
classifierOutput-class, 8
clusteringOutput-class, 10
learnerSchema-class, 14
raboostCont-class, 18
varImpStruct-class, 19

∗Topic classif
confuMat-methods, 11
MLIntInternals, 1

∗Topic manip
balKfold.xvspec, 7

∗Topic methods
confuMat-methods, 11
planarPlot-methods, 15
precision-methods, 16
xvalLoop, 20

∗Topic models
balKfold.xvspec, 7
fs.absT, 12
fsHistory, 13
MLearn, 2
RAB, 6
xvalSpec, 21

ada, 3
adaI (MLearn), 2

bagging, 3
baggingI (MLearn), 2
balKfold.xvspec, 7, 22
BgbmI (MLearn), 2
blackboost, 3
blackboostI (MLearn), 2

classifierOutput, 9, 11–13, 17, 22
classifierOutput-class, 8
classifOutput (MLIntInternals), 1
clusteringOutput-class, 10
clustOutput (MLIntInternals), 1
confuMat (confuMat-methods), 11
confuMat,classifierOutput,character-method

(confuMat-methods), 11
confuMat,classifierOutput,missing-method

(confuMat-methods), 11

confuMat,classifierOutput,numeric-method
(confuMat-methods), 11

confuMat,classifierOutput-method
(confuMat-methods), 11

confuMat-methods, 11

DAB (RAB), 6
daboostCont-class

(raboostCont-class), 18
diagDA, 3
dlda (MLearn), 2
dlda2 (MLearn), 2
dldaI (MLearn), 2

fs.absT, 12
fs.probT (fs.absT), 12
fs.topVariance (fs.absT), 12
fsHistory, 13
fsHistory,classifierOutput-method

(classifierOutput-class), 8

gbm, 3
gbm2 (MLearn), 2
getConverter

(clusteringOutput-class),
10

getConverter,clusteringSchema-method
(clusteringOutput-class),
10

getDist (clusteringOutput-class),
10

getDist,clusteringSchema-method
(clusteringOutput-class),
10

getGrid (MLIntInternals), 1
getGrid,data.frame-method

(MLIntInternals), 1
getGrid,ExpressionSet-method

(MLIntInternals), 1
getVarImp (varImpStruct-class), 19
getVarImp,classifierOutput,logical-method

(varImpStruct-class), 19
getVarImp,classifierOutput,missing-method

(varImpStruct-class), 19

23

24 INDEX

getVarImp,classifOutput,logical-method
(varImpStruct-class), 19

glm, 3
glmI.logistic (MLearn), 2
groupIndex (MLIntInternals), 1

hclust, 3
hclustI (MLearn), 2

kmeans, 3
kmeansI (MLearn), 2
knn, 2
knn.cv, 3
knn.cv2 (MLearn), 2
knn.cvI (MLearn), 2
knn2 (MLearn), 2
knnI (MLearn), 2
ksvm, 3
ksvm2 (MLearn), 2
ksvmI (MLearn), 2

lapply, 20
lda, 3
ldaI (MLearn), 2
learnerSchema-class, 14
list, 18
lvq (MLearn), 2
lvqI (MLearn), 2
lvqtest, 3

macroF1 (precision-methods), 16
macroF1,classifierOutput,character-method

(precision-methods), 16
macroF1,classifierOutput,missing-method

(precision-methods), 16
macroF1,classifierOutput,numeric-method

(precision-methods), 16
macroF1-methods

(precision-methods), 16
makeLearnerSchema (MLearn), 2
mclapply, 3, 22
membMat (MLIntInternals), 1
mkfmla (RAB), 6
MLearn, 2, 12, 13, 17
MLearn,formula,data.frame,clusteringSchema,ANY-method

(MLearn), 2
MLearn,formula,data.frame,learnerSchema,numeric-method

(MLearn), 2
MLearn,formula,data.frame,learnerSchema,xvalSpec-method

(MLearn), 2
MLearn,formula,ExpressionSet,character,numeric-method

(MLearn), 2
MLearn,formula,ExpressionSet,learnerSchema,numeric-method

(MLearn), 2

MLearn,formula,ExpressionSet,learnerSchema,xvalSpec-method
(MLearn), 2

MLearn_new (MLearn), 2
MLIntInternals, 1
MLLabel (MLIntInternals), 1
MLOutput (MLIntInternals), 1
MLScore (MLIntInternals), 1

naiveBayes, 3
naiveBayesI (MLearn), 2
nnet, 3
nnetI (MLearn), 2
nonstandardLearnerSchema-class

(learnerSchema-class), 14

pamI (MLearn), 2
planarPlot (planarPlot-methods),

15
planarPlot,classifierOutput,data.frame,character-method

(planarPlot-methods), 15
planarPlot,classifierOutput,ExpressionSet,character-method

(planarPlot-methods), 15
planarPlot-methods, 15
plot,clusteringOutput,ANY-method

(clusteringOutput-class),
10

plot,varImpStruct,ANY-method
(varImpStruct-class), 19

plot,varImpStruct-method
(varImpStruct-class), 19

plotXvalRDA (MLearn), 2
plsda2 (MLearn), 2
plsdaI (MLearn), 2
precision (precision-methods), 16
precision,classifierOutput,character-method

(precision-methods), 16
precision,classifierOutput,missing-method

(precision-methods), 16
precision,classifierOutput,numeric-method

(precision-methods), 16
precision-methods, 16
Predict (RAB), 6
Predict,daboostCont-method (RAB),

6
Predict,raboostCont-method (RAB),

6
predict.classifierOutput, 16
predictions

(classifierOutput-class), 8
predictions,classifierOutput-method

(classifierOutput-class), 8
predScores

(classifierOutput-class), 8

INDEX 25

predScores,classifierOutput-method
(classifierOutput-class), 8

probArray (MLIntInternals), 1
probMat (MLIntInternals), 1

qda, 3
qdaI (MLearn), 2
qualScore (MLIntInternals), 1

RAB, 6
rab (MLearn), 2
RAB4es (RAB), 6
RABI (MLearn), 2
raboostCont-class, 18
randomForest, 2
randomForestI (MLearn), 2
rda, 3
rda.cv, 3
rdacvI (MLearn), 2
rdacvML (MLearn), 2
rdaI (MLearn), 2
rdaML (MLearn), 2
recall (precision-methods), 16
recall,classifierOutput,character-method

(precision-methods), 16
recall,classifierOutput,missing-method

(precision-methods), 16
recall,classifierOutput,numeric-method

(precision-methods), 16
recall-methods

(precision-methods), 16
report (varImpStruct-class), 19
report,varImpStruct-method

(varImpStruct-class), 19
RObject (classifierOutput-class),

8
RObject,classifierOutput-method

(classifierOutput-class), 8
RObject,clusteringOutput-method

(clusteringOutput-class),
10

rpart, 3
rpartI (MLearn), 2

show,classifierOutput-method
(classifierOutput-class), 8

show,clusteringOutput-method
(clusteringOutput-class),
10

show,clusteringSchema-method
(clusteringOutput-class),
10

show,learnerSchema-method
(learnerSchema-class), 14

show,raboostCont-method
(raboostCont-class), 18

show,varImpStruct-method
(varImpStruct-class), 19

silhouetteVec (MLIntInternals), 1
slda, 3
sldaI (MLearn), 2
SOMBout (MLIntInternals), 1
somout (MLIntInternals), 1
standardMLIConverter (MLearn), 2
svm, 3
svm2 (MLearn), 2
svmI (MLearn), 2

testPredictions
(classifierOutput-class), 8

testPredictions,classifierOutput-method
(classifierOutput-class), 8

testScores
(classifierOutput-class), 8

testScores,classifierOutput-method
(classifierOutput-class), 8

tonp (RAB), 6
trainInd

(classifierOutput-class), 8
trainInd,classifierOutput-method

(classifierOutput-class), 8
trainPredictions

(classifierOutput-class), 8
trainPredictions,classifierOutput-method

(classifierOutput-class), 8
trainScores

(classifierOutput-class), 8
trainScores,classifierOutput-method

(classifierOutput-class), 8

varImpStruct-class, 19
vector, 18

xvalLoop, 20
xvalSpec, 8, 9, 12, 21
xvalSpec-class (xvalSpec), 21

	MLIntInternals
	MLearn
	RAB
	balKfold.xvspec
	classifierOutput-class
	clusteringOutput-class
	confuMat-methods
	fs.absT
	fsHistory
	learnerSchema-class
	planarPlot-methods
	precision-methods
	predict.classifierOutput
	raboostCont-class
	varImpStruct-class
	xvalLoop
	xvalSpec
	Index

