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1 Introduction

Current tools for the analysis of microarray data only allow the comparison of datasets
generated on the same platform and chip generation, and restrict meta-analysis studies to
the evaluation of study results from different groups, rather than the direct comparison
of the available raw datasets. The aim of the virtualArray package is to enable the
combination of raw expression data of different microarray platforms into one ”virtual
array”. Thus, the user may compare his own data to other datasets including public
sources, regardless of the platform and chip generation used, or perform meta-analysis
directly based on available raw datasets. The package generates a combined virtual array
as a ”ExpressionSet” object from different datasets by matching raw data entries based
on probe, transcript, gene or protein identifiers. Redundancies, gaps, and batch effects
are removed before proceeding with data analysis.

virtualArray consists of several subsequent functions, requiring minimal user input.
Briefly, (1) raw data are loaded into R, (2) probe sets for each platform are annotated,
(3) genes, proteins or transcripts common to all platforms are matched, including checks
for redundancy or missing values, (4) data are compiled into a new ”virtual array”, (5)
normalized and (6) subjected to batch effect removal using empirical Bayes methods [1]
or another method of choice. The generated ”virtual array”can than be directly analyzed
in R/Bioconducor or exported for use in other suitable software (e.g. MeV).

There are essentially four modes of operation:
Firstly, the ”virtualArrayCompile” function can integrate the major (but not all)

human microarray platfroms in a default mode requiering minimal user input.
Secondly the ”virtualArrayExpressionSets” function. This approach allows to inte-

grate any kind of raw expression data that can be loaded into an ExpressionSet object in
R/BioC. The downside in this case is that the user will have to deal with details such as
log2-transformations, 16 bit - 20 bit transformations, assignment of correct annotations,
etc.

Additionally, each of these two approaches can be used in a supervised or non-
supervised mode. The non-supervised mode uses empirical Bayes networks (implemented
through ”ComBat.R”, [1]) to adjust for batch effects between the individual datasets. In
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the supervised mode the user assigns additional covariates next to the batch assignment,
such as ”treated” and ”untreated”, or ”non-differentiated” and ”differentiated”. Note that
this information has to be valid, as it impacts on the results you will get.

Last but not least it is possible to use the package to integrate data without batch
effect removal, so that other, user-defined, methods of batch effect removal can be em-
ployed.

The combined data is presented as a regular Bioconductor ”ExpressionSet” object,
which permits using all of R/Bioconductor’s power on the dataset as a whole.

To load the package type:

> library(virtualArray)

To cite package 'virtualArray' in publications use:

Andreas Heider and R~Aijdiger Alt (2013). virtualArray: a

R/bioconductor package to merge raw data from different

microarray platforms. R package version 1.6.0.

A BibTeX entry for LaTeX users is

@Article{,

title = {virtualArray: a R/bioconductor package to merge raw data from different microarray platforms},

author = {{Andreas Heider} and {R~Aijdiger Alt}},

year = {2013},

note = {R package version 1.6.0},

journal = {BMC Bioinformatics},

volume = {14},

pages = {75},

}

2 More in depth step by step explanations

Now that you read the introduction I will explain in more detail the different steps that
are made during processing and finally combining the data to the new virtual array.

1. The raw data of each chip/platform or simply batch are to be read in to form an
ExpressionSet in Bioconductor. This is to be done by means of other packages e.g.
”affy”, ”lumi” or ”limma”. Depending on the chip or package used, you may have
to fill or fix the ”annotation” slot of the ExpressionSet to contain available Bio-
conductor annotation packages without the ”*.db” extension. This is particularly
important when pulling data from NCBI GEO or EBI ArrayExpress.
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2. Each batch, even if it is based on the same platform, may have been scanned in
using different hardware or different modes of usage. Because of this, we need to
transform each dataset to common scale (log2, log10 or linear) and resolution (12,
14 , 16 or 20 bit). Again, we can do this using standard R functions on the ”exprs”
slot of the ExpressionSets.

3. When we want to combine data from different platforms we cannot use manu-
facturer identifiers like 1000 s at or ILM 123456 to find matching pairs. Indeed
we have to annotate each dataset with additional identifiers. When starting the
processing using e.g. ”virtualArrayExpressionSets()” we define which additional
identifier to pull from the annotation package. The default is to use gene symbols
(named ”SYMBOL” in the annotation packages). However, it can be anything
present in the annotation packages that gives a 1:1 mapping of identifiers. This
will be fixed in future versions of the package.

4. Before attempting to match common identifiers we need to collapse rows that target
the same identifier or gene in the default case. This is done by either ”median” (the
default) or a user supplied function. This results in a reduced expression matrix.

5. Now we proceed with matching common identifiers. A new expression matrix is
built, that just includes rows for identifiers present in all datasets.

6. virtualArray constructs a new ExpressionSet object with the just built expression
matrix and a ”pData” that contains relations between batches and samples.

7. The newly generated ExpressionSet can now either be returned without further
modifications or directly subjected to batch effect removal using empirical Bayes
methods or another method of choice. Please see the documentation of the ”virtu-
alArray.ExpressionSets” function for details. This can be decided by the user with
the logical or character vector ”removeBatchEffects”.

Note, however, that the contents of the resulting ExpressionSet is not, and actually
can not be, a simple concatenation of the input expression matrices. On the one
hand incompatible probes/probesets are excluded during the process. On the other
hand expression values targetting the same identifier (e.g. gene) are collapsed by
the function (e.g. ”median”) defined in the first place.

The option to not remove the batch effect has been implemented, so you can actu-
ally see the impact of it in the combined data. In other words, you could not create
a figure like in section 3.3. (first figure) in an easy way without using this package.
Furthermore this option can be used to pass the non-corrected ExpressionSet on
to other batch effect removal methods.
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3 A short example with real world data

I will now go through a short example using the ”virtualArrayExpressionSets” approach.
For this we will have to pull some data from the NCBI GEO database. I selected two

induced pluripotent stem cell (iPSCs) datasets. The first one includes human embryonic
stem cells (ESCs), fibroblasts and iPSCs [2]. The second one includes fibroblasts and
iPSCs derived from them [3]. The task in this example is to combine and compare data
from highly similar cell types that were generated on different platforms: the Agilent
G4112A and the Affymetrix HG-U133Plus2 respectively.

3.1 Loading and preparing the data

We use the getGEO function from the GEOquery package to retrieve the desired GEO
series.

> library("GEOquery")

> GSE23402 <- getGEO("GSE23402",GSEMatrix=T,AnnotGPL=FALSE)

> GSE26428 <- getGEO("GSE26428",GSEMatrix=T,AnnotGPL=FALSE)

We select a subset of the data, so the example will run faster.

> GSE23402 <- GSE23402[[1]][,1:24]

> GSE26428 <- GSE26428[[1]]

Agilent and Affimetrix use different raw data formats. Therefore it is absolutely
essential to check if the raw data need to be transformed initially. Let’s have a look at
the data with the simple summary function.

> summary(exprs(GSE23402)[,1:3])

GSM574058 GSM574059 GSM574060

Min. : 10.06 Min. : 10.06 Min. : 10.06

1st Qu.: 22.92 1st Qu.: 22.92 1st Qu.: 22.92

Median : 59.03 Median : 59.03 Median : 59.03

Mean : 510.00 Mean : 510.00 Mean : 510.00

3rd Qu.: 282.19 3rd Qu.: 282.19 3rd Qu.: 282.19

Max. :28094.15 Max. :28094.15 Max. :28094.15

> summary(exprs(GSE26428))

GSM648497 GSM648498 GSM648499

Min. : 1.054 Min. : 1.054 Min. : 1.054

1st Qu.: 3.080 1st Qu.: 3.080 1st Qu.: 3.080

Median : 7.062 Median : 7.062 Median : 7.062

Mean : 6.983 Mean : 6.983 Mean : 6.983

3rd Qu.:10.233 3rd Qu.:10.233 3rd Qu.:10.233

Max. :18.578 Max. :18.578 Max. :18.578

4



We can see that GSE23402 data is not log-scaled, as we have values ranging high
over 20000. On the other hand GSE26428 data is in log-scale at a resolution of 20 bit,
because we have all values under 100. The maxima are above 16 and 17, but below 20
and 19. Now we cannot have 17 or 19 bit, but 20 bit. Also you can find information
from Agilent, that the chip used here is scanned at 20 bit resolution.

To resolve this problem, we log2-transform the Affymetrix data, and transform the
Agilent data from 20 bit to 16 bit resolution.

> exprs(GSE23402) <- log2(exprs(GSE23402))

> exprs(GSE26428) <- (exprs(GSE26428)/20*16)

Here are the results of our transformations. You can appreciate that both datasets
now spread to the same data format: 16 bit log2-transformed.

> summary(exprs(GSE23402)[,1:4])

GSM574058 GSM574059 GSM574060 GSM574061

Min. : 3.331 Min. : 3.331 Min. : 3.331 Min. : 3.331

1st Qu.: 4.519 1st Qu.: 4.519 1st Qu.: 4.519 1st Qu.: 4.519

Median : 5.883 Median : 5.883 Median : 5.883 Median : 5.883

Mean : 6.491 Mean : 6.491 Mean : 6.491 Mean : 6.491

3rd Qu.: 8.140 3rd Qu.: 8.140 3rd Qu.: 8.140 3rd Qu.: 8.140

Max. :14.778 Max. :14.778 Max. :14.778 Max. :14.778

> summary(exprs(GSE26428))

GSM648497 GSM648498 GSM648499

Min. : 0.8433 Min. : 0.8433 Min. : 0.8433

1st Qu.: 2.4636 1st Qu.: 2.4636 1st Qu.: 2.4636

Median : 5.6495 Median : 5.6495 Median : 5.6495

Mean : 5.5863 Mean : 5.5863 Mean : 5.5863

3rd Qu.: 8.1861 3rd Qu.: 8.1861 3rd Qu.: 8.1861

Max. :14.8623 Max. :14.8623 Max. :14.8623

We next need to set the correct Bioconductor annotations. UPDATE: New virtu-
alArray version automatically translates known GPL Ids to Bioc annotations via the
”GPLs” list (see documentation).

> annotation(GSE23402) <- "hgu133plus2"

> annotation(GSE26428) <- "hgug4112a"

Now we create an empty object to hold our virtual arrays

> my_virtualArrays <- NULL
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We have generated two ExpressionSets, which have their expression data in the same
”space”, and also have the correct annotation packages attached to them. We have also
created an empty object to hold the ExpressionSets being generated. This is necessary,
because we will create 2 of them and the function we call next, scans the current environ-
ment for ExpressionSets to combine them. So if we stored it in the current environment,
we would end up adding our newly generated virtual array to the input data in the
second run.

3.2 Building the virtual array

In the next step, we will compile the new ExpressionSet.

> my_virtualArrays$iPSC_hESC_noBatchEffect <- virtualArrayExpressionSets()

Reading Sample Information File

Reading Expression Data File

Found 2 batches

Found 0 covariate(s)

Standardizing Data across genes

Fitting L/S model and finding priors

Finding parametric adjustments

Adjusting the Data

full vs.GSE23402 vs.GSE26428 vs.result

GSE23402 19851 19851 17674 17674

GSE26428 18946 17674 18946 17674

result 17674 17674 17674 17674

We will now compile a second ExpressionSet WITHOUT REMOVING BATCH EF-
FECTS.

> my_virtualArrays$iPSC_hESC_withBatchEffect <- virtualArrayExpressionSets(removeBatcheffect=FALSE)

full vs.GSE23402 vs.GSE26428 vs.result

GSE23402 19851 19851 17674 17674

GSE26428 18946 17674 18946 17674

result 17674 17674 17674 17674

This step just adds some sensible phenoData, including colors(!).

> pData(my_virtualArrays$iPSC_hESC_noBatchEffect)[5] <-

+ c(as.character(pData(GSE23402)[,8]),as.character(pData(GSE26428)[,1]))

> pData(my_virtualArrays$iPSC_hESC_noBatchEffect)[6] <-

+ c(rep("red",24),rep("blue1",3))
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The virtualArray package is now completely executed. At this stage one could pro-
ceed with your intended analysis of the first ExpressionSet, or apply an alternative
batch effect removal method using the second ExpressionSet generated without batch
effect removal.

Note that we used some defaults of the function that are good to know about:
We used gene symbols (identifiers=”SYMBOL”) to annotate each expression matrix

and we selected the median (collapse fun=median) of rows targetting the same gene
symbol (that is e.g. Affymetrix probe sets targeting the same gene). This results in
the removal of redundancies and the reduction of the number of rows in each expression
matrix (see the output above).

Furthermore, the package removes gaps by selecting only those entries that are
present in all datasets. This is necessary, because all platforms detect slightly differ-
ent fractions of the genome, but not the whole genome. Hence, the number of rows is
further reduced.

3.3 A glimpse at the results

To have a first look at the data, we create distance matrices and perform a hierarchical
clustering. Distances between observations are calculated using euclidian distances.

> dist_iPSC_hESC_noBatchEffect <-

+ dist(t(exprs(my_virtualArrays$iPSC_hESC_noBatchEffect)),

+ method="euclidian")

> dist_iPSC_hESC_withBatchEffect <-

+ dist(t(exprs(my_virtualArrays$iPSC_hESC_withBatchEffect)),

+ method="euclidian")

Trees are formed using average distance between clusters

> hc_iPSC_hESC_noBatchEffect <-

+ hclust(dist_iPSC_hESC_noBatchEffect, method="average")

> hc_iPSC_hESC_noBatchEffect$call <- NULL

> hc_iPSC_hESC_withBatchEffect <-

+ hclust(dist_iPSC_hESC_withBatchEffect, method="average")

> hc_iPSC_hESC_withBatchEffect$call <- NULL

We will plot the hclust in color, because the naming itself isn’t very clear

> virtualArrayHclust(hc_iPSC_hESC_withBatchEffect,

+ lab.col=pData(my_virtualArrays$iPSC_hESC_noBatchEffect)[,6],

+ lab=pData(my_virtualArrays$iPSC_hESC_noBatchEffect)[,5],

+ main="batch effect NOT removed",cex=0.7,

+ xlab="sample names")
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> virtualArrayHclust(hc_iPSC_hESC_noBatchEffect,

+ lab.col=pData(my_virtualArrays$iPSC_hESC_noBatchEffect)[,6],

+ lab=pData(my_virtualArrays$iPSC_hESC_noBatchEffect)[,5],

+ main="batch effect removed",cex=0.7,

+ xlab="sample names")
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We colored all samples from Guenther et al. in red and all sampels from Maekama et
al. in blue. the first image shows, that there are indeed significant batch effects between
the two experiments, as fibroblasts and iPS cells cluster according to the platform they
were generated on, rather than according to their biological similarity. After batch
effect removal, we see that the non-supervised mode yields a significant improvement.
The terminally differentiated fibroblasts now cluster together, whereas the pluripotent
iPS cells cluster together with pluripotent ESC lines, irrespective of the origin of the
data.

3.4 A final run in supervised mode

In order to get the supervised mode to run, we need to edit the ”sample info.txt”file, that
is written to the current working directory on the fly. We will modify the 4th column to
look like in table 1. UPDATE: The new virtualArray version can use a common column
in the pData slots of the supplied ExpressionSets, please see documentation for details.

Note, that we have thus chosen to order the samples into 2 groups in addition to the
2 batches. This tells the algorithm that we expect the biological variances to be greatest
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Table 1: sample info.txt
Array.name Sample.name Batch Covariate.1

1 GSM574058 GSM574058 GSE23402 fibroblast
2 GSM574059 GSM574059 GSE23402 fibroblast
3 GSM574060 GSM574060 GSE23402 fibroblast
4 GSM574061 GSM574061 GSE23402 ESC or iPSC
5 GSM574062 GSM574062 GSE23402 ESC or iPSC
6 GSM574063 GSM574063 GSE23402 ESC or iPSC
7 GSM574064 GSM574064 GSE23402 ESC or iPSC
8 GSM574065 GSM574065 GSE23402 ESC or iPSC
9 GSM574066 GSM574066 GSE23402 ESC or iPSC

10 GSM574067 GSM574067 GSE23402 ESC or iPSC
11 GSM574068 GSM574068 GSE23402 ESC or iPSC
12 GSM574069 GSM574069 GSE23402 ESC or iPSC
13 GSM574070 GSM574070 GSE23402 ESC or iPSC
14 GSM574071 GSM574071 GSE23402 ESC or iPSC
15 GSM574072 GSM574072 GSE23402 ESC or iPSC
16 GSM574073 GSM574073 GSE23402 ESC or iPSC
17 GSM574074 GSM574074 GSE23402 ESC or iPSC
18 GSM574075 GSM574075 GSE23402 ESC or iPSC
19 GSM574076 GSM574076 GSE23402 ESC or iPSC
20 GSM574077 GSM574077 GSE23402 ESC or iPSC
21 GSM574078 GSM574078 GSE23402 ESC or iPSC
22 GSM574079 GSM574079 GSE23402 ESC or iPSC
23 GSM574080 GSM574080 GSE23402 ESC or iPSC
24 GSM574081 GSM574081 GSE23402 ESC or iPSC
25 GSM648497 GSM648497 GSE26428 ESC or iPSC
26 GSM648498 GSM648498 GSE26428 ESC or iPSC
27 GSM648499 GSM648499 GSE26428 fibroblast
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between these 2 groups. Now we run the package once again, but this time we need to
modify the ”sample info.txt” file when prompted. After editing please select ”y” to run
in supervised mode.

> my_virtualArrays$iPSC_hESC_supervised <- virtualArrayExpressionSets(sampleinfo="create")

Reading Sample Information File

Reading Expression Data File

Found 2 batches

Found 0 covariate(s)

Standardizing Data across genes

Fitting L/S model and finding priors

Finding parametric adjustments

Adjusting the Data

full vs.GSE23402 vs.GSE26428 vs.result

GSE23402 19851 19851 17674 17674

GSE26428 18946 17674 18946 17674

result 17674 17674 17674 17674

> dist_iPSC_hESC_supervised <-

+ dist(t(exprs(my_virtualArrays$iPSC_hESC_supervised)),

+ method="euclidian")

> hc_iPSC_hESC_supervised <<-

+ hclust(dist_iPSC_hESC_supervised, method="average")

> hc_iPSC_hESC_supervised$call <- NULL

Again we will plot the hclust in color, because the nomenclature alone is not sufficient.

> virtualArrayHclust(hc_iPSC_hESC_supervised,

+ lab.col=pData(my_virtualArrays$iPSC_hESC_noBatchEffect)[,6],

+ lab=pData(my_virtualArrays$iPSC_hESC_noBatchEffect)[,5],

+ main="batch effect removed - supervised mode",cex=0.7,

+ xlab="sample names")
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To get a final view of the data we perform a principle component analysis. Coloring
is based on batches.

> pca_supervised <- prcomp(t(exprs(my_virtualArrays$iPSC_hESC_supervised)))

> plot(pca_supervised$x, pch=19, cex=2, col=c(rep("red",24),rep("blue",3),pch=17))

> legend("topleft",c("GSE23402","GSE26428"),col=c("red","blue"),pch=19,cex=1)
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You can see that especially the fibroblasts cluster together more closely now. On
the other hand each sample is on the same relative position, as when running in non-
supervised mode. This indicates, that the batch effects have been further reduced,
without losing biological information.

This example shows, how ”virtualArray” can be used to integrate samples from dif-
ferent labs generated on different platforms into one virtual array. Similarly, published
datasets from two or more clinical studies could be combined into one large raw data
based meta-analysis, e.g. to investigate transcriptional signatures of malignant tissues.
Therefore, I hope this tool will be valuable for basic as well as clinical researchers.

Now have fun using it!
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