Data input vignette Reading genotype data in **snpStats**

David Clayton

October 14, 2013

Memory limitations

Before we start it is important to emphasise that the SnpMatrix objects that hold genotype data in snpStats are resident in memory, and limitations of the computer and of the R language impose limits on the maximum size of datasets that can be held at any one time. Each genotype reading uses only a single byte of memory so that large datasets can be read given the large memory capacity of modern computers. However R imposes a limit of $2^{31} - 1 \sim 2 \times 10^9$ elements in a single array¹. For example, this would correspond to one million loci for two thousand subjects and would occupy two gigabytes of machine memory.

Reading pedfiles

A commonly encountered format for storing genotype data is the "pedfile" format, which originated some years ago in the LINKAGE package. Pedfiles are text files containing one line per genotyped sample, with fields separated by "white space" (TAB characters or SPACEs). The first six fields contain:

- 1. a pedigree or family identifier, unique to the family of which this subject is a member,
- 2. a further identifier, unique (within the family) to each family member,
- 3. the member identifier of the father of the subject if the father is also present in the data, otherwise an arbitrary code (usually 0),
- 4. similarly, an identifier for the mother of the subject,
- 5. the sex of the subject (1 = Male, 2 = Female), and
- 6. a binary trait indicator (1 = Absent, 2 = Present).

 $^{^{1}}$ This limit applies in both the 32-bit and 64-bit versions of R; these versions differ only in the *total* memory that can be used

Missing values in the last two fields are usually coded as zero.

The first few rows and columns of a sample file is shown below:

```
IBD054 430 0 0 1 0 1 3 3 1 4 1 4 2
IBD054 412 430 431 2 2 1 3 1 3 4 1 4 2
IBD054 431 0 0 2 0 3 3 3 3 1 1 2 2
IBD058 438 0 0 1 0 3 3 3 3 1 1 2 2
IBD058 470 438 444 2 2 3 3 3 3 1 1 2 2
```

Thus, the subject of line 2 has a father whose data appears on line 1 and a mother whose data is on line 3. The grandparents do not appear on the file. This subject is affected by the trait, but the trait status of her parents is not known. The genotypes of this subject at the first four loci are 1/3, 1/3, 4/1 and 4/2. Note that snpStats will only deal with diallelic data and, although alleles are coded 1 to 4 in this file, only two of these occur with in any one locus. In fact these data are from the sample dataset distributed with the HAPLOVIEW program (Barrett et al., 2005) which uses the numbers 1–4 to denote the four nucleotides: 1 = A, 2 = C, 3 = G, 4 = . The pedfile contains data for 20 loci on 120 subjects, and is accompanied by a second file which describes the loci, the first four lines being:

```
IGR1118a_1 274044
IGR1119a_1 274541
IGR1143a_1 286593
IGR1144a_1 287261
```

(this file is rather simple, containing just the locus name and its position on a chromosome). The (gzipped) pedfile and the locus information file are stored in the extdata subdirectory of the snpStats package as, respectively, sample.ped.gz and sample.info. Since the precise location of these files may vary between installations, we first obtain full paths to these files using the system.file function

```
> pedfile <- system.file("extdata/sample.ped.gz", package="snpStats")
> pedfile
```

[1] "/tmp/Rtmpuxrvx9/Rinst40ac5d76ebbf/snpStats/extdata/sample.ped.gz"

```
> infofile <- system.file("extdata/sample.info", package="snpStats")</pre>
```

The data can then be read in using the read.pedfile function

```
> sample <- read.pedfile(pedfile, snps=infofile)
```

The result, sample, is a list with three elements. The first is an object of class SnpMatrix containing the genotype data. We shall show summaries for the first few loci

> sample\$genotypes

```
A SnpMatrix with 120 rows and 20 columns
```

Row names: 430 ... 17702

Col names: IGR11118a_1 ... IGR2020a_1

> col.summary(sample\$genotypes)\$MAF

```
[1] 0.14957265 0.14224138 0.15833333 0.15000000 0.13392857 0.15929204
```

- [7] 0.14678899 0.14035088 0.06578947 0.14166667 0.13839286 0.15566038
- [13] 0.13750000 0.14166667 0.31250000 0.26470588 0.27155172 0.50000000
- [19] 0.28947368 0.02232143

> head(col.summary(sample\$genotypes))

```
Calls Call.rate Certain.calls
                                                RAF
                                                                      P.AA
                                                          MAF
IGR1118a_1
             117 0.9750000
                                        1 0.8504274 0.1495726 0.008547009
IGR1119a_1
             116 0.9666667
                                        1 0.1422414 0.1422414 0.724137931
                                        1 0.8416667 0.1583333 0.008333333
IGR1143a_1
             120 1.0000000
                                        1 0.8500000 0.1500000 0.008333333
IGR1144a_1
             120 1.0000000
IGR1169a_2
             112 0.9333333
                                        1 0.8660714 0.1339286 0.000000000
IGR1218a_2
                                        1 0.8407080 0.1592920 0.008849558
             113 0.9416667
                P.AB
                           P.BB
                                    z.HWE
IGR1118a_1 0.2820513 0.70940171 1.175622
IGR1119a_1 0.2672414 0.00862069 1.025043
IGR1143a_1 0.3000000 0.69166667 1.375728
IGR1144a_1 0.2833333 0.70833333 1.217161
IGR1169a_2 0.2678571 0.73214286 1.636547
IGR1218a_2 0.3008850 0.69026549 1.311673
```

The second list element is a dataframe containing the first six fields of the pedfile. We'll just display the start of this:

> head(sample\$fam)

	pedigree	${\tt member}$	${\tt father}$	${\tt mother}$	sex	${\tt affected}$
430	IBD054	430	<na></na>	<na></na>	1	NA
412	IBD054	412	430	431	2	2
431	IBD054	431	<na></na>	<na></na>	2	NA
438	IBD058	438	<na></na>	<na></na>	1	NA
470	IBD058	470	438	444	2	2
444	IBD058	444	<na></na>	<na></na>	2	NA

Note that the zero values in the pedfile have been read as NA; this is optional, but default, behaviour of the function. Here the pedigree-member identifiers have been used as subject identifiers, since these are not duplicated while pedigree identifiers (the first choice) were duplicated (if both sets of identifiers are duplicated, they are combined). Finally, the third list element is a dataframe containing the information read from the sample.info file, to which have been added the two alleles found at each locus:

> head(sample\$map)

	$\mathtt{snp.names}$	V2	allele.1	allele.2
1	IGR1118a_1	274044	1	3
2	IGR1119a_1	274541	3	1
3	IGR1143a_1	286593	4	1
4	IGR1144a_1	287261	4	2
5	IGR1169a_2	299755	2	1
6	IGR1218a_2	324341	3	1

Here we have used the default settings of read.pedfile. In particular, it is not mandatory to supply a locus description file and there are further arguments which allow additional flexibility. These options are described in the on-line help page.

PLINK files

Binary PED (BED) files written by the PLINK toolset (Purcell et al., 2007) may also be read as SnpMatrix objects. Files of type .bed are written by the plink -make-bed command and are accompanied by two text files: a .fam file containing the first six fields of a standard pedfile as described above, and a .bim file which describes the loci. The package data directory also contains .bed, .fam and .bim files for the sample dataset of the last section; the following commands recover the full file paths for these files and read the files:

```
> fam <- system.file("extdata/sample.fam", package="snpStats")
> bim <- system.file("extdata/sample.bim", package="snpStats")
> bed <- system.file("extdata/sample.bed", package="snpStats")
> sample <- read.plink(bed, bim, fam)</pre>
```

The output object is similar to that produced by read.pedfile, a list with three elements:

> sample\$genotypes

```
A SnpMatrix with 120 rows and 20 columns
Row names: 430 ... 17702
Col names: IGR1118a_1 ... IGR2020a_1

> col.summary(sample$genotypes)$MAF

[1] 0.14957265 0.14224138 0.15833333 0.15000000 0.13392857 0.15929204
```

```
[7] 0.14678899 0.14035088 0.06578947 0.14166667 0.13839286 0.15566038 [13] 0.13750000 0.14166667 0.31250000 0.26470588 0.27155172 0.50000000 [19] 0.28947368 0.02232143
```

> head(sample\$fam)

	pedigree	member	father	mother	sex	${\tt affected}$
430	IBD054	430	NA	NA	1	NA
412	IBD054	412	430	431	2	2
431	IBD054	431	NA	NA	2	NA
438	IBD058	438	NA	NA	1	NA
470	IBD058	470	438	444	2	2
444	IBD058	444	NA	NA	2	NA

> head(sample\$map)

	${\tt chromosome}$	$\mathtt{snp.name}$	cM	position	allele.1	allele.2
IGR1118a_1	NA	IGR1118a_1	NA	274044	1	3
IGR1119a_1	NA	IGR1119a_1	NA	274541	1	3
IGR1143a_1	NA	IGR1143a_1	NA	286593	4	1
IGR1144a_1	NA	IGR1144a_1	NA	287261	4	2
IGR1169a_2	NA	IGR1169a_2	NA	299755	2	1
IGR1218a_2	NA	IGR1218a_2	NA	324341	3	1

Usually the three input files have the same filename stub with .bed, .fam and .bim extensions added. In this case it is sufficient to just supply the filename stub to read.plink.

A useful feature of read.plink is the ability to select a subset of data from a large PLINK dataset. This is demonstrated in our small example below

```
> subset <- read.plink(bed, bim, fam, select.snps=6:10)
```

> subset\$genotypes

A SnpMatrix with 120 rows and 5 columns

Row names: 430 ... 17702

Col names: IGR1218a_2 ... IGR1373a_1

> col.summary(subset\$genotypes)\$MAF

[1] 0.15929204 0.14678899 0.14035088 0.06578947 0.14166667

> subset\$map

	${\tt chromosome}$	$\mathtt{snp.name}$	cM	position	allele.1	allele.2
IGR1218a_2	NA	IGR1218a_2	NA	324341	3	1
IGR1219a_2	NA	IGR1219a_2	NA	324379	4	2
IGR1286a_1	NA	IGR1286a_1	NA	358048	3	2
TSC0101718	NA	TSC0101718	NA	366811	4	3
IGR1373a_1	NA	IGR1373a_1	NA	395079	2	4

Note that, in order to select certain SNPs, the input PLINK file must be in SNP-major order i.e. all individuals for the first SNP, all individuals for the second SNP, and so on. This is the default mode in PLINK. However, to select certain individuals, the input PLINK file must be in individual-major order.

Long format data

Median :1

Mean

Median :1

Mean :1

The least compact, but perhaps most flexible, input format is the "long" format in which each genotype call takes up a single line. Such data can be read using the function read.snps.long. A simple example is provided by the small gzipped data file sample-long.gz provided with the package:

```
> longfile <- system.file("extdata/sample-long.gz", package="snpStats")
> longfile
```

[1] "/tmp/Rtmpuxrvx9/Rinst40ac5d76ebbf/snpStats/extdata/sample-long.gz"

The first 5 lines of the file are listed as follows:

> cat(readLines(longfile, 5), sep="\n")

snp1	subject1	1	1.000
snp1	subject2	2	1.000
snp1	subject3	1	1.000
snp1	subject4	1	1.000
snp1	subject5	2	1.000

The first field gives the SNP identifier (snp1 to snp18), the second gives the sample, or subject, identifier (subject1 to subject100), the third field gives the genotype call (1=A/A, 2=A/B, 3=B/B), and the last field gives a confidence measure for the call (here always 1.000). To read in this file and inspect the data:

```
> gdata <- read.long(longfile,</pre>
     fields=c(snp=1, sample=2, genotype=3, confidence=4),
     gcodes=c("1", "2", "3"),
     threshold=0.95)
> gdata
A SnpMatrix with 100 rows and 18 columns
Row names:
            subject1 ... subject100
Col names:
            snp1 ... snp18
> summary(gdata)
$rows
  Call.rate Certain.calls Heterozygosity
Min. :1
            Min. :1
                           Min.
                                  :0.1111
            1st Qu.:1
1st Qu.:1
                           1st Qu.:0.2778
```

Mean

:0.3478

Median : 0.3333

```
3rd Qu.:1 3rd Qu.:1 3rd Qu.:0.3889 Max. :1 Max. :1 Max. :0.6667
```

\$cols

Calls	Call.rate	Certain.cal	ls RAF	MAF
Min. :100	Min. :1	Min. :1	Min. :0.	0450 Min. :0.0450
1st Qu.:100	1st Qu.:1	1st Qu.:1	1st Qu.:0.	2700 1st Qu.:0.1087
Median :100	Median :1	Median :1	Median :0.	4475 Median :0.2850
Mean :100	Mean :1	Mean :1	Mean :0.	4383 Mean :0.2739
3rd Qu.:100	3rd Qu.:1	3rd Qu.:1	3rd Qu.:0.	5913 3rd Qu.:0.4300
Max. :100	Max. :1	Max. :1	Max. :0.	9100 Max. :0.4900
P.AA	P.A	В	P.BB	z.HWE
Min. :0.000	O Min. :	0.0700 Min	:0.0000	Min. :-1.85573
1st Qu.:0.152	5 1st Qu.:	0.2025 1st	Qu.:0.0875	1st Qu.:-0.62145
Median :0.285	0 Median :	0.4000 Med	ian :0.1750	Median : 0.25448
Mean :0.387	8 Mean :	0.3478 Mea	n:0.2644	Mean : 0.09661
3rd Qu.:0.547	5 3rd Qu.:	0.4600 3rd	Qu.:0.3350	3rd Qu.: 0.86390
Max. :0.920	0 Max. :	0.5500 Max	:0.8200	Max. : 1.19206

A few remarks:

- 1. In our example, the entire file has been read. However, subsets of data may be extracted by specifying the required SNP or sample identifiers.
- 2. Any calls for which the call confidence is less than threshold is set to NA (this did not affect any calls in this simple example).
- 3. Here, calls were represented by a single genotype code. It is also possible to read calls as pairs of alleles. The function then returns a list whose first argument is the SnpMatrix object, and whose second object is a dataframe containing the allele codes. This option is demonstrated below, using an alternative coding of the same data (all SNPs are CT SNPs):

```
> allelesfile <- system.file("extdata/sample-long-alleles.gz", package="snpStats")
> cat(readLines(allelesfile, 5), sep="\n")
```

```
subject1
                                                        1.000
snp1
              subject2
                                  С
                                             Τ
snp1
                                                        1.000
                                  С
                                             C
snp1
              subject3
                                                        1.000
                                  С
                                             \mathsf{C}
snp1
              subject4
                                                        1.000
                                  C
                                             Τ
snp1
              subject5
                                                        1.000
```

- > gdata <- read.long(allelesfile,
- + fields=c(snp=1, sample=2, allele.A=3, allele.B=4, confidence=5),
- + threshold=0.95)
- > gdata

\$genotypes

A SnpMatrix with 100 rows and 18 columns

Row names: subject1 ... subject100

Col names: snp1 ... snp18

\$alleles

${\tt allele.A}$	allele.B
C	T
C	Т
C	T
C	Т
С	T
C	T
Т	C
C	Т
T	C
T	С
C	Т
Т	C
C	Т
Т	C
C	Т
C	T
C	T
C	Т
	C C C C C T C T C C C C

> gdata\$genotypes

A SnpMatrix with 100 rows and 18 columns

Row names: subject1 ... subject100

Col names: snp1 ... snp18

> gdata\$alleles

	allele.A	allele.B
snp1	C	T
snp2	C	Т
snp3	C	T
snp4	C	T
snp5	C	T
snp6	C	T
snp7	Т	C
snp8	C	T

snp9	T	C
snp10	T	C
snp11	C	T
snp12	T	C
snp13	C	T
snp14	Т	C
snp15	C	T
snp16	C	T
snp17	C	T
snp18	C	T

Note that the assignment of alleles depends on the order in which they were encountered. This function has many options and the online help page needs to be read carefully.

Other formats

Imputation

A further source of input data is programs which can *impute* genotype data for a set of study individuals, using genome-wide SNP-chip data for the study subjects plus HapMap or 1,000 genomes project datasets. snpStats provides the functions read.beagle, read.impute, and read.mach to read in files produced by the leading imputation programs. For more details of such data, see the imputation and meta-analysis vignette.

VCF format

The 1,000 genomes data are released in the VCF format. snpStats does not yet include a function to read data files in this format, but the GGtools package does contain such a function (vcf2sm).

X, Y and mitocondrial SNPs

The SnpMatrix class is designed for diploid SNP genotypes. SNPs which can be haploid are stored in objects of the XSnpMatrix class, which has an addition slot, named diploid. Since, for the X chromosome, ploidy depends on sex and may vary from row to row, this (logical) vector has the same number of elements as the number of rows in the SNP data matrix. Most input routines do not allow for reading an XSnpMatrix and simply read into a SnpMatrix, coding haploid calls as (homozygous) diploid. Such objects may then be coerced into the XSnpMatrix class using as(..., "XSnpMatrix") or new("XSnpMatrix, ..., diploid=...). If as is used, ploidy is inferred from homozygosity while, if new is used, it must be supplied (if all rows have the same ploidy, this argument can be a scalar). In either case, calls presumed to be haploid but coded as heterozygous will be set to NA.

Reference

Barrett JC, Fry B, Maller J, Daly MJ.(2005) Haploview: analysis and visualization of LD and haplotype maps. *Bioinformatics*, 2005 Jan 15, [PubMed ID: 15297300]

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ and Sham PC (2007) PLINK: a toolset for whole-genome association and population-based linkage analysis. *American Journal of Human Genetics*, **81**