TurboNorm: A fast scatterplot smoother with applications for microarray normalization

Chantal van Leeuwen and Maarten van Iterson

October 14, 2013

Leiden University Medical Center, Department of Human Genetics, The Netherlands
Package TurboNorm, version 1.7.2
mviterson@gmail.com

Contents

1 Introduction 1
2 Smoothing using piecewise constant P-splines 2
3 Normalization of single- and two-colour data 3
4 Normalization of array-based DNA methylation data 5
5 Details 6

1 Introduction

This vignette show how piecewise constant P-splines [1] can be used for normalization of either single- or two-colour data. The pspline()-function can be used for two-colour data objects of type RGList and MarrayRaw from respectively from limma [2] and from the package marray. For single colour microarray data wrapper functions are writting based on the affy [3] functions normalize.loess() and normalize.AffyBatch.loess() namely normalize.pspline() and normalize.AffyBatch.pspline(). Also a panel-function, panel.pspline(), is available for adding the smoothed curve to lattice [4] graphic panels.

The P-spline smoother introduced by Eilers and Marx [1] is a combination of B-splines with a difference penalty on the regression coefficients. P-splines belong to the family of penalized splines using B-spline basis functions, where the penalization is on the curvature of the smoothed function. For the P-splines of Eilers and Marx [1], a discrete approximation to the integrated squared second derivative of the B -splines is made. This results in an easy-to-construct penalty matrix, and the resulting band-diagonal system of equations can be efficiently solved. Using piecewise constant B-splines as a basis makes the construction of the B-spline basis even easier. The resulting linear
system of equations can be solved either using a QR decomposition or a Cholesky decomposition [5].
Additionally to the P -spline smoother proposed by [1] we introduce a weighted P -spline smoother. The weighted P-spline smoother leads to the following system of equations:

$$
\begin{equation*}
\left(X^{\prime} W X+\lambda D^{\prime} D\right) \hat{\boldsymbol{\beta}}=X^{\prime} W \mathbf{y} \tag{1}
\end{equation*}
$$

where X is the B -spline basis matrix (with X^{\prime} its transpose), W is a diagonal matrix of weights, D is a matrix operator for the second-order differences and \mathbf{y} represents the vector of observations. The value of penalty parameter, λ, can be determined by cross-validation, for example. The original P-spline smoother of Eilers and Marx [1] has W, the identity matrix. When piecewise constant basis functions are used, both $X^{\prime} W X$ and $X^{\prime} W \mathbf{y}$ become diagonal matrices, and can be constructed very efficiently [6]. The regression coefficients of the weighted P-spline smoother are now given by:

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}=\left(X^{\prime} W X+\lambda D^{\prime} D\right)^{-1} X^{\prime} W \mathbf{y} . \tag{2}
\end{equation*}
$$

See for a detailed description of the method and several applications van Iterson et al. [7].

2 Smoothing using piecewise constant P -splines

The main workhorse of the package is the function turbotrend(). Given data the function returns an object containing the smoothed values and some additional information like, effective degrees of freedom, optimized penalty value, λ, and the generalized cross-validation error at the optimal penalty value.
The following toy example shows the use of the turbotrend(). First we load the library and generate some data:

```
> library(TurboNorm)
> funky <- function(x) sin(2*pi*x^3)^3
> m <- 100
> x <- seq(0, 1, length=m)
> y <- funky(x) + rnorm(m, 0, 0.1)
```

Next we plot the data and the underlying function that generated the data together with the smoothed curves based on the original piecewise constant B-spline basis.

```
> plot(x, y, type='p', xlab="", ylab="")
> curve(funky, add=TRUE)
> fitOrig <- turbotrend(x, y, n=15, method="original")
> lines(fitOrig, col="green", type='b', pch=1)
```


In order to get some more detail on the regression parameters a show-method is implemented.
>fitOrig
Call:
turbotrend $(\mathrm{x}=\mathrm{x}, \mathrm{y}=\mathrm{y}, \mathrm{n}=15$, method = "original")
Effective degrees of freedom: 5.812496
Number of bins: 15
Penalty value: 11.97688
Number of robustifying iterations: 0
GCV : 0.05451783

3 Normalization of single- and two-colour data

For single colour microarray data normalization the following functions are available normalize.pspline() and normalize.AffyBatch.pspline() these functions are based on functions for
normalization from the affy package.
The pspline()-function can be used for normalization of two-colour microarray data. The data input is either an object of type RGList as defined in the package limma or an object of type MarrayRaw defined in the package marray. The pspline()-function recognizes the type of the object and returns the normalized object of the same type, i.e. MAList and MarrayNorm.

Here is an example code using the swirl-data from marray. Using the option showArrays=2 the smoothed curve is plotted together with the data in a MA plot for array 2 (by default no plot is shown).

```
> library(marray)
> data(swirl)
> x <- pspline(swirl, showArrays=2, pch=20, col="grey")
```

Raw data array: 2

A

4 Normalization of array-based DNA methylation data

Here we show how a weighted normalization can be performed. This is especially useful for arraybased DNA methylation data, where there is large number of differential methylation expected. Using data(methylation) a random subset of the data of one of the cell lines described in the paper by van Iterson et al. [?] is loaded as an RGList. The element weights of the RGList contains the subset of invariant fragments, those without methylation-sensitive restriction sites, as a logical matrix where each colunm represents an array those fragments that are part of the subset are TRUE and those that are not FALSE. The data dependent weight is in this example approximately 250.

```
> library(TurboNorm)
> data(methylation)
> indices <- methylation$weights[,1]
> weights <- rep(1, length(indices))
> weights[indices] <- length(indices)/sum(indices)
> MA <- normalizeWithinArrays(methylation, method="none", bc.method="none")
> labels <- paste("NMB", c("(untreated)", "(treated)"))
> labels <- paste(rep(c("Raw"), each=2), labels)
>
```

First we transform the intensities to M - and A -values without background correction and then the normalization is performed both weighted P-spline and ordinary lowess using limma. Now we use the lattice in order to illustrate the difference. We highlight the invariant subset in black.

```
> data <- data.frame(M=as.vector(MA$M),
+ A=as.vector(MA$A),
+ Array=factor(rep(labels, each=nrow(MA$A)), levels=rev(labels)))
> library(lattice)
> print(xyplot(M~A|Array, xlab="", ylab="", data=data, type='g',
+ panel = function(x, y) {
+ panel.xyplot(x, y, col="grey")
    lpoints(x[indices], y[indice,
    panel.pspline(x, y, weights =
    panel.loess(x, y, col="green
```


This example also shows how the panel.pspline()-function can be used. The smoothed curve obtained by the P-spline smoother can be added to lattice graphics.

5 Details

This document was written using:

- R version 3.0.2 (2013-09-25), x86_64-unknown-linux-gnu
- Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C
- Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, utils
- Other packages: Biobase 2.22.0, BiocGenerics 0.8.0, TurboNorm 1.10.0, convert 1.38.0, lattice $0.20-24$, limma 3.18.0, marray 1.40 .0
- Loaded via a namespace (and not attached): BiocInstaller 1.12.0, affy 1.40.0, affyio 1.30.0, grid 3.0.2, preprocessCore 1.24.0, tools 3.0.2, zlibbioc 1.8.0

References

[1] P.H.C. Eilers and B.D. Marx. Flexible smoothing with B-splines and penalties. Statistical Science, 11(2):89-121, 1996.
[2] Gordon K. Smyth. Limma: linear models for microarray data. In R. Gentleman, V. Carey, S. Dudoit, and W. Huber R. Irizarry, editors, Bioinformatics and Computational Biology Solutions using R and Bioconductor, pages 397-420. Springer, New York, 2005.
[3] B.M. Bolstad, R.A. Irizarry, M. Astrand, and T.P. Speed. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19(2):185-93, 2003.
[4] D. Sarkar. lattice: Lattice Graphics, 2009. R package version 0.17-26.
[5] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learing. New York:Springer-Verlag, 2001.
[6] P.H.C. Eilers. Fast computation of trends in scatterplots. Kwantitatieve Methoden, 71:38-45, 2004.
[7] M. van Iterson, F. A. Duijkers, J. P. Meijerink, P. Admiraal, G. J. van Ommen, J. M. Boer, M. M. van Noesel, and R. X. Menezes. A novel and fast normalization method for high-density arrays. Statistical Applications in Genetics and Molecular Biology, 11(4), 2012.

